En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.
Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.
Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.
Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.
En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.
El equipo de investigación presenta una trayectoria que respalda su capacidad para abordar este nuevo reto, con experiencia en proyectos previos. En efecto, el IP1 del proyecto RESILIFE también fue IP en los 4 proyectos anteriores y dirigió 17 tesis doctorales relacionadas. El IP2 participó en todos estos proyectos. Los resultados obtenidos han sido consistentemente significativos y progresivos. El proyecto HORSOST (BIA2011-23602) generó 15 artículos JCR, 5 Q1, y de ellos, 2 D1. BRIDLIFE (BIA2014-56574-R) produjo 20 artículos JCR, 15 de ellos en la categoría Q1 y, de estos, 7 en la categoría D1. DIMALIFE (BIA2017-85098-R) produjo 33 artículos JCR, 20 de ellos Q1 y, de estos, 12 D1. HYDELIFE (PID2020-117056RB-I00) ha producido hasta ahora 42 artículos JCR, 26 de ellos Q1 y 15 D1. En estos proyectos se concedieron cuatro contratos predoctorales, tres de los cuales culminaron con éxito y el último está en ejecución. También existe una patente (Alcalá y Navarro, 2020) sobre vigas en cajón mixtas de acero y hormigón.
Objetivos y resultados ya alcanzados en proyectos previos
Antes de resumir los resultados de proyectos previos, queremos destacar que nuestra línea de investigación va más allá de la simple optimización económica del hormigón estructural, un objetivo atractivo a corto plazo para las empresas constructoras o de prefabricados. En proyectos anteriores, se abordó el diseño eficiente de estructuras con hormigones no convencionales, utilizando criterios sostenibles multiobjetivo y técnicas de minería de datos. También se analizó la toma de decisiones en la gestión del ciclo de vida de puentes pretensados, priorizando la eficiencia social y medioambiental con presupuestos ajustados. Para ello, se emplearon metamodelos, diseño óptimo robusto y fiabilidad para generar diseños automáticos de puentes e infraestructuras, considerando hormigones con baja huella de carbono y abordando aspectos de durabilidad, consumo energético, huella de carbono y seguridad a lo largo del ciclo de vida. Se utilizaron técnicas de decisión multicriterio para elegir la mejor tipología constructiva de un puente y decidir entre las opciones resultantes de la frontera de Pareto. Se incorporaron técnicas emergentes de aprendizaje profundo (DL) en la hibridación de metaheurísticas y se exploró la construcción industrializada modular en edificación y obra civil. Además, se analizaron en detalle puentes mixtos y estructuras híbridas frente a soluciones de hormigón en un análisis de ciclo de vida completo que incluye la sostenibilidad social y medioambiental.
La producción científica de estos proyectos fue significativa (ver algunos artículos en las referencias aportadas). Se abordó la optimización multiobjetivo (coste, CO2 y energía) en puentes con vigas artesa y cajón, así como en el mantenimiento de puentes y redes de pavimento. También se exploró la sostenibilidad social de las infraestructuras y se aplicaron metodologías innovadoras, como la lógica neutrosófica y las redes bayesianas en la toma de decisiones. La optimización se respaldó en metamodelos de redes neuronales, modelos kriging y análisis de fiabilidad. Se propusieron indicadores para evaluar la sostenibilidad social y ambiental. Además, se aplicó diseño robusto a puentes, se analizó la resiliencia de las infraestructuras y se realizaron análisis del ciclo de vida para estructuras óptimas. Se obtuvo la patente «Viga en cajón mixta de acero y hormigón, P202030530».
Sin embargo, para avanzar es necesario abordar las limitaciones y el alcance de estos proyectos. El proyecto RESILIFE busca dar un salto cualitativo en nuestra línea de investigación y superar algunas de las limitaciones actuales en cuanto al alcance. Para respaldar la innovación propuesta y plantear este nuevo proyecto, nuestro grupo llevó a cabo seis estudios sobre el estado del arte en relación con BIM en estructuras (Fernández-Mora et al., 2022), la aplicación de la inteligencia artificial a la construcción (García et al., 2022), sobre estructuras modulares (Sánchez-Garrido et al., 2023), sobre estructuras prefabricadas frente a sismo (Guaygua et al., 2023), sobre estructuras híbridas de acero (Terreros-Bedoya et al., 2023) y sobre metamodelos (Negrín et al., 2023). Esto ha permitido detectar la oportunidad de optimizar el ciclo de vida de las estructuras incorporando, desde el diseño, la ocurrencia de eventos extremos, de forma que dichas estructuras pudieran recuperar su funcionalidad en el menor tiempo posible y con el menor coste social y ambiental. Tanto las estructuras híbridas de acero como las basadas en MMC tienen el potencial de mejorar la resiliencia estructural, siendo estos campos de investigación fecundos y de gran repercusión social. Además, el uso de la inteligencia artificial, la toma de decisiones multicriterio que consideran incertidumbres, el uso de metamodelos, la incorporación de la teoría de juegos en la optimización multiobjetivo y el empleo del BIM y la realidad virtual en la modelización suponen barreras que superar en la investigación de estas estructuras. A ello hay que añadir el uso de técnicas no destructivas para detectar daños en dichas estructuras (Hadizadeh-Bazaz et al., 2023), así como tecnologías de reparación eficiente de estructuras (Ortega et al., 2018).
Por tanto, RESILIFE pretende superar una serie de limitaciones en la investigación:
Análisis del ciclo de vida de estructuras híbridas de acero basadas en Modernos Métodos de Construcción (MMC) ante situaciones extremas (aumento de temperatura, explosiones, seísmos, etc.), de forma que aumente la resiliencia.
En el diseño óptimo, prever la reparación y el mantenimiento de las MMC ante eventos extremos, de forma que los elementos estructurales no se dañen o se puedan reparar de manera eficiente y rápida, centrándose en los problemas sociales y ambientales.
Utilizar metaheurísticas híbridas basadas en la inteligencia artificial, metamodelos y la teoría de juegos para mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generada en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo resiliente y basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
Profundizar en el estudio de la distribución de los impactos sociales y ambientales en las estructuras MMC.
Analizar la sensibilidad de las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras.
Lo indicado hasta ahora se podría sintetizar en los siguientes aspectos:
El tema de la investigación se ha ido profundizando en cada uno de los proyectos realizados, de acuerdo con los objetivos previstos.
Los estudios anteriores se basaban en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida, el diseño robusto y basado en la fiabilidad y la incorporación del aprendizaje profundo. Ahora es el momento de ampliar la investigación a nuevas construcciones industrializadas modulares y estructuras híbridas optimizando su resiliencia ante eventos extremos.
Referencias
ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
HAO, H.; BI, K.; CHEN, W.; PHAM, T.M.; LI, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Struct., 277:115477.
KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.
En varios artículos anteriores ya presentamos el resumen, la justificación, las hipótesis de partida y los objetivos del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la metodología de este proyecto.
El análisis del estado de la técnica, desarrollado específicamente por el grupo para formular este proyecto, reveló la existencia de importantes lagunas de investigación. Por un lado, no se ha abordado de manera integral la optimización del diseño de estructuras híbridas y basadas en MMC que incorporan daños por eventos extremos, lo que dificulta una recuperación rápida y la minimización de impactos sociales y ambientales. Estas estructuras presentan un alto potencial (Terreros-Bedoya et al., 2023; Sánchez-Garrido et al., 2023), pero aún no se han explorado metaheurísticas híbridas con DL y teoría de juegos en la optimización de su resiliencia. Además, la lógica neutrosófica y las redes bayesianas abren puertas en el ámbito de la decisión multicriterio. Estas innovaciones se fusionan en nuestra metodología con técnicas, como el análisis del ciclo de vida, el análisis basado en la fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. La metodología propuesta busca priorizar el diseño de estructuras, su reparación o mantenimiento, considerando criterios de sostenibilidad social y ambiental dentro de restricciones presupuestarias, teniendo en cuenta la variabilidad inherente a los desafíos prácticos.
La Figura 2 muestra el esquema metodológico propuesto para RESILIFE, vinculando las fases con los objetivos específicos. Se adopta un enfoque mixto e interactivo en el que el decisor proporciona información sobre sus preferencias al analista. Posteriormente, mediante una optimización multiobjetivo basada en la fiabilidad y los metamodelos, el analista genera un conjunto de soluciones eficientes que el decisor evalúa antes de tomar una decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, en las que el decisor (grupos de interés) informa de las preferencias al analista, abarcando métodos constructivos, reparación, conservación, etc. La optimización multiobjetivo, apoyada en la variabilidad de parámetros, variables y restricciones, produce alternativas eficientes. La última fase implica un proceso de información a posteriori para que el decisor considere aspectos no contemplados en la optimización, que da como resultado la solución final completa.
La metodología se aplicará, como mínimo, a los siguientes casos de estudio. En primer lugar, a la optimización de pórticos de edificios altos con estructura de acero híbrido y de hormigón armado sometida a un incremento fuerte de temperatura. De hecho, Keles et al. (2024) optimizan estructuras de acero tradicional, en las que la temperatura altera las propiedades mecánicas, y Negrín et al. (2023a) comparan las ventajas de las estructuras híbridas frente a las tradicionales. El segundo caso se aplica a pórticos de edificios, tanto de hormigón armado como de estructuras híbridas, donde se optimiza suponiendo el fallo completo de uno o varios de los soportes, de forma que el entramado siga manteniendo su funcionalidad. Esto permite, con ligeros cambios en el diseño, mantener cierta funcionalidad estructural capaz de evacuar a las personas con seguridad y, a su vez, realizar tareas de reparación o mantenimiento de los elementos dañados. El objetivo es mejorar no solo la optimización, sino también los aspectos de diseño que impidan el colapso progresivo. Un aspecto similar ha sido estudiado por Negrín et al. (2023c) para el caso de fuertes interacciones suelo-estructura. Otro caso de estudio es la optimización resiliente de viviendas sociales prefabricadas en zonas sísmicas, que deben resistir acciones extremas y, además, poder reparar rápidamente los daños (Guaygua et al., 2023). Otro caso previsto es la optimización resiliente del mantenimiento y la reparación de patologías resultantes de eventos extremos. Los casos anteriores, que se centran en gran medida en viviendas, también se extenderán en este proyecto a otras estructuras, como puentes híbridos o estructuras modulares, en consonancia con la experiencia previa del equipo de investigación. La optimización siempre es multiobjetivo y se apoya en técnicas de deep learning a lo largo del ciclo de vida, con la novedad del uso de la teoría de juegos.
Referencias
GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725
TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
En artículos anteriores ya presentamos el resumen, la justificación y las hipótesis de partida del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo expondremos los objetivos generales y específicos de este proyecto.
El objetivo general perseguido consiste en afrontar el reto social y ambiental que supone el proyecto, el mantenimiento y la reparación de estructuras híbridas y MMC frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para alcanzar este objetivo, es necesario avanzar en la ciencia, integrando a diversos actores y grupos de expertos en la toma de decisiones, con el fin de tener en cuenta criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las estructuras, teniendo en cuenta la variabilidad inherente al mundo real. Para abordar las incertidumbres que afectan al sistema, se propone la aplicación de metamodelos y metaheurísticas híbridas basadas en fiabilidad. Estas se aplicarán no solo al diseño de nuevas estructuras, sino también al mantenimiento y la reparación de las existentes. Un análisis de sensibilidad de los escenarios presupuestarios y de las hipótesis de los inventarios del ciclo de vida proporcionará conocimientos significativos sobre las mejores prácticas. Cabe destacar que esta metodología podrá adaptarse a otros tipos de infraestructuras.
El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales serán responsables los investigadores principales:
• OE-1: Análisis de las funciones de distribución de eventos extremos para el diseño óptimo basado en la fiabilidad que integre aspectos ambientales, sociales y económicos para la toma de decisiones multicriterio.
• OE-2: Cuantificación de la resiliencia de las estructuras ante múltiples amenazas con el fin de garantizar la integración de la sostenibilidad en el diseño, mantenimiento y reparación de estructuras híbridas de acero y modulares.
• OE-3: Identificación de estrategias de reparación y mantenimiento robusto óptimo de estructuras híbridas de acero y modulares resilientes.
• OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de estructuras híbridas de acero y modulares mediante metaheurísticas híbridas.
• OE-5: Comparación de las estructuras y los sistemas en términos de su resiliencia respecto a la optimización heurística, teniendo en cuenta incertidumbres presupuestarias en su ciclo de vida.
• OE-6: Difusión de resultados y redacción de informes.
En artículos anteriores ya presentamos un resumen y la justificación del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos las hipótesis de partida de este proyecto.
La hipótesis principal de partida de RESILIFE es que un diseño óptimo y una construcción con estructuras híbridas basadas en los modernos métodos de construcción (MMC) son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. La novedad radica en el empleo de la inteligencia artificial para optimizar la resiliencia y la sostenibilidad, con el fin de hacer frente a eventos extremos y evitar el colapso progresivo, protegiendo así la vida y la economía. De hecho, las estructuras híbridas de acero y las estructuras modulares son tipologías con elevadas posibilidades de generación de conocimiento (Sánchez-Garrido et al., 2023; Terreros-Bedoya et al., 2023). Además, existe un déficit de investigaciones que incorporen metaheurísticas híbridas emergentes y aprendizaje profundo (deep learning, DL) en la optimización multiobjetivo resiliente de este tipo de estructuras. Estas técnicas extraen información no trivial de las inmensas bases de datos procedentes de la optimización y mejoran la calidad y el tiempo de cálculo. Otra novedad en este proyecto es el uso de la teoría de juegos en la optimización multiobjetivo, empleada en la última tesis doctoral del grupo. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real, planteando la optimización resiliente basada en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a la toma de decisiones multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo, que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente con fuertes restricciones presupuestarias. La resolución del problema planteado presenta serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar el cálculo (Negrín et al., 2023).
Para alcanzar los objetivos del proyecto se basan en determinadas hipótesis:
Hipótesis 1: Es rentable diseñar estructuras innovadoras, resilientes y robustas frente a eventos extremos, que se puedan reparar cuando se optimizan a lo largo de su ciclo de vida.
Hipótesis 2: Las estructuras modulares permiten instaurar o restaurar infraestructuras rápidamente tras un evento extremo, y son eficientes desde el punto de vista social y ambiental.
Hipótesis 3: Las estructuras de acero híbridas mejoran las prestaciones de las estructuras de acero convencionales, mejorando la resiliencia ante eventos extremos, con niveles óptimos de sostenibilidad.
Hipótesis 4: Las metaheurísticas mejoran la calidad de las soluciones y reducen el tiempo de cálculo cuando se combinan con el aprendizaje profundo (DL).
Hipótesis 5: La optimización multiobjetivo de las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida, siendo la teoría de juegos una técnica efectiva.
Hipótesis 6: La optimización multiobjetivo puede dar lugar a soluciones inviables con pequeñas variaciones en los parámetros o en las restricciones.
Hipótesis 7: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
Hipótesis 8: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de estructuras híbridas y modulares.
Hipótesis 9: Las soluciones de mantenimiento óptimo de estructuras híbridas y modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
Hipótesis 11: Las medidas de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones son preferibles por su menor coste social y ambiental a la reparación severa de las estructuras. La dimensión social incluye la integración del análisis de género en la investigación (IAGI).
Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, la conservación, el mantenimiento y el desmantelamiento de estructuras híbridas y modulares que sean robustas ante cambios presupuestarios y resilientes ante eventos extremos.
Referencias
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
En un artículo anterior ya presentamos un resumen del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la necesidad de este proyecto.
Entre 2003 y 2013, diversos desastres naturales (terremotos, tsunamis, tifones, deslizamientos e inundaciones) y provocados por el ser humano (explosiones, vertidos o impactos) ocasionaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y provocaron pérdidas estimadas en 1,5 billones de dólares (Hao y Li, 2019). Estos eventos, que siguen presentes en los últimos años, resaltan la urgencia de desarrollar estructuras resilientes, sostenibles y de alto rendimiento que protejan la vida y la economía. Además, los eventos extremos requieren adaptaciones eficaces y económicas en el diseño, construcción, reparación y mantenimiento de infraestructuras, lo que impulsa la investigación en construcción sostenible para reducir la huella de carbono y otros impactos.
Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo del edificio (Adam et al., 2018). Caredda et al. (2013) determinaron que este tipo de colapso se debió a errores de construcción y diseño en el 65 % de los casos estudiados. Algunos eventos han demostrado que las intervenciones locales preventivas pueden salvar tanto vidas de usuarios como infraestructuras, resaltando así la importancia del mantenimiento. La falta de eficacia en las reparaciones de hormigón es uno de los principales problemas en ingeniería estructural. En Europa, solo el 50 % de las operaciones de restauración en edificaciones de hormigón es efectiva, a pesar de que la rehabilitación representa casi la mitad de las inversiones en construcción (Borghese et al., 2023).
El crecimiento económico, el aumento de la población y de la urbanización, así como el calentamiento global y el agotamiento de los recursos naturales implican que la construcción de estructuras deba considerar la sostenibilidad, la durabilidad y una gestión inteligente del ciclo de vida, además de la seguridad, el rendimiento y la resiliencia. Para ello, es necesario emplear materiales sostenibles y residuos industriales en la construcción; nuevas formas y diseños estructurales para controlar las vibraciones y mitigar los efectos de las cargas; tecnologías de prefabricación innovadoras mediante impresión 3D y construcción modular para minimizar las interrupciones en la obra y mejorar el control de calidad; así como nuevos conceptos de diseño y construcción, estructuras desplegables y estructuras de sacrificio para mejorar la resiliencia y la resistencia a cargas extremas.
La recuperación de estructuras dañadas implica recursos y emisiones considerables. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Este enfoque es esencial para cumplir los ODS de las Naciones Unidas y abordar los desafíos climáticos y ambientales.
No obstante, la modernización de las infraestructuras conlleva un coste prohibitivo, lo que resalta la necesidad de asignar eficazmente los limitados recursos presupuestarios. Ante la complejidad de este desafío, se plantean propuestas de optimización resiliente para facilitar la toma de decisiones considerando la aleatoriedad e incertidumbres inherentes. Por ejemplo, esto se aplica a las redes eléctricas, donde los apagones derivados de condiciones meteorológicas adversas generaron costes anuales de entre 18 000 y 33 000 millones de dólares entre 2003 y 2012 (Yuan et al., 2015).
Una estructura resiliente bien diseñada puede no requerir reparación o bien puede recuperarse con reparaciones menores después de un evento extremo, como puede ser el caso de puentes con resiliencia sísmica (Dong et al., 2022). Guaygua et al. (2023) revelaron la correlación entre los edificios prefabricados y aspectos como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo. Los últimos avances en estructuras industrializadas pasan por mejoras en las uniones de las estructuras prefabricadas, que son los puntos más vulnerables ante los seísmos. De este modo, se están creando edificios que, a través de ingeniosos métodos de disipación de energía, están equiparando sus prestaciones y seguridad a las estructuras tradicionales sancionadas por la práctica. Sánchez-Garrido et al. (2023) detectan lagunas en la investigación, incluida la necesidad de aplicar más las estructuras innovadoras basadas en métodos modernos de construcción (Modern Methods of Construction, MMC). Asimismo, resaltan la importancia de abordar la mejora del entorno construido a través del paradigma del diseño regenerativo. Se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.
Las estructuras de acero se consideraban resistentes a los terremotos, pero esta percepción cambió tras los eventos de Northridge en 1994 y Kobe en 1995, que revelaron fracturas frágiles, especialmente en las conexiones viga-columna. Desde entonces, se ha explorado el uso de materiales emergentes y diseños innovadores para reducir el riesgo de fallo frágil temprano (Fang et al., 2022). Los cambios extremos de temperatura afectan a la resistencia y la rigidez de las estructuras de acero, por lo que es necesario aumentar el tamaño de la sección transversal para compensar la reducción de la rigidez y evitar fallos estructurales (Keles et al., 2024). Esta reducción de la capacidad resistente con la temperatura también ocurre con las estructuras de hormigón (Tang et al., 2023). Las vigas de acero híbridas optimizan la resistencia a la flexión y al cortante, y mejoran a los elementos de acero homogéneos. No obstante, la investigación debe cubrir las lagunas existentes en su aplicación a estructuras complejas y su capacidad de resistir acciones extremas (Terreros-Bedoya et al., 2023). Otra oportunidad son los materiales compuestos multifuncionales que se aplican en columnas y permiten reducir el peso y mejorar la resistencia en edificios altos y entornos agresivos. Estas innovaciones superan las limitaciones de las estructuras tradicionales de acero y hormigón, así como de las tecnologías convencionales de construcción (Sojobi et al., 2023).
No obstante, no todas las estructuras pueden diseñarse para resistir cualquier evento extremo, por lo que se tiende a incrementar su funcionalidad todo lo posible. El diseño de estructuras resilientes requiere esfuerzos colaborativos e interdisciplinarios para formular nuevos enfoques y métricas que consideren el rendimiento y los aspectos funcionales posteriores al evento. Las estructuras resilientes deben contemplar su vida útil en relación con los impactos de los desastres, las reparaciones, el mantenimiento y la evolución de las acciones sobre ellas. Actualmente no existen procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas ni para comparar las estructuras y los sistemas en términos de su resiliencia (Khaloo y Mobini, 2016). Surge la oportunidad de implementar aspectos de la resiliencia estructural, como la funcionalidad técnico-socioeconómica, los principios de diseño basados en el riesgo probabilístico y la resiliencia, las dependencias ambientales y los sistemas de apoyo a la toma de decisiones basados en la resiliencia. Para ello, resulta fundamental integrar el proyecto estructural dentro del paradigma de modelos de información en la construcción (BIM) (Fernández-Mora et al., 2022).
Referencias
ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.
Los desastres naturales y humanos ocasionan pérdidas humanas y económicas considerables. Las estructuras dañadas deben diseñarse para recuperar su funcionalidad lo antes posible, lo que implica recursos y emisiones significativas. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo de las infraestructuras. RESILIFE afronta el reto social que suponen el mantenimiento y la reparación de estructuras frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. La hipótesis de partida es que un diseño óptimo y la construcción con estructuras híbridas basadas en los modernos métodos de construcción, en especial las modulares, son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. El reto será incorporar mejoras en el diseño para afrontar eventos extremos y equiparar estas estructuras en prestaciones y en seguridad a las estructuras tradicionales. La innovación central consiste en plantear procedimientos explícitos para cuantificar la resiliencia de las estructuras en el contexto de múltiples amenazas y comparar las estructuras y los sistemas en términos de resiliencia. Para ello, se aplicarán técnicas de inteligencia artificial para optimizar la resiliencia, lo que demostrará su eficacia en términos sociales y ambientales frente a eventos extremos. La novedad metodológica radica en la utilización de metaheurísticas híbridas emergentes y Deep Learning en la optimización multiobjetivo, así como de la teoría de juegos, con el fin de lograr la pronta recuperación de su funcionalidad con costes sociales y ambientales reducidos, evitando su colapso progresivo. Además, se pretende profundizar en las técnicas de decisión multicriterio emergentes, como la lógica neutrosófica y otras, como las redes bayesianas. Esto no solo mejora la calidad y la velocidad de cálculo en el diseño, el mantenimiento y la reparación de estructuras, sino que también aborda las incertidumbres del mundo real y propone una optimización resiliente basada en la fiabilidad y en diseños robustos. En este contexto, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables. Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras, sobre todo si hay incrementos de costes al introducir la resiliencia en el diseño. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de reparación y conservación, y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad.
Natural and human disasters cause considerable human and economic losses. Damaged structures must be designed to recover their functionality quickly, which involves significant resources and emissions. Therefore, the design and construction of structures must focus on sustainability, durability, multiple resistance, resilience, and intelligent life-cycle monitoring. Extreme events, design, construction, and lack of maintenance errors often cause local structural damage that can trigger the progressive collapse of infrastructures. RESILIFE addresses the social challenge of maintaining and repairing structures in extreme situations by optimizing the complex problems posed at the level of public and private decisions. The starting hypothesis is that optimal design and construction with hybrid structures based on modern construction methods, especially modular ones, are socially and environmentally effective and resilient to extreme events. The challenge will be to incorporate design improvements to cope with extreme events and to bring these structures on par with traditional structures regarding performance and safety. The central innovation is to develop explicit procedures to quantify the resilience of structures in the context of multiple hazards and to compare structures and systems in terms of resilience. To this end, artificial intelligence techniques will be applied to optimize resilience, demonstrating its effectiveness in social and environmental terms in the face of extreme events. The methodological novelty lies in using emerging hybrid metaheuristics and Deep Learning in multi-objective optimization and game theory to achieve early recovery of its functionality with reduced social and environmental costs, avoiding its progressive collapse. In addition, it is intended to deepen emerging multi-criteria decision techniques, such as neutrosophic logic, and others, such as Bayesian networks. This not only improves the quality and speed of computation in the design, maintenance, and repair of structures but also addresses real-world uncertainties and proposes resilient optimization based on reliability and robust designs. In this context, uncertainties, imperfections, or deviations from the parameters used in the codes exist in the real world. An optimal structure is close to the infeasibility region, so it is necessary to incorporate the uncertainties to provide more robust and reliable designs. On the other hand, the strong budget constraints present in times of crisis seriously compromise infrastructure creation and maintenance policies, especially if there are cost increases when introducing resilience in the design. After a sensitivity analysis of different budgetary policies associated with a time horizon, the expected results aim to detail which typologies, specific repair and conservation actions, and demolition and reuse alternatives are adequate to minimize environmental and social impacts considering variability.
PROYECTO DE INVESTIGACIÓN:
Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. (RESILIFE). [Resilient life-cycle optimization of socially and environmentally efficient hybrid and modular structures under extreme conditions]. PID2023-150003OB-I00. Investigadores principales: Víctor Yepes y Julián Alcalá.
En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).
El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.
El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:
OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
OE-6: Difusión de resultados y redacción de informes.
Metodología propuesta en relación con los objetivos y con el estado del arte
El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.
La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.
Proyecto de Investigación:
Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.
En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.
Referencias:
MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainability. Journal of Construction Engineering and Management, (accepted, in press).
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction.Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homes. Environmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.
La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.
Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.
El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.
Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:
Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.
Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:
La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.
Referencias
AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.
Proyecto de Investigación:
Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.
En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.
La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.
Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:
Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.
Proyecto de Investigación:
Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.