Alejandro López Vidal y David Fernández Ordoñez acaban de publicar una reseña de gran interés sobre la construcción con prefabricados de hormigón (http://www.andece.org/IMAGES/BIBLIOTECA/historia_prefabricados_noticreto.pdf). Este artículo se ha publicado en la revista Noticentro, en su número 133 correspondiente a noviembre y diciembre de 2015. Espero que os sea interesante su lectura.
Etiqueta: historia
Mercado de Algeciras, de Eduardo Torroja

El Mercado de Abastos de Algeciras, es un edificio obra del ingeniero Eduardo Torroja Miret y ejecutado por el arquitecto Manuel Sánchez Arcas en 1935 en la Plaza Nuestra Señora de La Palma (Plaza Baja). Fue una estructura muy avanzada para su época, y su cúpula fue la más grande de la historia durante 30 años (1935-1965), hasta que se construyó el Astrodome en Houston (Texas).
El edificio cubre un espacio octogonal cubierto por una lámina esférica sin apoyos internos de 47,60 m de diámetro, 44,10 m de radio de curvatura, 9 cm de espesor en su zona central y 50 en la zona de unión a los pilares, perforada por una claraboya de 10 m de diámetro. La cúpula descansa toda ella sobre 8 pilares periféricos quedando volada en forma de visera en los tramos intermedios para dejar paso a la luz al interior. Se consigue así una estructura limpia y diáfana. Los pilares se encuentran ceñidos por un cinturón con dieciséis redondos de 30 mm, atrevimiento que luego repetiría Torroja en las viseras del Hipódromo de la Zarzuela de Madrid.
El propio Torroja en su libro «Razón y ser de los tipos estructurales» nos explica el funcionamiento de esta estructura: «Los faldones de la bóveda, entre soporte y soporte, vienen escotados por los lunetos que forman las bóvedas cilíndricas rebajadas del contorno, las cuales, a la par que proporcionan con sus marquesinas a las puertas, rigidizan la cúpula y encauzan los haces de isostáticas hacia los soportes. Al tesar el anillo octogonal que recoge y equilibra los empujes radiales de la cúpula sobre los soportes, mediante los tensores de rosca de que iban provistas sus barras, el casquete esférico quedó equilibrado; e incluso, forzando ligeramente la tensión de aquél, se notó perfectamente cómo toda la parte central de la cúpula se levantaba despegando de su cimbra, lo que permitió desmontar ésta libremente sin ninguno de los cuidados que normalmente requieren estos descimbramientos«.
Os dejo a continuación un vídeo donde D. Rafael López Palanco, Catedrático de Estructuras de la Universidad de Sevilla, realiza una visita técnica al Mercado de Abastos de Algeciras, enmarcado en las proyecciones Visitas de Obra del proyecto I+D+i: Fuentes para la historia de las obras públicas, cofinanciado por la Agencia de Obra Pública de la Junta de Andalucía (AOPA) de la Consejería de Fomento y Vivienda. Espero que os guste.
El oficio de maquinista en la industria de la construcción
Los operadores o maquinistas de las máquinas empleadas en obras públicas constituyen una pieza clave en el funcionamiento de cualquier obra. La complejidad de algunos equipos y la incidencia de la maquinaria en los costes de producción, precisan de especialistas con una formación adecuada, capacidad de trabajar en equipo y con un fuerte sentido común. No en vano, una parte importante de las medidas de seguridad en el trabajo dependen de estos especialistas.
Os dejo un vídeo realizado por Structuralia que nos ofrece un perfil de este tipo de trabajo y algo de historia respecto a sus orígenes. Espero que os guste.
Referencias:
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.
YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3
Lucio del Valle y el puente del Cabriel

Lucio del Valle y Arana (1815-1874) fue un ingeniero de caminos y arquitecto muy influyente en su época. Dedicó su vida a las obras públicas, entre las que destacan la carretera de Madrid a Valencia por las Cabrillas, el Canal de Isabel II, la gran reforma de la Puerta del Sol y los faros metálicos del delta del Ebro. Finalmente, acabó sus días como director de la Escuela de Ingenieros de Caminos.
Este artículo lo vamos a dedicar a la carretera de Valencia a Madrid por las cuestas de Contreras, en particular al puente sobre el Cabriel. El camino de las Cabrillas, también conocido como camino de las Cabrillas, tenía fama de ser intransitable y peligroso a causa de los bandoleros, si bien era paso obligado entre Valencia y Castilla. D. Lucio dedicó 10 años a estos trabajos, desde finales de 1840, cuando terminó la carrera. Solucionó el proyecto del trazado con pendientes no superiores al 5 % de inclinación y una anchura viaria mínima de 13 m, apto para el tránsito de carruajes, para lo cual tuvo que realizar un trazado zigzagueante que se extendía por varios kilómetros en la provincia de Cuenca.


El problema era salvar la garganta del río Cabriel, de 159 m de anchura y unos 50 m de profundidad, para lo cual pensó inicialmente en un puente colgante. Sin embargo, el proyecto final fue una obra de sillería situada en un punto más bajo. La posibilidad de abaratar costes al contar con 1200 presidiarios influyó en la decisión. Su construcción comenzó en 1846 y finalizó en 1851. El puente actual, apodado por el propio D. Lucio como el «ciempiés», tiene numerosos pilares a modo de patas y es ligero, pues su espesor no supera los 2,5 m. Tiene una longitud de 86,80 m, una anchura de 6,40 m en el tramo central y 8,90 m en los dos tramos de acceso, y consta de siete arcos de medio punto de 28 m de altura máxima, con una luz de 16,7 m en el arco central y 8 m en los tres arcos de cada lado. No obstante, la envergadura del arco principal y la relación ancho de pila/luz del arco, de 1/2,5, son dimensiones superadas anteriormente por muchos puentes romanos, como el de Alcántara, construido casi dos mil años antes. Según Javier Manterola (2015), este puente y el puente de piedra de Logroño (1882) suponen un anacronismo en una época en la que el hierro y el acero ya se habían impuesto, revolucionando la forma de construir los puentes, y en la que empezaban a utilizarse el cemento Portland y el hormigón. Solo Seyourné, con su enorme habilidad y talento, prolongó el anacronismo de los puentes de piedra hasta 1911, con el puente de los Catalanes, en Toulouse.
El aspecto actual del puente se mantiene desde la década de 1930, con la obra original del siglo XIX y las mejoras efectuadas por el Circuito Nacional de Firmes Especiales (carretera asfaltada y peraltada, con el vallado en algunos tramos). Esto se debe a que primero el tráfico se desvió por la parte alta del embalse y luego por el actual viaducto de Contreras. Una lápida en mármol en el puente nos recuerda: «D. LUCIO DEL VALLE, INGENIERO DE CAMINOS, CANALES Y PUERTOS, PROYECTÓ Y DIRIGIÓ ESTA CARRETERA Y TODAS SUS OBRAS DESDE 1841 A 1851».


Referencias:
Alberola, J. (1951). Primer centenario de las «Cuestas de Contreras». Revista de Obras Públicas, 2837:437-441.
Del Valle, L. (1844). Memoria sobre la situación, disposición y construcción de los puentes. Valencia. Ed. Publisher. Fundación Esteyco.
Manterola, J. (2015). Los primeros arcos de hormigón. Revista de Obras Públicas, 3561:65-88.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Puente de San Pablo (Cuenca)
El puente primigenio de San Pablo se construyó entre 1538 y 1589 por orden del canónigo Juan del Pozo para comunicar el Convento de San Pablo y el casco urbano de Cuenca, a su paso por el río Huécar. Elefante de cinco patas, como le llamó Pío Baroja, este puente era de piedra con cinco arcos apoyados sobre cuatro pilares, de los que aún quedan algunos restos. El hecho de que llevara tantos años construir dicho puente explica la cantidad de maestros que pasaron por la dirección de sus obras, como Francisco de Luna, Andrés de Vandelvira, Juan Gutiérrez de la Hoceja, Juan de Palacios, Hernando de Palacios y, finalmente, Juan de Meril. Sin embargo, el hundimiento progresivo de las pilas provocó la rotura sucesiva de los arcos. El puente de piedra se vino abajo en 1786, en la parte más próxima a la catedral, y aunque fue reparado por el arquitecto Mateo López en 1788, no se logró impedir el desmoronamiento del segundo arco. Su último episodio ocurrió en 1895, lo que llevó a tomar la decisión de su total demolición.


Pasaron los años y fueron el obispo Wenceslao Sangüesa y el Seminario Conciliar de San Julián quienes tomaron la decisión de aportar los fondos para construir un nuevo puente de San Pablo. El actual puente es metálico y de madera. Su construcción comenzó en 1902, según el proyecto del ingeniero de caminos valenciano José María Fuster y Tomás, y fue erigido por George H. Bartle, cuya fundición, también valenciana, contaba con gran renombre por aquella época. El puente fue inaugurado el 19 de abril de 1903. El puente mide 60 m de longitud, está elevado 40 m y apoyado en los pilares de arranque de sillería del puente anterior y, en el centro, en un puntal de hierro. Parte del patrimonio de la ciudad de Cuenca, es uno de los mejores lugares desde los cuales observar las Casas Colgadas.

Os dejo un vídeo de Florián Yubero sobre el puente.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
La historia del hormigón armado en España 1893/1936

En el año 2010 el CEHOPU (Centro de Estudios Históricos de Obras Públicas) organizó una exposición para dar a conocer al público el nacimiento y primer desarrollo en España de las construcciones de hormigón. Éste es uno de los materiales más característicos del siglo XX, hoy plenamente incorporado a nuestros paisajes cotidianos, a través del acercamiento a las obras y figuras más representativas del panorama constructivo de la época. Se centró en el proceso de introducción y consolidación en España del empleo de este nuevo material en la construcción en el primer tercio del siglo XX, narrado a través de los hitos, las figuras y las obras de arquitectura e ingeniería más destacadas del período comprendido entre 1893 a 1936, coincidiendo con la monarquía de Alfonso XIII y la II República.
De esta exposición, os dejo los vídeos que siguen, que creo son de interés para introducirse en este mundo apasionante. Y para los que queráis saber más, os aconsejo el libro «Los orígenes del hormigón armado en España», de Antonio Burgos Núñez, editado en el 2009 por el Ministerio de Fomento.
El despegue de la construcción hormigonada.
Los inicios, la introducción del hormigón armado en España.
La normalización del hormigón armado.
Para los curiosos, os dejo esta entrada de Pablo Nieto donde se puede ver la EHE de 1939. http://pablonietocabezas.wordpress.com/2011/11/07/ehe-39/
Los orígenes del PERT y del CPM

Si tuviésemos que hablar de la historia de la planificación y control de las obras, deberíamos referirnos a la primera de las construcciones realizadas por el hombre y perdida en el origen de nuestra especie. Construcciones como las pirámides de Egipto no pudieron construirse sin un plan previo y una compleja organización de recursos. No obstante, al emplear las técnicas de planificación actuales, podemos acortar nuestra retrospectiva a aproximadamente medio siglo atrás en Estados Unidos. Tanto en el ámbito militar como en el civil, de manera independiente, se establecieron los fundamentos de las técnicas basadas en el método del camino crítico (Critical Path Method, CPM) y en el método PERT (Program Evaluation and Review Technique). La planificación y programación de proyectos complejos, sobre todo grandes proyectos unitarios no repetitivos, comenzó a ser motivo de especial atención al final de la Segunda Guerra Mundial, donde el diagrama de barras de Henry Gantt era la única herramienta de planificación de la que se disponía, que fue un método innovador en su momento, pero muy limitado. Gannt publicó en 1916 “Work, Wages, and Profits”, un texto donde discutía estos aspectos de planificación y otros relacionados con la productividad. De todos modos, para ser más exactos, Gantt no fue el pionero en el uso de esta herramienta. Otros autores como Joseph Priestley en 1765 o William Playfair en 1786, ya había sugerido ideas precursoras, que el ingeniero Karol Adamiecki desarrolló en 1896 en lo que él llamó como “Harmonograma”. También deberíamos destacar aquí los primeros intentos desarrollados, entre 1955 y 1957, por la “Imperial Chemical Industries” y el “Central Electricity Generating Board”, en el Reino Unido, donde se desarrolló una técnica capaz de identificar la secuencia de estados más larga e irreductible para la ejecución de un trabajo, en línea con lo que después se llamaría CPM (Crítical Path Method). Estas empresas consiguieron ahorros de tiempo en torno al 40%, pero debido a que no se publicaron estas innovaciones, cayeron en la oscuridad, de la cual se despertó con los avances que se desarrollaron al otro lado del océano.
Si bien al principio PERT y CPM tenían algunas diferencias importantes, con el tiempo, ambas técnicas se han fusionado, de modo que hoy día se habla de estos procedimientos como PERT/CPM. El PERT supone que el tiempo para realizar cada una de las actividades es una variable aleatoria descrita por una distribución de probabilidad. El CPM, por otra parte, infiere que los tiempos de las actividades se conocen en forma determinística y se pueden variar cambiando el nivel de recursos utilizados. Ambos métodos aportaron los elementos necesarios para conformar el método del camino crítico actual, empleando el control de los tiempos de ejecución y los costes de operación, para ejecutar un proyecto en el menor tiempo y coste posible. PERT/CPM se basan en diagramas de redes capaces de identificar las interrelaciones entre las tareas y establecen el momento adecuado para su realización. Además, permiten preparar el calendario del proyecto y determinar los caminos críticos. El camino crítico es, en esencia, la ruta que representa el cuello de botella de un proyecto. La reducción del plazo total de ejecución será solo posible si se encuentra la forma de abreviar las actividades situadas en dicho camino, pues el tiempo necesario para ejecutar las actividades no críticas no incide en la duración total del proyecto. La principal diferencia entre PERT y CPM es la manera en que se realizan los estimados de tiempo. En artículos anteriores hemos explicado mediante sendos vídeos las mecánicas de cálculo de los diagramas de flechas y del propio PERT.
El origen del CPM se sitúa entre diciembre de 1956 y febrero de 1959. En aquellos momentos, la compañía norteamericana E.I. du Pont (DuPont) estaba buscando cómo utilizar uno de los primeros ordenadores comerciales, el “UNIVAC1”. Los gestores de DuPont se dieron cuenta de que planificar, estimar y programar parecía ser el mejor uso que la empresa podría darle a este ordenador. Este trabajo se asignó a Morgan Walker, de la Engineering Services Division de Du Pont, que junto con el matemático James E. Kelley, Jr, que trabajaba en Remington Rand, consiguieron poner a punto el método, con el objetivo de controlar el mantenimiento de los proyectos de plantas químicas de DuPont. A mediados de 1957, esta empresa estaba interesada en ampliar cerca de 300 fábricas, lo cual implicaba un gran número de actividades (por lo menos unas 30000) lo cual no se podía abordar con los diagramas de Gantt. El objetivo era controlar y optimizar los costos de operación de las actividades de un proyecto. En este método, cada una de las tareas tenía una duración exacta, conocida de antemano.


El origen de los trabajos de la técnica PERT empezaron formalmente en enero de 1957, siendo paralelo al del CPM, pero su origen fue en el ámbito militar. Se desarrolló en la Oficina de Proyectos Especiales de la Armada de los EEUU, al reconocer el almirante William. F. Raborn que se necesitaba una planificación integrada y un sistema de control fiable para el programa de misiles balísticos Polaris. Con su apoyo se estableció un equipo de investigación para desarrollar el PERT o “Program Evaluation Research Task”. Así, la Oficina de Proyectos Especiales de la Marina de los Estados Unidos de América, en colaboración con la división de Sistemas de Misiles Lockheed (fabricantes de proyectiles balísticos) y la consultora Booz, Allen & Hamilton (ingenieros consultores), se plantean un nuevo método para solucionar el problema de planificación, programación y control del proyecto de construcción de submarinos atómicos armados con proyectiles «Polaris». Este proyecto involucra la coordinación y supervisión de 250 empresas, 9,000 subcontratistas y numerosas agencias gubernamentales a lo largo de cinco años. En julio de 1958 se publica el primer informe del programa al que denominan “Program Evaluation and Review Technique”, decidiendo su aplicación en octubre del mismo año y consiguiendo un adelanto de dos años sobre los cinco previstos. D. G. Malcolm, J. H. Roseboom, C. E. Clark y W. Fazar, todos del equipo de investigación patrocinado por la Armada, fueron los autores del primer documento publicado sobre el PERT (Malcolm et al., 1959). Este método se basa en la probabilidad de la duración de las actividades. Hoy día se sigue utilizando este método, si bien, tal y como apuntan algunos autores (ver Ahuja et al., 1995), la estimación calculada por PERT suele subestimar la duración real de los proyectos.
REFERENCIAS
AHUJA, H; DOZZI, S.P.; ABOURIZK, S.M. (1995). Project management techniques in planning and controlling construction projects. 2nd edition, Wiley, N.Y.
CLARK, C.E. (1962). The PERT model for the distribution of an activity time. Operations Research, 10(3):405-406.
MALCOLM, D.G.; ROSEBOOM, J.H.; CLARK, C.E.; FAZAR, W. (1959). Application of a technique for research and development program evaluation. Operations Research, 11(5):646-669.
WEAVER, P. (2006). A brief story of scheduling -back to the future- http://www.mosaicprojects.com.au/PDF_Papers/P042_History%20of%20Scheduing.pdf
YEPES, V.; PELLICER, E. (2008). Resources Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 165-188. ISBN: 83-89780-48-8.
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Breve historia del buldócer

El paradigma de la máquina empleada en ingeniería civil es la topadora, explanadora, buldócer, o como lo conocemos habitualmente en inglés, el bulldozer. Aunque se trata de un tractor sobre cadenas, también podemos encontrarlo sobre neumáticos (turnadozer), aunque es más raro. Pues bien, nuestro protagonista no nació de sopetón, sino que fue poco a poco mejorando de ideas previas. Si empezó su trayectoria en el mundo de la agricultura, ha pasado por la guerra y por la ingeniería civil y la minería. Veamos, en dos pinceladas, cuál fue el oscuro nacimiento del bulldozer.
La historia del bulldozer, tal y como hoy la conocemos, surgió de mejoras sucesivas que tuvieron su comienzo con el invento del tractor sobre orugas. Su aparición exacta en el tiempo es un poco oscura, pero en 1713, Frenchman M. D’Hermand propuso un tractor de este tipo traccionado por cabras. Hubo que esperar a 1770 para que Richard Lovell Edgeworth patentara el sistema pero propulsado a vapor. Otros inventos posteriores que mejoraron el sistema fue el desarrollado en 1826 por George Calley, unas orugas a las que denominó “vía férrea universal” (continuous track system, en inglés). Otro invento, el denominado “carruaje con orugas movibles”, fue obra de Dimitri Sagryazhsky, pero no pasó de ser un dibujo sobre un papel. Otra patente fue la de James Boydell, que registró “una rueda de vía férrea sin fin”. En la Guerra de Crimea (1853-1856) ya se usaron los primeros tractores de este tipo propulsados a vapor.
En 1877, Fyodor Blinov creó un vehículo al que denominó “carromato movido sobre raíles sin fin”. Aunque era un vehículo arrastrado por caballos, al año siguiente patentó el mismo vehículo autopropulsado a vapor. Años más tarde, entre 1881 y 1888 desarrolló dicho vehículo.

Otra patente es la de Bramah Joseph Diplock, que inventó en 1903 un sistema curioso de tracción sobre martillos “pedrail wheel”, capaz incluso de subir escaleras. Aunque esta tentativa se alejó del resultado final que conocemos hoy día.

Sin embargo, hay que adentrarse en el siglo XX para que Alvin Orlando Lombard introdujera, en 1901, las orugas en vehículos para mejorar la tracción sobre la nieve. Era una especie de arrastrador de troncos accionado a vapor, con aspecto de locomotora. Posteriormente, estas máquinas acabaron accionándose mediante motores de combustión interna.
El término genérico “caterpillar” (tractor de oruga) fue utilizado por primera vez en 1909. En 1914 su silueta era poco diferente de los actuales. La provechosa unión del tractor de oruga y la cuchara requirió cierto tiempo.
A pesar del éxito de Lombard, no fue hasta que el pionero de la construcción Benjamín Holt transformó este invento en la popular máquina de movimiento de tierras que hoy conocemos. Holt fue jefe de Holt Manufacturing Co. en Stockton, California. Empezó a experimentar con sus tractores sobre orugas en 1906 y tuvo sus problemas con Lombard, que pensaba que el tractor de Holt era una copia de sus ideas. Al otro lado del charco, en Inglaterra, David Roberts, ingeniero jefe de R. Hornsby & Sons, patentó un sistema propio de oruga en 1904. Sin embargo, las ventas no fueron tan exitosas como las de Holt, por lo que le vendió su patente a Holt en 1914.


Holt empezó a aplicar motores de gasolina a los tractores. En 1906 Holt y su sobrino Pliny empezaron a probar su primer motor, hasta que en 1908 vendieron el primer tractor sobre orugas, el llamado Modelo 40, accionado por un motor de combustión interna, con 25 caballos de potencia. Estos primeros tractores tuvieron un uso agrícola, pero al aplicarles una cuchilla al frente del tractor, nació el bulldozer, tal y como lo conocemos.

El invento de poner una hoja empujadora ya tuvo sus primeras versiones en el siglo XIX, pero con propulsión animal. Además, estas palas debían accionarse manualmente. Su versatilidad en terrenos blandos para la explotación forestal y construcción de carreteras llevó directamente a que se conviertan en el tanque blindado en la Primera Guerra Mundial.

Sin embargo, hacia 1920 fue cuando ya se montan las primeras hojas sobre tractores de cadenas. En 1925, año en que se fundó la empresa Caterpillar, se fabrica la primera hoja de empuje de mando hidráulico, sin buenos resultados, por lo que siguió utilizando un sistema de cabrestante, cables, etcétera. Es en el año 1929 cuando se empezó a fabricar el primer modelo de bulldozer, en donde el conductor iba sentado en la parte de arriba sin una cabina cerrada que lo protegiera. En 1931, se sienta lo que sería una de las grandes bases de crecimiento y utilización de estas máquinas en obra con la introducción del motor Diesel por las casas Caterpillar y Hanomag. La hoja de empuje con mando hidráulico, y aceptables en cuanto a funcionamiento y rendimiento, aparece en el mercado en 1935. Otro gran avance tecnológico fue la introducción del convertidor de par en 1940. En el año 1968, Komatsu introduce el sistema de control por radio para un bulldozer diseñado para trabajar en zonas peligrosas, así como un modelo anfibio para profundidades de hasta 7 m. En 1970 aparece con Komatsu un bulldozer totalmente submarino que trabaja hasta 60 m en el fondo del mar.
Versiones más primitivas del buldócer han sido completadas en el siglo XIX agregando palas a los caballos, pero el tractor sobre orugas podía incrementar su poder exponencialmente. Las primeras palas sujetadas a los tractores tenían que ser propulsadas moviéndolas manualmente con timones a mano. Experimentación con buldóceres mejoró al comienzo de los años 1920s, con el primer dócer operado hidráulicamente fabricado en 1925 por LaPlant-Choate Manufacturing Co. en Cedar Rapids, Iowa. Esta cuchilla era enganchada al tractor en un bastidor rectangular, pivotando en el marco del tractor sobre orugas, y controlado por un cilindro hidráulico en la parte posterior del tractor.
El movimiento de la cuchilla fue mejorado con el desarrollo del PCU (Unidad de Poder), introducido por Robert Gilmour Le Tourneau en 1928. La nueva unidad era controlada por el uso de embragues y frenos, y estaba disponible con cuatro cabrias. La unidad de poder también fue usado en un amplio rango de otros accesorios, incluyendo escrepas de jalón y escarificadores.
Mientras que inicialmente el desarrollo de la cuchilla fue realizado separado de los tractores, compañías individuales comenzaron a unirse con fabricantes de tractores, creando un producto más sólido y unificado. Baker se unió con Allis-Chambers, Bucyrus-Erie se unió con International, y Le Tourneau se unió con Caterpillar. En los años 1940s, fabricantes de tractores integraron el desarrollo de cuchillas en sus instalaciones. Diez años después, los tractores y las cuchillas ya no eran piezas individuales, más bien, eran producidas para crear un vehículo ya muy parecido al actual.

Referencias:
YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Los dólmenes, algo de ingeniería prehistórica

Los dólmenes fueron los primeros grandes monumentos europeos de piedra y datan de alrededor de 4500 a.C. Son restos de antiguas cámaras funerarias y consisten en una gran piedra horizontal que se sustenta sobre otras verticales. Destaca, por la dificultad en la construcción de aquellos años, el monumento de Stonehenge. Es un círculo de piedras que se encuentra en la llanura de Salisbury (Inglaterra), que se comenzó a construir hacia el 2200 a.C. El círculo exterior soportó en un principio un dintel arqueado que, a su vez, rodeaba a cinco trilitos (dolmen de dos piedras que sostienen a una tercera en posición horizontal) dispuestos en forma de U. Parte de las piedras se trajeron de más de 216 km de distancia, desde Gales. Los constructores debieron transportar las piedras sobre troncos, lo cual parece realmente increíble.

La construcción de un dolmen suponía un considerable esfuerzo de carácter colectivo, dado el nivel tecnológico del que disponían las comunidades neolíticas y también su estructura social. Las operaciones que había que desarrollar conllevaban un trabajo largo y pesado, en el que debía intervenir una considerable mano de obra bien estructurada, porque el esfuerzo físico a realizar era importante y su buena organización y planificación algo fundamental. Los pasos básicos consistían en cortar la piedra en los afloramientos que servían de cantera, tallar los bloques extraídos para ajustar la forma y medidas deseadas, transportar las piedras hasta el lugar elegido y por fin colocarlas tras haber preparado el terreno para ello. En diversas partes se han hecho ensayos sobre cómo se construía un dolmen y también numerosos cálculos del número de horas de trabajo y mano de obra precisa para trasladar los bloques y colocarlos. Cualquier estimación general es difícil, ya que cada caso es distinto en función de la distancia de la cantera, número de bloques, peso y medida de estos y características del lugar en que se ubica el sepulcro megalítico. En cualquier caso, como mínimo serían necesarios de 20 a 200 hombres trabajando a la vez para que las operaciones fueran rentables. Normalmente, para obtener la piedra se aprovechaban las grietas ya existentes en los afloramientos, donde a base de cuñas de madera seca, odres de cuero o piel llenas de agua, a veces mechas de cuero, hachas de piedra y percutores, se ensanchaban las fisuras para marcar las superficies de fragmentación. Luego la alternancia de fuego y agua, los cambios térmicos, la acción de cuñas, etc. producía el resquebrajamiento de la piedra, hecho este que según las condiciones podía ocurrir en pocos días e incluso en pocas horas, según las condiciones ambientales, geológicas y tecnológicas. Una vez que los bloques habían saltado, eran tallados con utensilios de piedra hasta obtener la forma y el tamaño adecuados. El traslado podía hacerse con trineos, pero parece que fue más habitual la tracción humana ayudada por el deslizamiento sobre rodillos de troncos de árboles y sogas atadas a la piedra para el tiro. En ocasiones se acondicionaban las irregularidades del terreno para facilitar el transporte. La colocación de las losas exigía de fosas de cimentación previamente efectuadas, donde con cuñas y palancas de madera se imbuían las piedras y enseguida se entinaban para sujetarlas. Luego estas fosas se llenaban con piedras pequeñas y tierra, mientras los ortostatos se calzaban con piedras medianas, cubriendo luego todo con tierra. En ciertos dólmenes, el primer ortostato en colocarse era el de la cabecera, que se situaba frente a la entrada de la cámara. Suele ser el de mayores dimensiones. Luego se colocaban los de los lados apoyados unos en otros hacia el interior, de tal manera que el central recogía parte de la carga de todos los demás. Muy a menudo por el exterior se colocaban piedras de refuerzo. Los corredores, que en la zona son estrechos y más bajos que la cámara, constituían el paso siguiente, con sus ortostatos también fijados en fosas de cimentación y calzados con piedras pequeñas. Los túmulos se levantaban, en último lugar, con una estructura interna que suele tener cierto grado de complejidad, con refuerzos y anillos de piedra que contenían las piedras sueltas y apelmazan las mismas. Por el túmulo se accedía a la colocación de la piedra horizontal que servía de cubrición a la cámara. En Europa se conocen más de 50.000 sepulcros megalíticos de distinta tipología, que cubren cerca de 2.000 años. Pero este número de sepulcros, por alto que pueda parecernos en principio, pone de manifiesto que si se utilizaron a lo largo de unas 80-100 generaciones, solo unos pocos individuos se enterraron en ellos, a pesar de su carácter colectivo, de su monumentalidad y del considerable esfuerzo y número de personas que intervinieron en su construcción.
Podéis ver unos vídeos sobre los secretos de Stonehenge aquí mismo:
¿Qué aportó el Antiguo Egipto a la ingeniería?

Es difícil calcular el número de artículos, posts, comentarios o reportajes sobre las pirámides o sobre el Antiguo Egipto. Algunos muy serios, otros rozando lo exotérico. Aquí, evidentemente, no podemos más que dar dos pinceladas sobre el tema. Sin embargo, tras otros posts que ya hemos hecho sobre la ingeniería de otros tiempos, es imposible saltarnos esta época tan determinante. Vamos, pues, a ello.
La piedra se trabajó desde muy antiguo en civilizaciones como Mesopotamia, Egipto o América Central, con estructuras que han llegado hasta hoy. Los egipcios tenían a su disposición excelentes canteras de piedra y un buen sistema de transporte a través del Nilo, además de una gran fuerza de trabajo. Todo ello les permitió convertirse en el primer pueblo capaz de construir en piedra a gran escala, como fue el caso de los templos y las pirámides. No menos grandiosas fueron algunas de sus obras como el muro que rodeaba Menfis, antigua capital a sólo 19 km de El Cairo actual. Allí además se hizo necesaria la construcción de diques y canales, además de sofisticados sistemas de regadío que propiciaron la agrimensura y la matemática correspondiente. Un ejemplo de artilugio que inventaron en aquella época, y que incluso aún se utilizan hoy día, es el “shaduf» que servía para elevar el agua cuando a las tierras de cultivo.

La mayor pirámide fue la de Keops, construida entre los años 4235 y 2450 a.C. Tenía 230,4 m por lado en la base cuadrada y originalmente medía 146,3 m de altura. Contenía unos 2 300 000 bloques de piedra, de cerca de 1,1 toneladas en promedio. Teniendo en cuenta el conocimiento limitado de la geometría y la falta de instrumentos de ese tiempo, fue una proeza notable. Basta indicar que solo se cometió un error máximo de unos 6 minutos de arco respecto a la alineación norte sur, este oeste, mientras que la base no fue un cuadrado perfecto por solo 17,78 cm. Se trata de un monumento capaz de resistir 6000 años, representando un hito de la capacidad técnica de los humanos. El probable método de construcción de las pirámides se basaba en la construcción de rampas provisionales por las que se arrastraban las piedras sobre rodillos de madera, aunque incluso hoy en día resulta asombroso que se pudiera dar una productividad tan alta en los trabajos, capaz de levantar dichos monumentos en tiempos tan cortos de tiempo. Algunos bloques, de hasta 120 toneladas, se arrastraban por ciertos de hombres sobre rampas inclinadas construidas de ladrillo, cuya superficie de barro humedecían para hacerla más resbaladiza. Los equipos de arrastre utilizaban cuerdas tejidas con papiros retorcidos.

En estas fechas tan remotas, los antiguos ya conocían las ventajas de cimentar en roca o en terreno estable. Así, la gran Pirámide de Keops fue cimentada en una superficie rocosa nivelada. Parece ser que el primer camino que registra la historia es el que construyó este faraón, para transportar los materiales para la construcción de su pirámide. Las grandes losas empleadas en este camino indican que los egipcios eran ya conscientes de la necesidad de repartir las cargas sobre el terreno, con objeto de no superar su capacidad portante. Resulta sorprendente comprobar que la construcción de las pirámides, que se inició sobre el año 3000 a.C. durara solo unos cien años. Estas estructuras antiguas únicamente son comparables a la Gran Muralla China.
Los autores de las obras públicas más antiguas son anónimos. El nombre del primer ingeniero conocido fue Imhotep, constructor de la pirámide de peldaños en Saqqara (Egipto) hacia el 2650 a.C. Tal fue su sabiduría y habilidad que se le consideró como un dios tras su muerte. A partir de este momento y mientras estuvo en vigor la antigua civilización egipcia, fue normal que quedara constancia de los nombres de los autores de sus principales monumentos, que ocupaban altísimos cargos en la corte real y estaban vinculados a la clase sacerdotal.
Los templos eran producto de sucesivas fases constructivas, remodelados periódicamente para crear conjuntos cada vez más grandiosos. En el templo de Amón en Karnak, Egipto (1530-323 a.C.), los edificios se dispusieron en la ruta que enlazaba el embarcadero del Nilo con el templo de Luxor. Este conjunto se levantó a lo largo de 1200 años y ocupó una superficie de 21,4 hectáreas. Para su construcción, el edificio se iba rellenando de tierra a medida que se construía, formando un plano sobre el que erigir los bloques y dinteles de piedra. Al finalizar se excavaba la tierra, haciendo surgir el volumen de su interior.

Tras Imhotep, los egipcios, persas, griegos y romanos desarrollaron la ingeniería civil de una forma empírica, pero basándose en la aritmética, la geometría y en unos incipientes conocimientos físicos. Con todo, resulta incomprensible que la obra de estos ingenieros no se reconociese como obras de ingeniería, sino, acaso, como arquitectura.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
