Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

Os dejo el artículo para su descarga, pues está publicado en abierto.

Pincha aquí para descargar

Proceso analítico en red para valorar la sostenibilidad de puentes en ambientes marinos

Durante los días 11 a 12 de julio de 2022 tuvo lugar el International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI/SUSI 2022. La reunión permitió el intercambio de ideas y la interacción entre investigadores, diseñadores y académicos de la comunidad para compartir los avances en los campos científicos relacionados con los temas de la conferencia. Todas las ponencias de la conferencia se archivan en la biblioteca electrónica del Instituto Wessex (www.witpress.com/elibrary), donde están disponibles de forma fácil y permanente en formato de acceso abierto para la comunidad internacional.

Dentro de este congreso, nuestro grupo de investigación presentó un trabajo de investigación sobre la aplicación del Proceso Analítico en Red (ANP) para valorar la sostenibilidad de puentes en ambientes marinos. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Os dejo la comunicación completa (está en abierto) por si os resultara de interés.

Referencia:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Group Analytic Network Process for the sustainability assessment of bridges nearshore. WIT Transactions on The Built Environment, 209: 143-154. DOI:10.2495/HPSU220131. ISSN 1743-3509 (on-line)

Pincha aquí para descargar

Ciclo de vida de puentes de hormigón en regiones costeras basada en el proceso analítico en red (ANP)

Acaban de publicarnos un artículo en Sustainability, revista indexada en el segundo cuartil del JCR. Se trata de aplicar la técnica de toma de decisiones en red ANP para evaluar la sostenibilidad del ciclo de vida de los puentes de hormigón en las regiones costeras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Desde que se establecieron los Objetivos de Desarrollo Sostenible en 2015, la evaluación de la sostenibilidad de las infraestructuras ha estado en el punto de mira de la comunidad científica. Esto se debe a que el sector de la construcción es esencial para promover el bienestar social y el desarrollo económico de los países, pero también es uno de los principales factores de estrés ambiental. Sin embargo, la evaluación de la sostenibilidad de las infraestructuras a lo largo de su ciclo de vida sigue siendo un reto importante, pues los criterios que intervienen en el diseño sostenible suelen ser complejos y contradictorios. El Proceso Analítico en Red (ANP) es una poderosa herramienta de toma de decisiones para modelar tales problemas. En este caso, se evalúa la sostenibilidad del ciclo de vida de diferentes alternativas de puentes de hormigón en ambiente costero utilizando el ANP. Los resultados obtenidos se comparan con los obtenidos mediante el Proceso Analítico Jerárquico (AHP) convencional. Los resultados obtenidos mediante ANP son más fiables que los derivados del AHP en términos de consistencia de los expertos y del número de comparaciones realizadas.

Abstract:

Since establishing the Sustainable Development Goals in 2015, the assessment of the sustainability performance of existing and future infrastructures has been in the spotlight of the scientific community. This is because the construction sector is essential for promoting the social welfare and economic development of countries, but is also one of the main environmental stressors existing to date. However, assessing infrastructure sustainability throughout its life cycle remains a significant challenge, as the criteria involved in sustainable design are often complex and conflicting. The Analytic Network Process (ANP) is recognized as a powerful decision-making tool to model such problems. Here, the life cycle sustainability performance of different design alternatives for a concrete bridge near the shore is evaluated using ANP. The obtained results are compared with those obtained using the conventional Analytical Hierarchy Process (AHP). The results obtained using ANP are more reliable than those derived from the conventional AHP in terms of the expert’s consistency and the number of comparisons made.

Keywords:

Sustainability; Analytic Network Process; bridge design; life cycle assessment; TOPSIS; multi-criteria decision making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Analytic Network Process-based sustainability life cycle assessment of concrete bridges in coastal regions. Sustainability, 14(17):10688. DOI:10.3390/su141710688

Como el artículo está publicado en abierto, os lo podéis descargar aquí mismo:

Pincha aquí para descargar

Valoración de activos por métodos multicriterio

Ya hemos escrito en este blog varios artículos sobre las técnicas de decisión multicriterio como AHP, ANP y DEMATEL. Estos métodos, que están pensados para tomar decisiones teniendo en cuenta varios criterios, tanto cuantitativos como cualitativos, se aprovechan de la capacidad del ser humano a la hora de realizar comparaciones uno a uno para un criterio, integrando y generalizando múltiples valoraciones pareadas. Sin embargo, resulta de interés conocer que se pueden aplicar estas herramientas a valoración de activos.

En efecto, estos métodos son útiles para valorar múltiples activos, tanto tangibles (inmuebles, fincas agrarias, bienes de mercado, empresas) como intangibles (fondos de comercio, marcas, patentes, recursos ambientales, obras de arte, daño moral). Consideran tanto las variables cuantitativas como las cualitativas, aquellas que no tienen medición directa y cuya valoración depende de la experiencia del tasador.

Son métodos que vienen a incorporarse a los métodos tradicionales de valoración de activos para ofrecerle al tasador más herramientas a la hora de efectuar valoraciones de activos cada vez más diversos.

A continuación os dejo un vídeo explicativo del profesor Jerónimo Aznar. También os recomiendo un curso gratuito sobre estos temas que puedes localizar en el siguiente enlace: https://www.edx.org/es/course/valoracion-de-activos-por-metodos-multicriterio

Referencias:

AZNAR, J. (2020). Curso de valoración de activos por métodos multicriterio AHP, ANP y CRITIC. Editorial Universitat Politècnica de València. Ref. 264.

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

SAATY, T.L., VARGAS, L. G. (2013). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 195). Springer Science & Business Media

ZHU, Q., DOU, Y., SARKIS, J. (2010). A portfolio-based analysis for green supplier management using the analytical network process. Supply Chain Management: An International Journal, 15(4), 306-319. https://doi.org/10.1108/13598541011054670

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al 26th International Congress on Project Management and Engineering AEIPRO 2022

Durante los días 5-8 de julio de 2022 tendrá lugar en Terrasa (Spain) el 26th International Congress on Project Management and Engineering AEIPRO 2022. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). ANP-based sustainability-oriented indicator for bridges in aggressive environments. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

La presente comunicación presenta un indicador de sostenibilidad para la evaluación de las infraestructuras de puentes basado en el uso del Proceso Analítico en Red (ANP). Se presenta un análisis de sensibilidad sobre los resultados, discutiendo la aplicación del AHP convencional y de los procedimientos ANP más generales. Formulando el problema de decisión de forma cuantitativa, el método ANP ha arrojado resultados con una consistencia de más del doble que la obtenida mediante la técnica AHP frente al mismo problema de decisión, resultando ser más fiable al simplificar las comparaciones pareadas del experto.

NAVARRO, I.J.; VILLALBA, I.; YEPES, V. (2022). Development of social criteria for the social life cycle assessment of railway infrastructures. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

El diseño sostenible de las infraestructuras requiere la consideración de los impactos económicos, ambientales y sociales. Desde la firma del Acuerdo de París, se han hecho grandes esfuerzos para desarrollar las metodologías orientadas a evaluar los impactos económicos y ambientales a lo largo del ciclo de vida de las infraestructuras. Sin embargo, la evaluación de la dimensión social en el diseño de las infraestructuras todavía requiere un desarrollo significativo. La presente comunicación propone un conjunto de indicadores sociales orientados a la evaluación del ciclo de vida de las infraestructuras ferroviarias. En particular, se presenta la evaluación de los impactos sociales de una vía férrea convencional con balasto. A continuación, se recomienda un indicador basado en la aplicación de procedimientos de toma de decisión multicriterio que ayudará en la elección del diseño de vía más ventajoso en términos sociales.

YEPES-BELLVER, V.J.; ALCALÁ, J.; YEPES, V. (2022). Study of solutions for the design of a footbridge based on a hierarchical analytical process. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

El presente trabajo muestra la aplicación de la metodología AHP (Analytic Hierarchy Process) para realizar el estudio de soluciones necesario para el proyecto de una pasarela. Para ello se han planteado cuatro alternativas: viga de hormigón, hormigón ejecutado “in situ”, viga metálica y celosía metálica. Tras efectuar un estudio cualitativo de las ventajas e inconvenientes de las tipologías planteadas, se procede a establecer una jerarquía de criterios basados en la economía, la facilidad constructiva, la funcionalidad, la integración en el entorno, la estética y la durabilidad. A su vez, se han analizado once subcriterios dependientes de aquellos. Para evaluar las matrices de comparación pareada se ha procedido a una ronda de consultas a un grupo de cinco expertos que, por aproximaciones sucesivas, han acordado las valoraciones de comparación. Se ha comprobado, a su vez, la consistencia de todas las matrices de comparación utilizadas. Tras aplicar la metodología completa de toma de decisiones, la solución elegida, por su mayor valoración final, fue la pasarela en celosía.

 

Un nuevo modelo de toma de decisiones adaptativo basado en ANP y ELECTRE-IS aplicado a edificación

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. Se trata de un nuevo modelo de toma de decisiones que utiliza variables cuantitativas y que se ha aplicado distintas estructuras de edificación. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El proceso analítico en red (ANP) es un método discreto de toma de decisiones multicriterio (MCDM) concebido como una generalización del proceso analítico jerárquico (AHP) tradicional para abordar sus limitaciones. El ANP permite incorporar relaciones de interdependencia y retroalimentación entre los criterios y las alternativas que componen el sistema. Esto implica mucha más complejidad y tiempo de intervención, lo que reduce la capacidad del experto para emitir juicios precisos y coherentes. El presente trabajo aprovecha la utilidad de esta metodología formulando el modelo para variables exclusivamente cuantitativas, lo que simplifica el problema de decisión al dar lugar a un menor número de comparaciones pareadas. Se utilizan siete criterios relacionados con la sostenibilidad para determinar, entre cuatro alternativas de diseño para una estructura de edificio, cuál es la más sostenible a lo largo de su ciclo de vida. Los resultados revelan que el número de preguntas que requiere el AHP convencional se reduce en un 92%. Las ponderaciones obtenidas entre los grupos AHP y ANP muestran variaciones significativas de hasta el 71% en la desviación estándar relativa de algunos criterios. Esta sensibilidad a la subjetividad se ha llevado a cabo mediante la combinación de los métodos ANP-ELECTRE IS, permitiendo al experto reflejar la visión del problema de decisión con mayor flexibilidad y precisión. Tamién se ha analizado la sensibilidad de los resultados a los distintos métodos.

Abstract

The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert’s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.

Keywords:

Multiple-criteria decision-making; sustainable design; analytic hierarchy process; analytic network process; ELECTRE IS; life cycle assessment; modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2022). An Adaptive ANP & ELECTRE IS-based MCDM Model Using Quantitative VariablesMathematics, 10(12):2009. DOI:10.3390/math10122009

Dejo a continuación el artículo, que se puede descargar y compartir, pues está publicado en abierto.

Pincha aquí para descargar

Modelo DEMATEL-ANP en la toma de decisiones multicriterio

Cuando nos enfrentamos a problemas de causalidad complejos y difíciles de articular o comprender, un enfoque habitual para su estudio es la aplicación de un modelo. El modelo DEMATEL (Decision Making Trial and Evaluation Laboratory) fue creado en el Instituto Battelle de Ginebra en 1971.

Se trata de un modelo especialmente útil para analizar las relaciones de causa y efecto entre los componentes de un sistema. Esta propuesta permite confirmar la interdependencia entre factores y ayudar a elaborar un mapa que refleje las relaciones relativas entre ellos, y puede utilizarse para investigar y resolver problemas complicados y entrelazados. Este método no solo convierte las relaciones de interdependencia en un grupo de causa y efecto mediante matrices, sino que también encuentra los factores críticos de un sistema de estructura compleja con la ayuda de un diagrama de relaciones de impacto.

DEMATEL, al igual que ANP (Analytic Network Process), se basa en las percepciones de los individuos (una persona o un grupo de personas). En todos los casos encontrados en la literatura, DEMATEL y ANP se utilizan para crear una supermatriz ponderada, que se potencia hasta el límite para obtener las prioridades de los factores/alternativas de decisión relevantes. Lo interesante es que DEMATEL presenta grandes ventajas al usarlo con ANP, pues identifica realimentaciones e interdependencias en la red y simplifica en gran manera el cálculo en red al sustituir las matrices de comparación pareada por una escala de cero a tres que permite plantear de inicio una matriz de relación directa. Ninguna influencia se puntúa como 0, 1 es la valoración para una influencia leve, 2 para una influencia fuerte y 3 para una influencia muy fuerte. No obstante, hay autores que proponen una escala de 0 a 4.

Los pasos necesarios para aplicar DEMATEL son los siguientes:

  1. Construcción de la matriz de influencia directa
  2. Normalización de la matriz de influencia directa
  3. Encontrar la matriz de relación total
  4. Producción de un diagrama causal
  5. Obtención de la matriz de dependencia interna y el mapa de relación de impacto

En los siguientes vídeos del profesor Aznar se explican en detalle la mecánica de cálculo. Espero que os sean de interés. Para aquellos interesados, los vídeos forman parte de un pequeño curso gratuito MOOC al que podéis acceder en este enlace:

https://www.edx.org/es/course/valoracion-de-activos-por-metodos-multicriterio

Referencias:

AZNAR, J. (2020). Curso de valoración de activos por métodos multicriterio AHP, ANP y CRITIC. Editorial Universitat Politècnica de València. Ref. 264.

BERNAL, S.; NIÑO, D.A. (2018). Modelo multicriterio aplicado a la toma de decisiones representables en diagramas de Ishikawa. Universidad Distrital Francisco José de Caldas, Bogotá D.C., 137 pp.

FONTELA, E.; GABUS, A. (1974). DEMATEL, innovative methods, technical report no. 2, structural analysis of the world problematique. Battelle Geneva Research Institute, NY.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

SAATY, T.L., VARGAS, L. G. (2013). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 195). Springer Science & Business Media

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Proceso Analítico en Red, ANP (Analytic Network Process)

En un artículo anterior vimos que una de las limitaciones más importantes del método método AHP (Analytic Hierarchy Process) es que, de forma habitual, existen relaciones de interdependencia y realimentación entre los distintos criterios, subcriterios o alternativas. Para solucionar este inconveniente, en el año 1996 Saaty presentó el modelo ANP (Analytic Network Process) como una generalización de AHP. Se trata de un método discreto de análisis de decisiones multicriterio que permite capturar las relaciones de interdependencia y de realimentación entre elementos del sistema (criterios y alternativas), según se puede ver en la Figura 1.

Figura 1. Agrupación de elementos por característica común (mínimo un componente de criterios y uno de alternativas). Elaboración propia, basada en Aznar (2020)

Lo primero que llama la atención, por tanto, es que se pasa de una representación jerárquica, típica de AHP, a una representación mediante una red. La red la forman nodos o clústeres, comprendiendo cada uno de ellos una serie de elementos que pueden ser criterios o alternativas. Se denomina realimentación a la relación que existe entre los elementos de un mismo clúster y se denomina interdependencia a la relación que existe entre elementos de distintos clústeres. (Aznar y Guijarro, 2012).

Una de las bondades de ANP es que no se hacen suposiciones sobre la independencia de los elementos de un nivel superior respecto a los de uno inferior y sobre la independencias entre los elementos de un mismo nivel. Ello permite una estructura no lineal, con fuentes, ciclos y sumideros, y que prioriza no solo elementos, sino grupos o grupos de elementos, lo cual está en consonancia con la complejidad del mundo real.

Vamos a poner un ejemplo sencillo para ver las diferencias entre el AHP y ANP. Supongamos que estamos evaluando las características de tres candidatos a un puesto directivo. AHP preguntaría cuánto más importante es en liderazgo el candidato A respecto al candidato B, siendo el liderazgo uno de los criterios, que podría incluir otros como hablar idiomas o capacidad de aprendizaje. Pues bien, ANP haría, adicionalmente, la pregunta inversa, ¿cuánto más importante sería el liderazgo respecto a la capacidad de aprendizaje en el candidato A?

En la Figura 2 se puede ver una matriz con todos los elementos de ANP. Como puede observarse, hay relaciones entre todos los elementos y componentes entre sí.

Figura 2. Tabla con los elementos de ANP

El ANP se puede decir que consta de dos etapas fundamentales: la primera es la estructuración del problema (construcción de la red) y la segunda es el cálculo de las prioridades de los elementos. No obstante, de forma más detallada, los pasos para aplicar ANP son los que a continuación se enumerar. Dejamos los vídeos del profesor Aznar para una explicación pormenorizada de cada uno de estos pasos.

  1. Identificación de los elementos de la red. Alternativas, criterios y construcción de la red.
  2. Análisis de la red de influencias entre los elementos del sistema (criterios y alternativas). Matriz de dominación interfactorial.
  3. Cálculo de las prioridades entre elementos. Supermatriz original (unweighted).
  4. Cálculo de las prioridades entre clústeres. Supermatriz ponderada (weighted).
  5. Cálculo de la supermatriz límite

No obstante, como cualquier otro método, ANP también presenta algunas limitaciones (Zhou et al., 2010):

  • Con un número elevado de relaciones y criterios, se complican los cálculos, aunque existen también otras metodologías de la toma de decisión que pueden ayudar en este punto
  • Hay que facilitar al decisor el uso de la metodología para que le resulte más fácil
  • Cuantas más relaciones entre elementos, más preguntas hay que hacer para definir las influencias entre todos los componentes y elementos de las matrices.

Veamos a continuación, en los vídeos del profesor Aznar, una explicación más en detalle del método y un ejemplo de aplicación. Espero que os sean de interés estos vídeos. Para aquellos interesados, los vídeos forman parte de un pequeño curso gratuito MOOC al que podéis acceder en este enlace:

https://www.edx.org/es/course/valoracion-de-activos-por-metodos-multicriterio

Referencias:

AZNAR, J. (2020). Curso de valoración de activos por métodos multicriterio AHP, ANP y CRITIC. Editorial Universitat Politècnica de València. Ref. 264.

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

BERNAL, S.; NIÑO, D.A. (2018). Modelo multicriterio aplicado a la toma de decisiones representables en diagramas de Ishikawa. Universidad Distrital Francisco José de Caldas, Bogotá D.C., 137 pp.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

SAATY, T.L., VARGAS, L. G. (2013). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 195). Springer Science & Business Media

ZHU, Q., DOU, Y., SARKIS, J. (2010). A portfolio-based analysis for green supplier management using the analytical network process. Supply Chain Management: An International Journal, 15(4), 306-319. https://doi.org/10.1108/13598541011054670

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Limitaciones de los métodos de toma de decisiones basados en procesos de jerarquía analítica AHP

Figura 1. Ejemplo de estructura jerárquica AHP

Cuando el profesor Thomas Saaty dió a conocer el método AHP (Analytic Hierarchy Process) en la década de los 80, ya se dio cuenta de que este procedimiento presentaba algunas limitaciones que debía solucionar más adelante. En el año 1996 presentó el modelo ANP (Analytic Network Process) como una generalización de AHP. Este modelo permitió incluir relaciones de interdependencia y realimentación entre los elementos del sistema (criterios y alternativas).

En este artículo, nos centraremos en algunas limitaciones del AHP que conviene tener en cuenta a la hora de tomar decisiones. Este aspecto no es menor, ya que existen modelos basados en AHP que pueden verse afectados por alguna de estas limitaciones.

No obstante, no todo son inconvenientes, ni mucho menos. El profesor José María Moreno ya nos advierte, tal y como se desprende del artículo que os dejo al final de esta entrada, que hasta la fecha no se ha podido probar la supremacía de ningún método o escuela de pensamiento en lo referente al paradigma de la toma de decisiones multicriterio. De hecho, el método AHP ha basado su éxito en trasladar las percepciones humanas a valores numéricos evaluados en una escala de prioridades que permiten sintetizar lo tangible y lo intangible, lo objetivo y lo subjetivo, e incluso lo racional y lo emocional. Además, constituye un procedimiento fácil de utilizar, aplicable a numerosas situaciones reales donde se trata de elegir una alternativa, y donde se puede agregar la decisión individual y la de grupo. Y no menos importante, el AHP es una de las pocas técnicas multicriterio que ofrece una axiomática teórica. Pero veamos ahora en algunos de los inconvenientes de AHP que habrá que valorar siempre que usemos este método o algún otro basado en él.

El principal problema del AHP es que, por lo general, existen relaciones de interdependencia y realimentación entre los distintos criterios, subcriterios y alternativas (figura 2). El AHP es unidireccional, con relaciones de abajo hacia arriba entre los distintos elementos, lo que puede suponer una simplificación excesiva de la realidad. La condición de independencia y jerarquía subyacente en AHP es necesaria para que quien toma las decisiones pueda disponer de una función de valor aditiva. De hecho, AHP se basa en los axiomas de reciprocidad, homogeneidad y síntesis. Sin embargo, este último axioma, que implica que los juicios sobre las prioridades de los elementos en una jerarquía no dependen de los del nivel inferior, puede rebatirse cuando existe una dependencia entre la importancia de un objetivo y el nivel inferior.

Veamos un ejemplo concreto. Si se está analizando la sostenibilidad económica, ambiental y social de una estructura de hormigón, por ejemplo, uno de los subcriterios económicos podría ser el coste de la estructura y otro subcriterio ambiental, el consumo de recursos como la cantidad de hormigón o de acero utilizada. Es evidente que el coste depende de la cantidad de recursos consumidos. Este es un ejemplo muy sencillo, pero en el mundo real las interdependencias pueden ser sutiles o difíciles de ver a priori. No es fácil encontrar, en situaciones normales, criterios y subcriterios que sean independientes entre sí.

Figura 2. Relación entre elementos en ANP en la estructura jerárquica AHP (adaptado de Aznar, 2012)

Una de las objeciones al método es que, si la jerarquía AHP es incompleta, pueden distorsionarse los pesos. Otro problema adicional está relacionado con el número de criterios en cada nivel y con su ponderación relativa. Supongamos que hay dos criterios en el primer nivel y que uno tiene un peso del 75 % y el otro del 25 %. Esta ponderación condiciona de forma drástica las ponderaciones de todas las variables que dependen de ella. De esta manera, prácticamente se anula el interés de los subcriterios que dependen jerárquicamente del menos ponderado en el primer nivel. El profesor Aznar (2012) ilustra con ejemplos concretos cómo el uso de ANP frente a AHP provoca cambios significativos en la valoración final de cada una de las alternativas.

También hay que señalar que la escala de nueve puntos de Saaty (en la que los valores siempre están entre el 1 y el 9) es arbitraria a la hora de medir las preferencias de los responsables de la toma de decisiones. Esta escala puede plantear el siguiente problema, por ejemplo: si una alternativa A es cinco veces más importante que la alternativa B y esta, a su vez, es cinco veces más importante que la alternativa C, se produce un problema serio, ya que el método AHP no puede manejar el hecho de que la alternativa A es veinticinco veces más importante que la alternativa C. Esta deficiencia se observa en la Figura 3, donde se puede ver que la alternativa círculo rojo es mejor que el resto según la escala de Saaty: 5 para el triángulo, 7 para el rombo y 9 para el cuadrado. Si comparamos el triángulo verde con el resto, la valoración debería ser: 3 para el rombo y 5 para el cuadrado. Del mismo modo, el rombo presenta una valoración de 3 respecto al cuadrado. Con esta matriz pareada, el índice de consistencia es válido. Sin embargo, si se reajustan las valoraciones dividiendo por dos las comparaciones del triángulo, el rombo y el cuadrado, el índice de consistencia baja significativamente. En ese caso, los autovectores han cambiado, aunque se mantienen las prioridades.

Figura 3. Ratio de consistencia en función de las comparaciones pareadas. Elaboración propia

Pero los inconvenientes no terminan aquí. Como contrapartida a su simplicidad, el AHP no tiene en cuenta la incertidumbre asociada a la representación de la opinión en forma de número. Además, si se añade otra alternativa durante el proceso, las clasificaciones de las alternativas originales pueden cambiar, lo que rígidiza el método. Por otra parte, si se incrementa el número de alternativas o de criterios, se puede llegar a la inconsistencia de la matriz de comparaciones parejas. Además, el método es muy laborioso si se incrementa el número de alternativas o criterios.

Un inconveniente adicional del AHP es la normalización de las matrices de preferencias, que consiste en transformar las valoraciones planteadas en utilidades definidas en la escala (0, 1) mediante la obtención del vector propio de las mismas. Esto solo es estrictamente válido si los juicios reflejados en la matriz son completamente consistentes. En caso contrario, puede resultar complicada su interpretación.

Sin embargo, los problemas con AHP se agudizan cuando aparece una situación de conflicto en la que existen intereses contrapuestos entre los decisores y, además, las decisiones de cada uno dependen de las que tomen los demás para alcanzar sus propios objetivos. En este caso, la teoría de juegos o juegos de estrategia sería la forma más razonable de abordar el problema.

En resumen, estas reflexiones se deben a que, en muchas ocasiones, utilizamos métodos e incluso recogemos alguna normativa legal con la intención de dar cuerpo de ley a un conjunto de criterios para evaluar algún aspecto de especial interés. Es el caso del método AHP, empleado, por ejemplo, como parte de otros métodos como MIVES, que han dado lugar a un índice de contribución de la estructura a la sostenibilidad (anexo 2 del Código Estructural). En cualquier caso, para tranquilidad de muchos, la teoría AHP, si bien presenta ciertos problemas como los expuestos, parece conservar su condición de ser el método de toma de decisiones multicriterio más conocido y empleado.

También os dejo, por su interés, el artículo de José Luis Zanazzi sobre las críticas recibidas por AHP y su análisis.

Pincha aquí para descargar

Pero no todo van a ser noticias negativas en relación con el AHP. Os dejo, a continuación, el artículo del profesor José María Moreno donde explica el método AHP.

Pincha aquí para descargar

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.