Lechadas bituminosas y microaglomerados en frío

Figura 1. Pavimentadora de lechada bituminosa/ micro aglomerado. http://dgroadmachinery.es/5-3-micro-surfacing-paver.html

La lechada bituminosa, también conocidas como slurry, consiste en la aplicación de una o varias capas de mortero bituminoso en frío sobre una superficie, utilizando áridos, emulsión bituminosa, agua y, eventualmente, polvo mineral de aportación y otros aditivos en menor proporción. Además de su uso en firmes, las lechadas bituminosas también son empleadas en tratamientos de sellado, mejora del deslizamiento y fines estéticos. Las lechadas tienen una amplia variedad de aplicaciones, incluyendo carreteras, aeropuertos, pistas deportivas, carriles para bicicletas, aparcamientos, vías urbanas, áreas peatonales, entre otros. En algunas situaciones, es necesario que la lechada tenga un color específico, para lo cual se utilizan pigmentos durante su fabricación.

Inicialmente, las lechadas se empleaban principalmente para la impermeabilización de suelos envejecidos y como tratamiento de sellado. Con granulometrías con un tamaño máximo de árido inferior a 6 mm, estas lechadas proporcionaron la textura adecuada requerida para el nivel de demanda de tráfico y se aplicaron en una sola capa con dosificaciones que oscilaron entre 5 y 8 kg/m².

Anteriormente, los áridos finos limitaban el grosor de las capas de lechada debido a su inestabilidad ante el tráfico. En años recientes, se ha mejorado la tecnología de los tratamientos para permitir el desarrollo de microaglomerados en frío que utilizan áridos de mayor tamaño. Los nuevos emulgentes y aditivos facilitan la producción de emulsiones con rotura controlada para aplicar los microaglomerados en zonas de tráfico rápido. La maquinaria avanzada produce texturas uniformes y las emulsiones modificadas con polímeros permiten áridos de hasta 12 mm, logrando texturas rugosas para aumentar la resistencia al deslizamiento y disminuir el desprendimiento de áridos. Las fibras sintéticas aumentan el contenido de ligante residual en las lechadas, otorgándoles mayor resistencia a la fatiga y al envejecimiento. Los microaglomerados en frío consisten en dos capas de lechada, la primera fina y la segunda más gruesa, y suelen emplear emulsiones modificadas como ligante.

La fabricación y aplicación de lechadas se realiza a través de mezcladoras móviles montadas en camiones que también se encargan de extenderlas. Estas unidades incluyen depósitos para los componentes de la mezcla y un mezclador helicoidal continuo para preparar el producto. Después, la lechada se distribuye mediante una caja repartidora o rastra, que se remolca sobre la superficie a tratar, y se termina con una maestra de goma graduable en altura. Para la compactación, se utilizan compactadores de neumáticos de alta presión, ya que solo se requiere un efecto superficial.

Os paso un vídeo explicativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, donde nos explica en detalle las lechadas bituminosas y microaglomerados en frío.

También os dejo un documento de la Asociación Técnica de Emulsiones Bituminosas (ATEB) al respecto. Espero que os sea de interés.

Pincha aquí para descargar

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Riegos sin gravilla

Figura 1. https://www.ibef.net/es/emulsions-3/tecnicas/riegos-de-adherencia/

Un riego sin gravilla estaría compuesto únicamente por ligantes bituminosos. El empleo de los riegos sin gravilla en la construcción de firmes suele reservarse con fines auxiliares o provisionales, nunca proporcionando unas características estructurales. Forman parte de las operaciones auxiliares en la construcción o conservación del firme. Estrictamente hablando, estos riegos no pueden considerarse superficiales, sino que se dividen en varios tipos:

  • Riegos en negro: se aplican sobre superficies de rodadura envejecidas como medida provisional para rejuvenecer el firme y mejorar su impermeabilidad.
  • Riegos antipolvo: se aplican en caminos rurales o de poco tráfico para minimizar la producción de polvo y proteger al firme de la erosión y la humedad.
  • Riego de imprimación: se aplica un ligante sobre una capa granular antes de colocar sobre ella una capa o tratamiento bituminoso. La imprimación penetra en la superficie de la base, sella los huecos, endurece la superficie y ayuda a unir la capa superior de asfalto. Este riego optimiza la transmisión de cargas, por lo que es importante barrer enérgicamente la superficie granular y regarla con agua antes de su aplicación.
  • Riego de adherencia: se aplica una emulsión bituminosa sobre una capa tratada con ligantes hidrocarbonados o conglomerantes hidráulicos antes de colocar cualquier tipo de capa bituminosa que no sea un tratamiento superficial con gravilla o una lechada bituminosa. Este riego mejora la adherencia entre las capas bituminosas.
  • Riego de curado: se aplica sobre capas tratadas con conglomerante para evitar la pérdida de humedad y lograr un curado adecuado. En la práctica, estos riegos también se pueden utilizar como riego de imprimación o como protección contra el tráfico rodado.

Os dejo a continuación un vídeo educativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, que espero que os sea de interés.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrevista radiofónica en «À Punt»: Los rascacielos

Hace unos días me hicieron una entrevista radiofónica en “A Punt”. Se trata de un programa especial que trataba el tema de los rascacielos.

La entrevista me la realizó la periodista Marina Perelló, a la cual agradezco la oportunidad de difundir la ingeniería empleada en estas construcciones.

Os dejo el pódcast entero en este enlace, creo que es muy interesante: https://www.apuntmedia.es/tema-del-dia/02-05-2023-tema-del-dia-els-gratacels_135_1612244.html

Cálculo de un sistema de drenes cerrados en un terreno de espesor indefinido

Figura 1. Sistema de drenes cerrados en un terreno de espesor indefinido

Sea un sistema de drenes cerrados, construido en terreno de espesor indefinido, espaciados una distancia D uno de otro, tal y como se puede observar en la Figura 1. El problema habitual consiste en determinar la profundidad seca que queda dado un espaciamiento entre los drenes, suponiendo que existe una alimentación vertical de caudal q constante por unidad de superficie.

Os paso un problema, totalmente resuelto, donde se deduce la expresión que sirve para calcular este tipo de problemas. Este problema forma parte del Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY.  Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventajas y nuevos horizontes de las estructuras armadas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo proporciona una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas, que son una alternativa innovadora y sostenible a los elementos de acero homogéneos tradicionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las vigas de acero híbridas son una excelente alternativa a los elementos de acero homogéneos tradicionales, pues pueden utilizar al máximo su capacidad para hacer frente a los esfuerzos de flexión y cortante. La investigación en este campo ha ido en aumento y se han desarrollado varios métodos de diseño eficientes. Sin embargo, todavía hay algunas lagunas en la investigación que deben abordarse, como su consideración en diferentes estándares y su aplicación en estructuras de vigas complejas.

Las contribuciones de este artículo son las siguientes:

  1. Proporcionar una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas.
  2. Identificar los métodos de diseño y las proporciones híbridas recomendadas para lograr el mejor rendimiento.
  3. Analizar 128 publicaciones y extraer información sobre cinco variables categóricas que reflejan la situación actual de los elementos híbridos.
  4. Realizar un análisis estadístico basado en un análisis de correspondencia simple para identificar las relaciones subyacentes entre las variables.
  5. Destacar las investigaciones más relevantes hasta la fecha y proponiendo varias líneas de investigación prometedoras para abordar las brechas de investigación en este campo.

Abstract:

Although it is still common practice to use homogeneous steel girders (same yield strength in the flanges and web), implementing hybrid configurations seems to be an excellent alternative to improve the performance and sustainability of this type of structural element. Therefore, this paper comprehensively reviews the current knowledge of hybrid steel girders. The objective is to improve our understanding of this innovative and sustainable alternative to traditional homogeneous steel elements, focusing on updating the theoretical basis for future design projects. The study analyzes 128 publications, from which information is extracted on five categorical variables, reflecting the current situation of hybrid elements. In addition to studying each variable separately and highlighting the most relevant research to date, a more in-depth statistical analysis is performed. It is based on simple correspondence analysis, which allows for identifying the underlying relationships among the variables. Results summarize the design methods implemented to calculate these structures. Furthermore, the recommended hybrid ratios to achieve the best performance are presented. However, it is found that there are gaps in the research. Consequently, several promising lines of investigation are proposed.

Keywords:

State-of-the-art; Hybrid girder; Hybrid ratio; Yield strength; High-strength steel

Reference:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Pincha aquí para descargar

Cálculo de un sistema de drenes abiertos tipo zanja

Figura 1. Sistema de drenes abiertos tipo zanja

Sea un sistema de drenes abiertos tipo zanja, construido en un acuífero homogéneo e isotrópico, que comprende todo el espesor del nivel freático, espaciados una distancia D uno de otro, tal y como se puede observar en la Figura 1.

El problema habitual consiste en determinar el espaciamiento que debe dársele a los drenes para mantener el espesor del nivel freático bajo un valor H en todos sus puntos, suponiendo que existe una alimentación vertical de caudal q constante por unidad de superficie.

A continuación os dejo un nomograma elaborado junto con el profesor Pedro Martínez-Pagán, donde se puede realizar la estimación de este tipo de drenes abiertos tipo zanja.

 

Os paso un problema, totalmente resuelto, donde se deduce la expresión que sirve para calcular este tipo de problemas. Este problema forma parte del Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY.  Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de muros de contención mediante enfoques de aprendizaje por refuerzo y técnicas metaheurísticas

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. Se trata de un nuevo método para optimizar el diseño de muros de contención mediante funciones de aprendizaje y transferencia por refuerzo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Es fruto de la colaboración de nuestro grupo de investigación con los profesores chilenos.

El artículo presenta un nuevo método para optimizar el diseño de muros de contención mediante funciones de aprendizaje y transferencia por refuerzo. El estudio compara el método propuesto con otros métodos metaheurísticos y de fuerza bruta, y muestra que las funciones de transferencia en forma de S arrojan consistentemente mejores resultados en términos de costes y emisiones de CO₂. El documento concluye que el método propuesto proporciona un enfoque prometedor para reducir los costos y las emisiones de CO₂ y, al mismo tiempo, mejorar la resistencia estructural en los proyectos de ingeniería civil.

Las contribuciones de este artículo son:

  • Introducir una nueva técnica de discretización basada en funciones de aprendizaje y transferencia por refuerzo para optimizar el diseño de los muros de contención en términos de costes y emisiones de CO₂.
  • Comparar el método propuesto con varios métodos metaheurísticos y de fuerza bruta, y demostrar que las funciones de transferencia en forma de S arrojan consistentemente resultados más sólidos.
  • Proporcionar un enfoque prometedor para reducir los costos y las emisiones de CO₂ y, al mismo tiempo, mejorar la resistencia estructural en los proyectos de ingeniería civil.

Abstract:

The structural design of civil works is closely tied to empirical knowledge and the design professional’s experience. Based on this, adequate designs are generated in terms of strength, operability, and durability. However, such designs can be optimized to reduce conditions associated with the structure’s design and execution, such as costs, CO2 emissions, and related earthworks. In this study, a new discretization technique based on reinforcement learning and transfer functions is developed. The application of metaheuristic techniques to the retaining wall problem is examined, defining two objective functions: cost and CO2 emissions. An extensive comparison is made with various metaheuristics and brute force methods, where the results show that the S-shaped transfer functions consistently yield more robust outcomes.

Keywords:

Metaheuristics; concrete retaining walls

Reference:

LEMUS-ROMANI, J.; OSSANDÓN, D.; SEPÚLVEDA, R.; CARRASCO-ASTUDILLO, N.; YEPES, V.; GARCÍA, J. (2023). Optimizing Retaining Walls through Reinforcement Learning Approaches and Metaheuristic Techniques. Mathematics 11(9): 2104. DOI:10.3390/math11092104

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Pincha aquí para descargar

Indicador de daños que afectan a la durabilidad de las estructuras en entornos BIM

El Building Information Modelling (BIM) se está adoptando cada vez más en empresas privadas del sector de Arquitectura, Ingeniería, Construcción y Operación (AECO), y con ello surgen nuevas herramientas y funcionalidades. En el mercado español, los proyectos de reforma son cada vez más solicitados debido al envejecimiento del stock de viviendas y la necesidad de analizar la durabilidad de las estructuras existentes.

Este nuevo estudio presenta una herramienta integrada en BIM que permite evaluar el índice de durabilidad en elementos estructurales específicos a través de una inspección visual automatizada, lo que mejora la sostenibilidad del sector y determina el momento crítico para rehabilitar la estructura.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Abstract:

As Building Information Modelling (BIM) is increasingly adopted through private businesses in the Architecture, Engineering, Construction, and Operation (AECO) Industries, new tools, procedures, and functionalities appear. In the last years, BIM has proven its advantages by providing benefits to professionals and guiding them towards a new horizon. Currently, the industry is changing in the Spanish market, and refurbishment projects are more demanded than construction projects involving the design of buildings from scratch. As Spanish housing stock grows older, durability and damage in existing structures need to be analyzed during the refurbishment project’s early stages. Structural durability is a critical factor in extending the life span of a building and improving the industry’s sustainability. This paper presents a tool integrated into BIM environments that can evaluate the durability index in a specific structural element based on data from a visual inspection. This automated analysis shows if any damage is caused by durability factors, such as steel rebar corrosion, and how much time is left until the damage is critical. This tool enables new functionality in BIM environments to control durability and determine when it is critical to rehabilitating the structure.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V.; NAVARRO, I.J. (2022). Durability damage indicator in BIM environments. Proceedings of 3rd Valencia International Biennial of Research in Architecture. Changing priorities. 9-11 November 2022, Valencia, Spain. https://doi.org/10.4995/VIBRArch2022.2022.15191

Os paso, para su descarga, el artículo completo, pues está publicado en abierto.

Pincha aquí para descargar

Cálculo aproximado del movimiento de tierras entre un perfil en desmonte y otro en terraplén

Figura 1. Secciones en desmonte y terraplén.

Para elaborar el cálculo de la compensación de tierras en un proyecto de infraestructura vial, se requiere de una metodología específica que comienza por la obtención de las mediciones de los volúmenes de tierras entre los perfiles transversales al eje de la vía.

En un artículo previo, se explicó cómo calcular el área de un polígono definido por las coordenadas de sus vértices. A partir de la superficie de los perfiles transversales, se puede proceder al cálculo del volumen de terraplén o de desmonte entre ellos. De esta manera, se podrá determinar el diagrama de masas y optimizar las distancias de transporte para calcular la compensación de tierras.

Sin embargo, se plantea un problema cuando un perfil está en desmonte y el otro en terraplén (Figura 1), o cuando un mismo perfil tiene tanto desmonte como terraplén debido a su ubicación a media ladera. En este artículo vamos a deducir una formulación aproximada para el cálculo de los volúmenes en el caso de que un perfil esté en desmonte y el otro en terraplén. La media ladera será un caso particular del anterior.

El problema que os doy resuelto proporciona una fórmula aproximada de cálculo que solo depende de las áreas de las secciones y de la separación entre ellas. Sin embargo, como podremos comprobar, esta simplificación a veces da errores. Evaluamos un caso concreto para ver hasta qué punto la aproximación es aceptable.

Este tema y los ejercicios resueltos son algunos casos que se explican dentro del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Pincha aquí para descargar

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reglas de Corini y cálculo de la distancia de transporte en la compensación de tierras

Figura 1. Aspecto de un diagrama de masas de Bruckner.

El diagrama de masas de Bruckner permite la optimización del transporte en el movimiento de tierras. De este tema ya hicimos un artículo anterior que os recomiendo repasar. En este vamos a centrarnos más en el proceso de cálculo.

Este tema y ejercicios resueltos son algunos casos que se explican dentro del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Volviendo al contenido de este artículo, se trata de determinar los volúmenes a transportar, las distancias de acarreo, los vertederos y los préstamos. Este diagrama permite ajustar la compensación longitudinal y las distancias a las que trasladar los volúmenes de desmonte y terraplén (Figura 1).

Entre las propiedades más interesantes del diagrama, se tienen las siguientes:

  • La ordenada de un punto cualquiera mide el volumen acumulado desde el origen.
  • El volumen excedente acumulado en el origen es nulo, y la horizontal trazada por él, se llama fundamental.
  • La curva de volúmenes es ascendente para desmontes y descendente para terraplenes.
  • Un máximo o un mínimo de la curva, son puntos de paso entre terraplenes y desmontes.
  • La diferencia de ordenadas entre dos puntos mide el volumen a mover entre ambos.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal cualquiera con la curva de volúmenes, existe compensación entre desmonte y terraplén. El volumen total de tierra a transportar está dado por la ordenada máxima del arco de diagrama comprendido, con relación a la horizontal considerada (Figura 2).
Figura 2. Volúmenes de tierra a transportar en el diagrama de masas
  • El momento de transporte es el trabajo necesario para mover un volumen de suelo desde su posición original, una vez determinada la distancia, hasta la posición final de proyecto. Es el producto del volumen transportado (ordenada) por la distancia (abscisa).
  • El área de cada cámara de compensación respecto a una horizontal cualquiera mide el momento de transporte de la compensación entre las secciones correspondientes a la intersección de dicha horizontal con la línea del diagrama. El área dividida por la ordenada máxima es la distancia media de transporte. Existe entonces un rectángulo de área equivalente al área de la onda y que tiene por altura el volumen de tierra a transportar (Figura 3).
Figura 3. Distancia media de transporte en una cámara de compensación del diagrama de masas
  • Con respecto a una horizontal cualquiera, las ondas situadas por arriba, con el primer tramo ascendente (exceso de excavación) y el segundo descendente (exceso de terraplén) se llaman “montes”. Asimismo, las situadas por debajo con el primer tramo descendente y el segundo ascendente se llaman “valles”.
  • Para minimizar el coste, en el diagrama la suma de las bases de los valles debe ser igual a la suma de las bases de los montes (Figura 4).

    Figura 4. La suma de las longitudes de valles y montes deben ser iguales para minimizar el coste.

Para optimizar el movimiento de tierras, se pueden seguir las denominadas reglas de Corini, que son las siguientes:

  1. La longitud de distribución estará comprendida entre la fundamental y una horizontal trazada por la sección extrema.
  2. Se trazarán diversas horizontales de compensación, comprendiendo cada una un monte y un valle de igual base.
  3. De no ser posible la 2, se trazarán horizontales, en sentido ascendente o descendente, comprendiendo más valles y más montes, de modo que la suma de la base de los montes sea igual a la suma de la base de los valles.
  4. La horizontal de distribución secundaria (dentro de una cámara autocompensada) debe ser tangente a la onda (Figura 5).
Figura 5. La horizontal de distribución secundaria debe ser tangente a la onda dentro de una cámara autocompensada

La obtención de las distancias medias de transporte se ha realizado apoyándose en las propiedades de la línea de volúmenes:

  • Cálculo de la diferencia entre dos ordenadas con respecto a una horizontal cualquiera. Esta diferencia da el volumen de desmonte o terraplén disponible entre ellas.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal con la línea de volúmenes existe compensación de desmonte y terraplén; el volumen total de tierras a mover entre esas dos secciones será la ordenada máxima con relación a la horizontal considerada.
  • Efectuando la compensación por horizontales, la tierra del punto N se arroja en el P, el área de cada cantera de compensación, correspondiente a una horizontal determinada, mide el momento de transporte de la compensación entre las secciones de intersección de la horizontal con la línea de volúmenes. El área ABC (Figura 2) mide el momento de transporte de la compensación entre A y C.
Figura 6. Obtención de las distancias de transporte
  • Los parámetros que intervienen en el cálculo de la distancia media de transporte de las compensaciones longitudinales son, básicamente, los volúmenes parciales y las áreas parciales entre perfiles, con cuya suma se obtiene el volumen transportado y la superficie total de cada área compensada denominada esencialmente cantera de compensación.
  • Considerando las propiedades analíticas de los diagramas de masas para la obtención del producto volumen por cada distancia de cada compensación longitudinal, la distancia media de transporte para cada área compensada que delimita el diagrama y el eje de abscisas, será el cociente entre el área y el volumen transportado de la misma.

  • Por último, la distancia media de transporte global de la compensación longitudinal se determina con la ponderación de los productos volumen por distancia media de las áreas compensadas existentes dividida por el volumen transportado total.

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.