Limitación y distribución de recursos en la programación de obras

Toda actividad necesita recursos para ejecutarse. La programación de los recursos disponibles constituye un tema crucial para lograr que la obra esté finalizada en los plazos y costes establecidos. Consiste en asociar los recursos a sus tareas respectivas y ver cómo se ensamblan en el conjunto de la obra. Se emplea para ello una representación gráfica de los recursos necesarios a lo largo del tiempo; recibe el nombre de diagrama de carga. Estos histogramas proporcionan un medio gráfico eficaz para observar su evolución temporal y para analizar los períodos de carencia previsibles por superposición con los diagramas de recursos disponibles (véase la figura).

La limitación de recursos en la realización de una obra provoca conflictos que pueden resolverse mediante métodos de nivelación y de asignación. Los primeros laminan el diagrama de cargas sin producir retrasos en el plazo programado. Los métodos de asignación, por otra parte, pretenden que los recursos necesarios no superen los disponibles, pero con la condición de que el retraso provocado sea el mínimo posible. Con ayuda de las diversas técnicas de redes, se habrá establecido un camino crítico y unas holguras para cada una de las actividades. La prioridad en la asignación de los recursos será mayor cuanto menor sea la holgura disponible para cada una de las actividades.

Dada la dificultad de resolver estos problemas, se suelen utilizar métodos heurísticos que proporcionan soluciones suficientemente buenas con tiempos de cálculo razonables. El método de Burgess-Killebrew para la nivelación, o el método de Wiest-Levy para la asignación de recursos constituyen algunos ejemplos de heurísticas.

El algoritmo de Burgess-Killebrew es uno de los algoritmos pioneros en este campo; está considerado también como uno de los más eficientes. El diagrama de carga del recurso busca la actividad no crítica que tenga la fecha temprana de finalización más avanzada. Esta actividad retrasa su finalización unidad a unidad de tiempo hasta agotar su holgura. Se elige como fecha más temprana de finalización de la actividad la que haga mínima la suma de los cuadrados de las cargas. Se repite esta pauta con todas las tareas no críticas, teniendo prioridad aquella actividad que posea mayor holgura, en caso de que la fecha temprana de finalización más avanzada de dos tareas coincida. Una vez realizado con todas, se vuelve a iniciar un nuevo ciclo de iteraciones hasta que finalizada una iteración no resulte posible disminuir la suma de los cuadrados de las cargas.

El algoritmo de Wiest-Levy se sustenta en la programación de las actividades que puedan ejecutarse con los recursos disponibles. No obstante, esta programación puede ser revisada en posteriores iteraciones. Cuando la carga es superior a las disponibilidades, se recurre a retrasar alguna actividad, eligiendo entre las no críticas, la que resuelva el problema con el menor retraso. Si existen dos actividades que reúnen las mismas condiciones, se retrasa primero la de mayor holgura, con lo que las actividades críticas se retrasan cuando no hay otra opción.

Referencias:

PELLICER, E.; YEPES, V. (2007). Gestión de recursos, en Martínez, G.; Pellicer, E. (ed.): Organización y gestión de proyectos y obras. Ed. McGraw-Hill. Madrid, pp. 13-44. ISBN: 978-84-481-5641-1.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; PELLICER, E. (2008). Resources Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 165-188. ISBN: 83-89780-48-8.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón proyectado con fibras

Fuente: http://esp.sika.com

El uso de fibras como refuerzo en materiales frágiles se remonta a épocas antiguas, a épocas en las que se empleaban paja o crines de caballo para fortalecer arcillas en la producción de ladrillos o para reforzar suelos. No obstante, el enfoque moderno de incorporar fibras discontinuas y discretas en materiales frágiles, como morteros de cemento y hormigón, no se consolidó hasta principios del siglo XX.

La eficacia de este refuerzo se debe no solo a las propiedades mecánicas de la fibra, que contribuyen al cierre de fisuras en planos perpendiculares a las direcciones principales de tracción, sino también a su capacidad de trabajar en conjunto con la matriz del hormigón. Las interacciones entre la fibra y la matriz, la adherencia y la forma de anclaje son factores críticos que inciden en el comportamiento del material compuesto. Por lo tanto, además de investigar diversos tipos de materiales, la literatura técnica también analiza una amplia variedad de formas y acabados superficiales con el fin de optimizar el comportamiento del material compuesto.

En este contexto, cada vez se está imponiendo más, sobre todo en reparación de estructuras de hormigón, el hormigón o mortero proyectado reforzado con fibras. Estas fibras, metálicas o plásticas, al proyectarse quedan distribuidas en todas direcciones, resultando un material con buenas prestaciones a tracción, flexión, impacto, fatiga y fisuración. Las fibras se mezclan en la masa y fluyen sin problema por el cañón de lanzamiento. Se trata de una solución de gran interés en el caso de la fisuración que permite sustituir las soluciones clásicas de mallas electrosoldadas y telas de gallinero.

Una aplicación interesante es la reparación de estructuras dañadas por el fuego, como recrecidos, revestimientos de túneles, consolidación de taludes y reparación de presas. Si se utilizan fibras de acero inoxidable, áridos refractarios y cemento aluminoso, se pueden revestir hornos y conductos de gases a elevadas temperaturas.

Lo habitual es utilizar fibras de acero de bajo contenido en carbono con una longitud de unos 30 mm y un diámetro de entre 0,3 y 0,5 mm. Su proporción es inferior al 1 % en volumen (menos de 80 kg/m³). Las fibras suelen ser rectas o con los extremos conformados, tipo más empleado, pues mejoran el anclaje en la masa y permiten el uso de fibras más cortas y, por tanto, mezclas más dóciles.

Se pueden utilizar fibras distintas al acero. La fibra de carbono tiene propiedades ideales, pero su precio es muy alto para su uso habitual. La fibra de vidrio es adecuada en aplicaciones de partículas finas especiales, siempre y cuando se cumplan los requisitos para su comportamiento a largo plazo. La fibra de polímero se emplea fundamentalmente para reparar el hormigón, pues mejora la cohesión interna del hormigón proyectado y reduce el agrietamiento por contracción durante el desarrollo de la resistencia inicial. La fibra plástica mejora la resistencia al fuego del hormigón en general.

Os dejo un vídeo donde se puede ver la aplicación del hormigón proyectado con fibras.

Os paso a continuación un vídeo de una conferencia de Markus Jahn, Ingeniero de Producto de Sika, donde nos cuenta cuáles son los últimos desarrollos en aditivos acelerantes para el hormigón lanzado y cuáles son las nuevas tecnologías para transportar concretos en largas distancias dentro de túneles. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Cálculo de la temperatura de fabricación del hormigón

Presa Ibiur, Baliarrain, España. http://www.ulmaconstruction.es

El hormigón colocado aumenta su temperatura como consecuencia del calor de hidratación del cemento. Como ese calor se disipa en el hormigón ya endurecido, pueden producirse tensiones que originen fisuras. Este fenómeno es de gran importancia cuando se vierten grandes cantidades de hormigón, como puede ser el caso de la construcción de presas. Para evitar el riesgo de fisuración, además de disponer juntas transversales y longitudinales, también se suelen tomar las siguientes medidas: disposiciones de proyecto para evitar la iniciación de grietas, precauciones para conseguir que la temperatura del hormigón colocado sea la menor posible y procedimientos para acelerar la evacuación del calor de hidratación. En esta entrada nos centraremos en conseguir que la temperatura del hormigón colocado sea la adecuada.

El incremento de temperatura existente entre la fabricación y la puesta en obra se puede calcular aproximadamente con la siguiente expresión:

Por tanto, para conseguir la temperatura de fabricación adecuada, es necesario modificar la temperatura de cada uno de los componentes necesarios para fabricar el hormigón. Si bien se puede enfriar el agua de amasado, lo más efectivo es enfriar los áridos, puesto que cambiar la temperatura del cemento puede ser problemático. Además, los silos de almacenamiento deben estar aislados para controlar mejor la temperatura de fabricación.

Las leyes de equilibrio térmico permiten obtener la temperatura final de la mezcla, tanto si se utiliza agua de amasado con hielo como sin hielo. Además, se recomienda probar diferentes soluciones para ver qué combinación es más sencilla de aplicar en cada caso. La expresión es la siguiente:

En esta expresión, observamos que el agua total de amasado incluye el agua libre de los áridos. Sin embargo, el agua total es la suma del agua de amasado y del hielo que se incorpore a la mezcla.

Referencias:

COMITÉ NACIONAL ESPAÑOL DE GRANDES PRESAS (1999). Construcción de presas y control de calidad. Guías Técnicas de Seguridad de Presas. Colegio de Ingenieros de Caminos, Canales y Puertos, 333 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Algunas preguntas sobre la planificación de obras

CUESTIÓN 1. ¿Qué documentos, al menos, debe contener la Planificación de una Obra?

La Planificación constituye un instrumento básico a nivel operativo diario a todos los niveles de producción durante todo el desarrollo de la obra que debe contener, al menos, los siguientes documentos:

  • Programa detallado del proceso de ejecución elegido
  • Necesidades de recursos físicos situados en el tiempo y en el espacio
  • Una valoración del coste del proceso constructivo elegido
  • Un programa de actuaciones sobre calidad
  • Un programa de actuaciones sobre seguridad
  • Un diseño del sistema de información para el control de ejecución

 

CUESTIÓN 2. ¿Qué fases se deben seguir para realizar la planificación de una obra?

La preparación de la planificación de la obra sigue, en general, las siguientes fases:

  • Determinación de las cantidades de obra a realizar
  • Elección de las tecnologías a emplear en cada proceso
  • Determinación de la productividad de los recursos aportados
  • Cálculo de los tiempos parciales
  • Definición del encadenamiento entre los procesos
  • Programa fechado
  • Determinación de recursos
  • Determinación de los costes de los recursos
  • Estimación de costes

 

CUESTIÓN 3. ¿Qué diferencia existe entre “planning” y “scheduling” cuando nos referimos a la programación de una obra?

Estas dos palabras inglesas reflejan claramente dos conceptos diferentes referidos a un programa sin fechas y a un programa con fechas. El primero recoge la concatenación lógica entre las diferentes actividades, sin relacionarlas con ningún periodo del año, ni con ninguna fecha determinada que pueda exigirse en el contrato. El segundo es el encaje concreto del anterior en el calendario dentro del cual debe desarrollarse contractualmente la obra; no contiene imprecisiones en cuanto a las fechas en que debe iniciarse ninguna actividad a pesar de que sean actividades con holguras; esto supone haber tomado una decisión sobre estas actividades con holguras.

CUESTIÓN 4. ¿Qué se entiende por “Programación en Cascada”?

La Programación en Cascada es una técnica de presentación progresiva del Programa de Obra a los mandos que han de cumplirlo, permitiendo de esta forma un seguimiento del programa inicial y creando un clima de colaboración entre todo el equipo que compone una obra. Se hace normalmente mediante diagramas de barras del último mes y los tres siguientes, acompañando de una programación detallada de las próximas dos semanas, desglosando lo que corresponde a cada mando. En obras grandes o complejas, se suelen realizar reuniones semanales de coordinación para el análisis del avance del programa y para planificar y discutir los trabajos a realizar en la semana siguiente. Suele ser recomendable implicar en tales reuniones a los subcontratistas.

CUESTIÓN 5. ¿Qué podemos hacer cuando en un tajo no se están logrando los rendimientos previstos en la planificación de la obra?

Se puede hacer lo siguiente:

  • Comprobar si la desviación es persistente
  • Comprobar si la cadena de mandos ha comprendido lo que tiene que hacer
  • Comprobar si los recursos operacionales aportados son los previstos
  • Comprobar si hay deficiencias en los suministros
  • Comprobar el estado físico de las máquinas
  • Hacer un estudio mediante las técnicas de análisis de productividad para revisar los ciclos de cada proceso, buscando mejoras organizativas en el tajo que permitan llegar a obtener los máximos rendimientos
  • Comprobar si los rendimientos de la planificación son correctos

 

CUESTIÓN 6. ¿Qué ocurre si se sobrepasa la holgura libre de una actividad, pero no llega a agotarse la holgura total de la misma?

Al sobrepasarse la holgura libre estamos modificando el tiempo esperado del suceso al que llega la actividad, es decir, se altera el tiempo de inicio de las actividades siguientes. Sin embargo, al no sobrepasar la holgura total, no estaremos retrasando el plazo final de la obra.

CUESTIÓN 7. ¿Qué datos se consideran necesarios para poder definir el programa de una obra siguiendo la metodología PERT?

  • Los objetivos intermedios y finales que es preciso alcanzar para construir la obra
  • Las actividades y el orden en que han de desarrollarse, así como las condiciones de cualquier tipo que relacionen dichas actividades para poder conseguir los objetivos del programa
  • Los medios que cada actividad, y, por tanto, el conjunto de todas, requiere para poder desarrollarse en unos tiempos determinados
  • El plazo final esperable para cada uno de los objetivos
  • La probabilidad de conseguir acabar dentro de dichos plazos

 

CUESTIÓN 8. ¿Qué diferencia existe entre los métodos de asignación y los de nivelación de recursos?

Se entiende por métodos de asignación de recursos, aquellos que tienen por objetivo el que, en ningún momento, los recursos necesarios para realizar una determinada tarea, superen a los disponibles, aunque ello suponga un incremento de tiempo en el plazo final de ejecución de la obra. En consecuencia, se trata de minimizar el plazo de ejecución sin incrementar los recursos disponibles. Análogamente, se entiende por métodos de nivelación de recursos, aquellos que tienen por objetivo, el mantener lo más uniforme posible el consumo de recursos y, en consecuencia, su histograma de cargas, sin que el plazo inicial de ejecución de la obra se incremente.

Asimismo, os dejo algunos vídeos sobre el tema que espero que os sean de interés:

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Barrettes inyectadas (shaft-grouted barrettes)

Barrette, según la norma EN 1536:1999
Barrette, según la norma UNE-EN 1536:2011

Los “barrettes”, atendiendo a la norma UNE-EN 1536:2011, son pilotes que en planta son rectangulares, en T o en L o cualquier otra configuración similar, siempre que se hormigonen en una sola operación. Se emplean para sustentar cargas verticales y/o laterales.

A este tipo de pilotes de hormigón con extracción del terreno se les ha denominado también como pilotes rectangulares, minipantallas, módulos portantes o pilas oblongas (este último término usado en México). Este pilote se excava por métodos continuos o discontinuos (hélice, cuchara, trépano, etc.), utilizando sistemas de contención para estabilizar las paredes de la excavación, normalmente con lodos bentoníticos o polímeros.

La construcción de este tipo de pilotes es muy parecida a la de un muro pantalla. Se realiza una excavación hasta la profundidad requerida y se rellena con un lodo tixotrópico para proporcionar soporte a las paredes. Posteriormente, se coloca la armadura y se hormigona con tubos Tremie.

Este tipo de pilote perforado ofrece mayor superficie específica respecto al pilote de sección circular, lo cual permite resistir mejor las cargas verticales debido al aumento de la resistencia en fuste. Desde el punto de vista estructural, se orientan de forma que ofrezca la sección la mayor inercia en la dirección requerida, favoreciendo su comportamiento ante solicitaciones sísmicas.

Colocación de armadura en barrette. Fuente: www.bachy-soletanche.com.hk
Colocación de armadura en barrette. Fuente: www.bachy-soletanche.com.hk

 

Sin embargo, en este post nos vamos a centrar en un caso especial, de gran interés. Se trata de las barrettes inyectadas o de fricción (shaft-grouted barrettes, friction barrettes). Se trata de una cimentación no tan profunda como un pilote normal, que permite reducir el consumo de acero y de hormigón y que acorta la duración de las obras. Se trata de introducir, junto con la armadura, unas tuberías embebidas por donde se inyectará una lechada de cemento y arena a alta presión una vez el pilote ha adquirido la resistencia necesaria. Una vez endurecida esta mezcla, la formación de salientes de las paredes de los pilotes aumenta de forma significativa la fricción, y, por tanto, la resistencia del fuste. Este tipo de cimentación profunda se ha utilizado en edificios altos, como las Torres Petronas de Malasia, o el International Commerce Centre de Hong Kong.

icc_900x600_Bachy
Cimentación de 241 barrettes inyectadas en el International Commerce Centre (ICC), en Hong Kong. Fuente: www.arup.com

A continuación os dejo un vídeo sobre cómo se realiza la ejecución de las barrettes de fricción. Se trata de una obra en Vietnam, y desgraciadamente el vídeo no está ni en español ni en inglés. Pero creo que es interesante.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes girados

Construcción de la pasarela peatonal de Kingsgate (1966), en Durham (Inglaterra), de 31 m de luz. Foto: Ove Arup.

Constituye una alternativa a la traslación longitudinal del tablero en el que el giro se efectúa tras construir el puente sobre cimbra apoyada sobre el terreno, colocada paralelamente al obstáculo, por ejemplo, en la orilla de un río. Posteriormente, mediante un giro en eje vertical alrededor de un apoyo, se lleva a su posición definitiva. Se puede apoyar el extremo del tablero que gira en una barcaza, o bien llevarlo en voladizo. También se pueden construir dos semipuentes en cada lado y luego girarlos sobre las pilas hasta situarlos en prolongación y cerrar la clave. A diferencia del puente empujado, esta forma de construir el tablero permite una gran libertad de diseño al proyectista, pues se pueden girar puentes viga, pórtico, arco o atirantados.

Para realizar el giro, el tablero queda sustentado en tres apoyos, el pivote y otros dos apoyos móviles, separados para mantener el equilibrio. En el caso de puentes ligeros, los dos apoyos se sitúan en el extremo del tablero. Pero si son tableros pesados, como por ejemplo en sección de cajón de hormigón, una parte del tablero queda en voladizo y en la otra de contrapeso se sitúan los dos apoyos restantes.

La primera obra que se ejecutó con giro desde los dos lados fue la pasarela de Kingsgate en Durham, de Ove Arup, de 31 m de luz, construida en 1966. Un ejemplo de puente girado con apoyo en flotación es la construcción del puente de La Barqueta, en Sevilla (1989-1992), proyectada por Juan J. Arenas y Marcos J. Pantaleón. El puente se montó en una de las orillas, y mediante flotadores se llevó el extremo del puente a la otra orilla. A continuación se procede a desmontar la rótula provisional que propició el giro. El puente, tipo bowstring, tiene una luz de 168 m. También se construyó así la pasarela de la Cartuja (1991), en Sevilla, de Fritz Leonhardt y Luis Viñuela, que es una viga metálica en cajón de 170 m de vano que se giró con un apoyo mediante barcaza en el giro.

Puente de la Barqueta, en pleno proceso de giro flotando sobre el río. Foto: J.M. Serrano.

Los apoyos móviles pueden sustentarse por flotación o bien desplazarse sobre caminos curvos sobre viga o muro de hormigón, habitualmente rematado por un carril metálico. En cuanto al sistema de empuje, si el giro es por flotación, se pueden usar dos cabrestantes, uno de tracción y otro de retenida, que actúan sobre los flotadores. Sin embargo, es aconsejable forzar el movimiento del tablero mediante gatos desde el extremo opuesto al eje de giro para evitar problemas de sincronización y control direccional de tiros.

En el siguiente vídeo podemos ver cómo se construyó la pasarela de Kingsgate.

En el vídeo siguiente podemos ver el «barquetazo», donde se habla del problema que tuvo el Puente de la Barqueta, en su giro a su posición definitiva.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es una recicladora de asfalto?

 

descargaQuizás sea pertinente insistir en la necesidad que tenemos de conservar nuestras infraestructuras. De este tema ya hablamos en su momento en un post denominado «la crisis de las infraestructuras«. Hoy vamos a seguir la línea abierta comentando el reciclaje de firmes. Se trata de una simple pincelada de lo que nuestros alumnos aprenden con mayor profundidad en la asignatura de Procedimientos de Construcción en nuestra escuela de ingenieros de caminos de Valencia.

El reciclado del asfalto no es algo nuevo. El pavimento de una carretera está sujeto a un envejecimiento progresivo debido a la acción del tráfico, la meteorología y del propio material. Sin embargo, volver a calentar el asfalto para regenerarlo producía un material seco y grumoso que conservaba poco de los aceites del hormigón asfáltico original. A menudo, el asfalto se volvía a calentar de forma estática, sin agitarlo ni mezclarlo durante el proceso. Esto daba como resultado temperaturas desiguales que producían resultados dispares; una parte estaba muy caliente, otra parte estaba demasiado fría y otra a la temperatura justa. Hoy día, donde los costos del petróleo crecen y los presupuestos son escasos, la recicladora de asfalto es una forma económica de mantener las superficies asfaltadas sin dañar el medioambiente, reciclando los productos de hidrocarburos en lugar de desecharlos y utilizar material nuevo en reemplazo. El reciclaje de asfalto tiene numerosas ventajas. Una de ellas es que permite emplear el 100% del pavimento dañado, lo que disminuye los costos de mantenimiento vial en más de 40%.

blog_16

Para reciclar el asfalto, se pueden usar diversas técnicas.  Todas ellas se basan en la reutilización de los materiales del firme defectuoso, a los que se pueden añadir otros materiales. Los tipos habituales, sin considerar el reciclado en planta, son los siguientes:

  • Reciclado «in situ» en caliente: Se reutilizan todos los materiales del firme mediante una aportación de calor que se realiza en la misma obra. El firme se calienta con unos quemadores y se fresa en un grosor determinado. A este material se añaden agentes rejuvenecedores. La nueva mezcla se extiende y compacta mediante medios convencionales.
  • Reciclado templado «in situ»: En este caso la temperatura de fabricación es menor a la anterior, lo cual presenta ventajas desde el punto de vista medioambiental. Se utilizan para ello emulsiones bituminosas.
  • Reciclado «in situ» en frío con cemento: Se fresa en frío un cierto espesor del firme y se mezcla con un conglomerante hidráulico (normalmente cemento). La mezcla se extiende y compacta.
  • Reciclado «in situ» en frío con emulsiones bituminosas (RFSE):  Tras el fresado, se mezcla el material envejecido con emulsiones y otros aditivos. Se extiende, compacta y cura la capa

 

Si queréis ampliar información, os dejo el enlace a la página de ANTER (Asociación Nacional Técnica de Estabilizados de Suelos y Reciclado de Firmes): http://www.anter.es/. A continuación os dejo varios vídeos para que veáis la maquinaria y la forma de realizar el reciclado de asfalto. Espero que os gusten.

En este vídeo podemos ver cómo se emplea la técnica del reciclado en frío.

En 2023 fue publicada la nueva orden circular (que sustituye a la OC 40/2017), en la que se recogen las especificaciones técnicas que deben cumplir estos materiales. Esta Orden Circular es la OC 2/2023 REUTILIZACIÓN DE CAPAS DE FIRMES Y PAVIMENTOS BITUMINOSOS. En la misma ya no se habla de reciclado sino de reutilización, otorgando una mayor jerarquía al empleo de estos materiales existentes en las carreteras. Os dejo a continuación.

Pincha aquí para descargar

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Métodos de cálculo del empuje del hormigón fresco

En un artículo anterior explicamos en unos pequeños apuntes la forma de calcular el empuje del hormigón fresco sobre un encofrado. Ahora os dejo un par de vídeos explicativos para completar la información anterior. En el primer vídeo se explican los factores que influyen en la presión del hormigón fresco y en el segundo los principales métodos de cálculo de dicho empuje. Espero que estos vídeos os sirvan para entender mejor el comportamiento del hormigón fresco cuando empuja sobre un encofrado.

 

 

 

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Transporte de hormigón mediante cinta transportadora

PROBLEMA. Calcula el máximo caudal de hormigón fresco que suministrará una cinta transportadora que tiene 30 m de longitud y tiene que salvar una cota de 6 m. Otros datos:

   – El coeficiente de fricción entre cinta y rodillos es µ=0,10

   – La densidad del hormigón fresco durante su transporte es de 2,0 t/m3

   – El coeficiente de transmisión del motor es η=2/3

   – La potencia del motor es de 50 C.V.

 

 

Respuesta:

El motor de la cinta transportadora debe de disponer de potencia suficiente para desplazar el hormigón fresco sobre la cinta, superando sus rozamientos y, además, para elevar el hormigón a la cota prevista.

La potencia mecánica se define como la rapidez con que se realiza un trabajo, o lo que es lo mismo, el producto de la fuerza resultante aplicada por la velocidad. La potencia necesaria para vencer el rozamiento de la cinta y rodillos µ, es el producto de la fuerza normal sobre la cinta por el coeficiente de rozamiento. Dicha fuerza se desplaza a la velocidad de la cinta.

Siendo p el peso del hormigón fresco por metro lineal de cinta, la potencia P1 necesaria para desplazar a una velocidad v el peso, teniendo en cuenta el rendimiento del motor η, sería la siguiente:

En la expresión anterior, el producto de la velocidad v por el peso por metro lineal p, se sustituye por el producto del peso específico γ del hormigón fresco por el caudal Q transportado por la cinta.

Por otra parte, la potencia necesaria para vencer el desnivel es el producto del peso del material por la velocidad de ascensión, que es v·senα, quedando la siguiente expresión:

Por tanto, la potencia necesaria total será la suma de P1 y P2. Se puede calcular mediante la siguiente expresión:

De esta expresión se puede despejar el caudal Q:

Expresando todas las unidades en el Sistema Internacional (1 C.V. = 735,498 W; 1 t = 9807 N), la expresión queda como sigue:

 

El motor de la cinta transportadora debe de disponer de potencia suficiente para desplazar el hormigón fresco sobre la cinta, superando sus rozamientos y, además, para elevar el hormigón a la cota prevista.

Os dejo también un nomograma que permite resolver este mismo problema. Lo he desarrollado junto con el profesor Pedro Martínez Pagán, de la Universidad Politécnica de Cartagena. En este caso, se ha resuelto el ejercicio con otros datos de partida. Espero que os sea útil.

A continuación os dejo un vídeo donde se explica el transporte del hormigón fresco mediante cinta transportadora. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué son y para qué sirven los encofrados?

Figura 1. Encofrado. By Stalform Engineering [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

Los encofrados son elementos auxiliares destinados al moldeo “in situ” de hormigones y morteros, siendo su misión la de contener y soportar el hormigón fresco hasta su endurecimiento, sin experimentar asientos ni deformaciones, dándole la forma deseada. Cuando, en vez de obras “in situ”, se trata de prefabricación en taller, los encofrados se denominan moldes. Por tanto, los encofrados son estructuras temporales, que se cargan durante unas horas durante la colocación del hormigón y que, en pocos días, se desmontan para su posterior reutilización.

Pueden ser de madera, metal (se prohíbe por la Instrucción EHE-08 el uso de aluminio) o plástico y, por lo general, son totalmente recuperables y reutilizables, aunque en algunos casos la recuperación es parcial, quedando parte de sus piezas embutidas en el hormigón. Se les exige como cualidades principales las de ser rígidos, resistentes, estancos y limpios. Además, deben cumplir las condiciones de funcionalidad, seguridad y economía.

Suelen utilizarse productos desencofrantes (barnices antiadherentes y preparados a base de aceites solubles en agua) para simplificar el desencofrado y si son de madera se humedecerán con anterioridad para impedir que absorban agua del hormigón.

El encofrado necesita de elementos auxiliares que permitan soportar, entre otras, las acciones del hormigón fresco: cimbras, puntales, celosías y tensores. Además, para que el encofrado cumpla con su misión, se le deben requerir algunas características como seguridad, estanqueidad y facilidad de montaje, entre otras. El encofrado supone, aproximadamente, un tercio del coste de una estructura de hormigón, siendo muy importante la partida de mano de obra.  El número de usos y si el paramento va a quedar visto son factores que van a influir fuertemente en el coste económico.

Las acciones durante el hormigonado y las acciones exteriores condicionan básicamente la estructura soporte del encofrado. Por tanto, ¿qué características se le deberían exigir a un encofrado? A continuación se recogen algunas de las condiciones que deben cumplir estos elementos:

  • La estructura soporte debe dimensionarse teniendo en cuenta las acciones siguientes:
    • Peso del hormigón fresco más el peso del propio encofrado como peso muerto.
    • Sobrecargas de uso, entre las que tenemos las originadas por personas, equipos, medios auxiliares, incluyendo impactos.
    • Cargas horizontales, tales como viento, las originadas por soportes inclinados, arranques y paradas de equipos, etc.
    • Acciones específicas para tipos especiales de encofrado.
  • El encofrado, a la vez que rígido y resistente frente a empujes y acciones exteriores, debe ser estanco. La falta de estanqueidad de un encofrado, puede conducir a fugas de lechada e incluso de finos que en el mejor de los casos suponga la presencia de defectos superficiales que afectan exclusivamente al aspecto de los paramentos superficiales y en algunos casos coqueras o nidos de grava que supongan una vía de acceso a ataques de las armaduras con los riesgos que ello lleva implícito en la durabilidad de la estructura.
  • El encofrado será químicamente inerte a la acción del agua, los aditivos o cualquier otro constituyente del hormigón. A pesar de lo cual nosotros cuidaremos especialmente evitar usar aguas en exceso agresivas, etc.
  • No adherirse fuertemente al hormigón después del fraguado. Se pueden tratar las superficies del encofrado con distintos productos químicos o incluso en algunos casos, como el del encofrado con madera, bastará humedecer la superficie, antes de la colocación.
  • Ser resistente a la abrasión del hormigón.
  • Ser económicos, teniendo en cuenta su coste inicial y su número de usos. Estos estudios económicos se hacen de acuerdo a los usos, la longitud del encofrado (en elementos de avance lineal) etc. Una manera de no encarecer los encofrados es utilizando, cuando sea posible, paneles preparados, paneles prefabricados, de las dimensiones que nuestros medios nos permitan.

 

A continuación os dejo tres vídeos que explican las características básicas de estos elementos auxiliares. Espero que os sean de interés.

Os dejo también un vídeo de obra de Enrique Alario donde explica el encofrado de madera de un muro visto. Obra en estado puro.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.