Diseño de experimentos factorial completo aplicado al proyecto de muros de contención

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Diseño de experimentos factorial completo aplicado al proyecto de muros de contención“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, el diseño factorial completo, para determinar las variables significativas y las interacciones entre las variables cuando se trata de calcular una estructura. En este caso, se trata de analizar las emisiones de CO2 en la construcción de un muro de contención de tierras. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto.

Referencia:

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 201-213. ISBN: 978–84–17924–58–4

Descargar (PDF, 281KB)

 

Algoritmo híbrido de búsqueda del cuco para optimizar muros de contrafuertes

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de búsqueda del cuco y de clasificación no supervisada para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La Búsqueda Cuco se basa en la estrategia de reproducción de algunas especies de pájaros cucos. Éstos pájaros dejan sus huevos en los nidos de otros pájaros de otras especies para que éstas los críen, expulsando incluso los huevos del nido invadido. Si el pájaro anfitrión se percata que el huevo no es el propio, lo sacará del nido o directamente lo abandonará y construirá otro nido.

Por su parte, K-means es un algoritmo de clasificación no supervisada (clusterización) que agrupa objetos en k grupos basándose en sus características. El agrupamiento se realiza minimizando la suma de distancias entre cada objeto y el centroide de su grupo o cluster.

En este artículo se propone un algoritmo híbrido, en el que la metaheurística de búsqueda del cuco se utiliza como mecanismo de optimización en espacios continuos y la técnica de aprendizaje no supervisada k-means para discretizar las soluciones. Se diseña un operador aleatorio para determinar la contribución del operador k-means en el proceso de optimización. Se comparan los mejores valores, los promedios y los rangos intercuartiles de las distribuciones obtenidas. Los resultados muestran que el operador k-means contribuye significativamente a la calidad de las soluciones y que nuestro algoritmo es altamente competitivo.

Abstract

The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search.

Keywords

CO2emission; earth-retaining walls; optimization; k-means; cuckoo search

Referencia:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

Descargar (PDF, 1.24MB)

 

 

Metodología para valorar la sostenibilidad con baja influencia de los decisores

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Metodología para valorar la sostenibilidad con baja influencia de los decisores“.

En este artículo se aborda una metodología para reducir al mínimo la influencia subjetiva que tienen los decisores a la hora de tomar decisiones, en este caso, utilizando criterios relacionados con la sostenibilidad. Para este fin se ha utilizado el análisis de componentes principales (ACP), la optimización basada en kriging y el método AHP para buscar soluciones sostenibles, eliminando la relación entre criterios dependientes y asegurando la obtención de una solución sostenible frente a las diferentes perspectivas de los responsables de la toma de decisiones. Os dejo el artículo en abierto.

Referencia:

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 461-473. ISBN: 978–84–17924–58–4

Descargar (PDF, 327KB)

 

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

Optimización de muros de hormigón mediante la metodología de la superficie de respuesta

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Optimización de muros de hormigón mediante la metodología de la superficie de respuesta“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, la metodología de la superficie de respuesta, a un cálculo estructural, en este caso, un muro. La optimización de procesos mediante la superficie de respuesta es habitual en el campo de la experimentación. La idea es considerar que el cálculo de una estructura se puede considerar también un experimento, donde los datos de entrada son las variables y parámetros que definen dicha estructura y el resultado final es el coste. En este caso, se trata de minimizar el coste. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto. En este caso se han optimizado las emisiones de CO2.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 603-615. ISBN: 978–84–17924–58–4

Descargar (PDF, 369KB)

Tesis doctoral: Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty

Figura 1. Defensa de tesis doctoral de Vicent Penadés Plà.

Hoy 12 de marzo de 2020 ha tenido lugar la defensa de la tesis doctoral de D. Vicent Penadés Plà titulada “Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty“, dirigida por Víctor Yepes Piqueras y Tatiana García Segura. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial.

El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones.

Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares.

El estudio del diseño óptimo y estructuralmente estable frente a variaciones de las condiciones iniciales se ha llevado a cabo variando tres parámetros iniciales (módulo de elasticidad, sobrecarga, y fuerza de pretensado). El objetivo del caso de estudio analizado ha sido obtener el diseño más económico y con menor variación de la respuesta estructural. De esta forma, se consigue una frontera de Pareto que permite seleccionar la solución óptima, la solución más robusta o una solución de compromiso entre las dos. Por otro lado, el estudio de diseños sostenibles y poco influenciables por las preferencias de los decisores se ha llevado a cabo generando una gran cantidad de decisores aleatorios para cubrir todas las posibles preferencias de los interesados. El objetivo del caso de estudio ha sido reducir la participación subjetiva de los decisores. De esta forma, se ha podido reducir todo el abanico de diseños posibles a un número reducido de diseños concretos, y seleccionar aquel diseño con mejor media sostenible o menor variabilidad en la valoración.

Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.

Palabras clave:

Sostenibilidad, Toma de decisiones, Análisis de ciclo de vida, Métodos de valoración del impacto del análisis de ciclo de vida, ReCiPe, Ecoinvent, SOCA, Metamodelos, Kriging, Diseño óptimo robusto, Puentes.

Figura 2. De izquierda a derecha: Julián Alcalá, Tatiana García, Víctor Yepes, Vicent Penadés, Salvador Ivorra y Rasmus Rempling

Referencias:

Optimización del diseño robusto de puentes en cajón

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo tratamos de solucionar uno de los problemas que presentan las estructuras óptimas, que es su cercanía a los estados límite y demás restricciones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En efecto, el diseño de una estructura se lleva a cabo generalmente según un enfoque determinista. Sin embargo, todos los problemas estructurales tienen asociados parámetros iniciales inciertos que pueden diferir del valor de diseño. Esto se vuelve importante cuando el objetivo es alcanzar estructuras optimizadas, pues una pequeña variación de estos parámetros inciertos iniciales puede tener una gran influencia en el comportamiento estructural. El objetivo de la optimización de un diseño robusto es obtener un diseño óptimo con la menor variación posible de las funciones objetivas. Para ello, es necesaria una optimización probabilística para obtener los parámetros estadísticos que representen el valor medio y la variación de la función objetivo considerada. Sin embargo, una de las desventajas del diseño robusto óptimo es su alto costo de cálculo. En el presente artículo, la optimización del diseño robusto se aplica al diseño de un puente peatonal continuo de sección en cajón  que sea óptimo en cuanto a su costo y robusto en cuanto a la estabilidad estructural. Además, se utiliza el muestreo de hipercubo latino y el metamodelo de kriging para hacer frente al alto costo computacional. Los resultados muestran que las principales variables que controlan el comportamiento estructural son la profundidad de la sección transversal y la resistencia a la compresión del hormigón y que se puede llegar a una solución de compromiso entre el coste óptimo y la robustez del diseño.

Abstract

The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.

Keywords

Robust design optimization; RDO; post-tensioned concrete; box-girder bridge; structural optimization; metamodel; kriging

Reference:

Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust Design Optimization for Low-Cost Concrete Box-Girder BridgeMathematics 20208, 398.

Descargar (PDF, 1.11MB)

 

Valoración multicriterio de alternativas sostenibles para viviendas unifamiliares

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

En este artículo se presenta un estudio de tres alternativas estructurales diferentes que se aplican a un chalet adosado para facilitar la toma de decisiones, basándose en múltiples criterios y teniendo en cuenta la sostenibilidad. La metodología empleada permite identificar la estructura y evaluar las diferentes alternativas aquí propuestas para encontrar la opción óptima. Se compara una solución de referencia tradicional, un diseño prefabricado y, finalmente, una opción tecnológica basada en un sistema estructural integral de hormigón armado. El estudio proporciona un conjunto de indicadores para evaluar los aspectos ambientales, económicos y sociales de un edificio a lo largo de su ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 25 de abril de 2020 en el siguiente enlace:

https://authors.elsevier.com/a/1ah94_LqUdMgSB

Abstract

In the architecture sector, single-family housing projects are often linked to demand from private clients, without arousing very much interest from developers, who seek higher returns on other real estate assets. For any owner, the construction of a home is perhaps the biggest investment of their life, and success or failure will therefore depend on the right decision. This paper presents a study of three different structural alternatives that are applied to a terraced house to facilitate decision making by a self-promoter, based on multiple criteria and taking sustainability into consideration. The methodology used allows us to identify the structure and to evaluate the different alternatives proposed here in order to find the optimal option. A comparison is drawn between a traditional reference solution, a pre-cast design and finally a technological option based on an integral reinforced concrete structural system. Although the technical feasibility of these last two solutions has been proven, they have not yet received enough attention from researchers to allow the thermal envelope of the building to be solved at the same time as the structure itself. The last of these alternatives achieved the best valuation, although it is neither the most widely used alternative or the quickest to build. This study demonstrates the practical versatility of a method that is seldom used in residential construction and only rarely used for single-family homes. We evaluate three alternatives for optimizing the structure and enveloping walls of a self-promoted, terraced house from a sustainability perspective. The study provides a set of indicators for assessing the environmental, economic and social aspects of a building throughout its life cycle. The sustainability index of the structural envelope obtained in this way allows a self-promoter to prioritize solutions to ensure its global sustainability.

Highlights

  • Each self-promoting decisions influence the global model of sustainable construction.
  • Self-construction prioritizes economic and functional aspects in the life cycle.
  • Three alternatives comparing traditional structure with non-conventional MMC systems.
  • A balance between the indicators favours a better sustainability index.
  • Reinforced concrete technology in housing reduces 10% lead times and 23% cost.

Keywords

Single-family house
Multi-criteria decision making
Sustainable design
MIVES
Ytong
Elesdopa

Reference:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. DOI:10.1016/j.jclepro.2020.120556

¿Cómo evitar que nuestros muros deslicen?

Figura 1. Fuerzas que actúan sobre un muro.

En un artículo anterior ya se comentó cómo el terreno empuja sobre cualquier estructura que lo contenga, y que la magnitud de dicho empuje se ve muy influenciada por el tipo de deformación sufrida por dicha estructura de contención, como puede ser un muro.

Lo inmediato es preguntar quién va a ser el responsable de contrarrestar dicho empuje para garantizar que el muro no deslice. No se trata de una cuestión menor, puesto que la seguridad al deslizamiento constituye uno de los estados límite últimos a comprobar cuando se diseña un muro. Es más, el deslizamiento acostumbra a ser el caso más crítico si el muro no es demasiado alto o en muros ménsula sin talón. Si a eso añadimos un mal drenaje en el trasdós cuando el muro no se ha calculado considerando los empujes hidrostáticos, tendremos asegurado un problema mayor.

Lo primero que se nos ocurre es pensar que el rozamiento entre el cimiento del muro y el terreno sobre el que se apoya debería ser suficiente para evitar el deslizamiento. De hecho, la fricción o fuerza de rozamiento que se opone al inicio del deslizamiento en un plano es proporcional a la fuerza normal a dicho plano, a través del conocido como coeficiente de rozamiento estático. Este coeficiente se puede calcular como la tangente del plano inclinado crítico, que es aquel donde un cuerpo empieza a deslizarse. Dicho coeficiente es mayor al coeficiente de rozamiento dinámico, que se desarrolla una vez el deslizamiento se ha iniciado.

El caso del deslizamiento de un muro respecto al terreno es un caso parecido al de la rotura del suelo, pero teniendo en cuenta que las superficies en contacto son las del cimiento del muro y la del terreno sobre el que se apoya. Por tanto, se puede aplicar el criterio de rotura de Mohr-Coulomb, de forma que la tensión tangencial de rotura τse encuentra relacionada con la tensión normal σ’ en el plano de contacto muro-terreno:

De forma análoga, se podría sustituir la cohesión entre partículas c‘ por un coeficiente de adherencia o cohesión de contacto cc. Del mismo modo, se sustituiría el ángulo de rozamiento efectivo Φ‘  por el rozamiento muro-terreno Φc (siempre Φc <Φ‘ ).   En este caso, siendo A el área de contacto de la fuerza normal con la superficie de deslizamiento, se puede expresar que la fuerza horizontal T en el plano de contacto muro-terreno sería:

En la expresión anterior téngase en cuenta que la fuerza normal sobre la resultante N‘ es la diferencia entre la suma de las fuerzas verticales W y la subpresión ejercida por el agua Fw , en su caso (ver Figura 1).

La fuerza horizontal T que se opone al deslizamiento es máxima en el instante mismo del deslizamiento. Si B‘ es el ancho eficaz de la zapata del muro en contacto con el terreno (no se tiene en cuenta la parte de la zapata “despegada” del terreno, ver Figura 2), la fuerza horizontal máxima Tmáx que se opondrá al deslizamiento por metro lineal de muro sería la siguiente:

Figura 2. Ancho eficaz B‘ de la zapata.

Si esta fuerza horizontal máxima  Tmáx no fuese suficiente para equilibrar las fuerzas horizontales sobre el muro (E’aE1,w ), entonces se tendría que recurrir a una resistencia adicional R que puede proceder de la movilización de una parte del empuje pasivo que actúa sobre la puntera de la zapata del muro E’pun  , del posible empuje hidrostático sobre la puntera E2,w o bien de posibles fuerzas exteriores al sistema muro-terreno. Se recomienda que R ≤ 0,10·H , siendo H la fuerza horizontal.

Además, en el caso de tenerse en cuenta el empuje pasivo efectivo sobre la puntera (o bien sobre una zarpa o tacón de la zapata, para incrementar dicho empuje pasivo, ver Figura 3) hay que garantizar que se moviliza la deformación suficiente y que su valor se debe minorar por un coeficiente de 1,5, que sería E’p admisible. Por otra parte, si se tiene en cuenta dicho empuje pasivo , se debería garantizar la permanencia del terreno sobre la zapata. Está del lado de la seguridad no considerar el empuje pasivo.

Figura 3. Aumento del empuje pasivo debido al tacón en la zapata del muro.

Todo lo anterior nos hace reflexionar sobre la importancia de definir en el proyecto del muro los parámetros resistentes del contacto muro-terreno. Dependiendo de la forma de preparación del contacto, se pueden considerar los siguientes:

  • Muros de hormigón ejecutados “in situ” contra el terreno   →   tan Φc = 0,8·tan Φ‘   y  cc = c
  • Muros de hormigón prefabricado sobre materiales granulares  →   tan Φc = 0,6  y  cc = 0
  • Muros sobre suelos arcillosos saturados: Hay que comprobar la situación de corto plazo  →   Φu = 0  y   cu = 0,5 · Ru  (siendo Ru la resistencia a compresión simple sin drenaje)            

A falta de otros datos, se adopta como ángulo de rozamiento muro-terreno un valor de 2/3 del ángulo de rozamiento efectivo del terreno, es decir, Φc = 2/3 · Φ‘ . Es decir, siempre será el ángulo de rozamiento muro-terreno inferior al ángulo de rozamiento efectivo del terreno.

Por último, tendríamos que asignar un coeficiente de seguridad al deslizamiento Fd, como el cociente entre la máxima oposición que puede encontrar el muro al deslizamiento (Tmáx +E’p admisible) entre la fuerza estrictamente necesaria para evitarlo ( Tnec ). La fuerza estrictamente necesaria para evitar el deslizamiento debe ser la suma de fuerzas horizontales sobre el muro, incluido el empuje activo del terreno y posible la presión hidrostática sobre el trasdós del muro.

En combinación de acciones casi permanente, la “Guía de cimentaciones en obras de carretera” (Ministerio de Fomento, 2003), establece un coeficiente de seguridad frente al deslizamiento mínimo de 1,50.

REFERENCIAS:

  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización simultánea del coste y de la constructibilidad de pilares de hormigón armado

Os paso a continuación la comunicación completa presentada en el XL Ibero-Latin-American Congress on Computational Methods in Engineering (CILAMCE 2019), que tuvo lugar en Natal/RN, Brasil, del 11 al 14 de noviembre de 2019.

ABSTRACT:

Structural design, in general, consists of an iterative process developed with base on the intuition and previous experience of the designer. This strategy makes the design exhaustive and makes difficult to obtain the best solution. In addition, usually only one design criterion is adopted, being usually cost or weight. If other issues are considered, such as the environmental impact or construction facility, a more complex problem need to be solved. In such context, the aim of this work is to present the development and implementation of a formulation for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression, taking as objectives the minimization of the cost and the maximization of the constructability. The constraints of the problem are based on the verification of strength proposed by the Brazilian code ABNT NBR 6118/2014. To the optimization of the column section, Simulated Annealing optimization method was adopted, in which the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as discrete variables. The total cost is composed of the cost of steel bars, concrete, and formworks, and the maximization of constructability is obtained by minimizing the total number of steel bars. The optimized sections were compared to those obtained considering only the cost as the objective function. To the example considered, it was observed that a significant reduction of the number of steel bars can be achieved with a small increase on the section cost.

Keywords: Optimization, Reinforced concrete, Columns, Cost, Constructability

Reference:

KRIPKA, M.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Otimização simultânea do custo e da constructibilidade de pilares em concreto armado. XL CILAMCE Ibero-Latin American Congress on Computational Methods in Engineering, 11-14 nov 2019, Natal/RN, Brazil.

Descargar (PDF, 748KB)