El túnel de San Gotardo en los Alpes suizos

Sitio de la construcción cerca de Bodio. Wikipedia

El túnel de base de San Gotardo es un túnel ferroviario bajo los Alpes suizos. Se considera el túnel ferroviario más largo del mundo, con una longitud de 57 km y un total de 151,84 km de túneles y galerías. La perforación concluyó el 15 de octubre de 2010.

La empresa AlpTransit Gotthard es la responsable de su construcción. Con vistas a reducir a la mitad el tiempo previsto comenzó las obras desde cuatro puntos diferentes (finalmente fueron cinco) al mismo tiempo ubicados en Erstfeld, Amsteg, Sedrun, Faido y Bodio. Se construyó un sistema de túneles con dos tubos principales de vía única, conectados cada 325 m aproximadamente por túneles de servicio. Los trenes podrán cambiar de túnel en alguna de las dos «estaciones multifuncionales» bajo Sedrun y Faido, que albergarán equipos de ventilación e infraestructura técnica y servirán como paradas de emergencia y rutas de evacuación para casos de emergencia. El acceso a la «estación multifuncional de Sedrun» será un túnel casi plano de un kilómetro de longitud desde el valle donde se encuentra la ciudad de Sedrun. Por ello existe un proyecto local de transformar la estación en una parada oficial de trenes llamada Porta Alpina.

Datos relevantes:

  • Longitud: 56.978 m (túnel oeste) y 57.091 m (túnel este)
  • Longitud total de túneles y galerías: 151,84 km
  • Inicio de la construcción: 1993 (sondeos), 1996 (preparación) y 2003 (excavación)
  • Finalización de la obra (previsión a 2007): 2016-2017
  • Costo total: US$ 10.300 millones
  • Trenes diarios: 200-250
  • Volumen de roca excavada: 24 millones de t (13,3 millones de m³)
  • Número de máquinas tuneladoras (TBM): 4

 

Os dejo un vídeo sobre su construcción que espero os guste.

https://www.youtube.com/watch?v=FmYRE80ZeYI

Construcción de túneles mediante el Nuevo Método Austriaco

Túnel de Albertia. LAV Vitoria-Bilbao-San Sebastián

¿Túneles que se sostienen casi por arte de magia? ¿No se nos caerá el túnel cuando estemos construyéndolo? No solo es posible, sino que es un procedimiento constructivo que ya no es tan nuevo como su nombre indica, aunque ya adelantamos que, para una correcta ejecución, se necesita experiencia y saber muy bien lo que se lleva entre manos.

Las técnicas de gunitado y bulonado, junto con una nueva concepción constructiva en la que el estado de tensiones-deformaciones del sistema túnel-terreno se controla desde el inicio de la excavación, llevaron al desarrollo de un conjunto de sistemas de ejecución, entre los cuales el primero patentado (1.956) fue el denominado Nuevo Método Austriaco.

En estos métodos, el sostenimiento provisional no se consigue como en los métodos clásicos con cuadros rígidos, sobredimensionados para soportar la presión del terreno una vez se ha producido su deformación, sino mediante un medio de sostenimiento provisional más flexible, que se adapte al terreno y trabaje desde el momento en que se efectúa la excavación. De este modo, se pretende que las condiciones resistentes del macizo sufran la menor alteración posible, controlando (con medidores de convergencia, extensómetros, etc.) las deformaciones del terreno que se producen por descompresión al excavar y minimizando su magnitud por medio de un gunitado del terreno excavado y de otras técnicas complementarias. Con ello se pretende que el terreno colabore como elemento resistente con el recubrimiento definitivo del túnel, que, en consecuencia, resulta de bastante menor espesor que el que se obtendría con un método tradicional.

Estos principios son los que se aplican en el Nuevo Método Austriaco, con las características constructivas que se exponen en la propia memoria original: «La aplicación de un revestimiento delgado semirrígido, colocado inmediatamente antes de que la roca se vea afectada por el proceso de descompresión. El revestimiento se diseña para alcanzar un equilibrio permanente, después de adaptarse a un reajuste de esfuerzos, sin especificar de qué material ha de ser construido. El revestimiento puede ser de cualquier material adecuado al propósito indicado, tal como anclajes, hormigón proyectado, hormigón prefabricado, arcos metálicos, pudiendo emplearse estos medios aisladamente o combinados entre sí«.

La aplicación del método implica, por tanto, las siguientes fases:

(1)   Excavación realizada con los medios que requiera el terreno, a plena sección o mediante bataches.

(2) Entibación provisional inmediata a la excavación, generalmente mediante un gunitado que puede ir armado con una malla metálica y, si es necesario, reforzado con bulones, inyección o incluso con cerchas metálicas, cuando el cierre de la cavidad se produce tan rápidamente que no da tiempo a que la gunita se endurezca.

(3)   Medición de convergencias y deformaciones del terreno, y de la tensión de los bulones, cerchas, etc. Esta auscultación se lleva a cabo mediante células de presión, extensómetros de superficie o internos, y medidas topográficas que indican el momento en que el terreno ya ha quedado equilibrado con el recubrimiento provisional.

(4)   Los resultados de las mediciones anteriores pueden aconsejar:

  • la ejecución de un refuerzo del sostenimiento provisional, y/o
  • la aplicación del recubrimiento definitivo con un espesor que debe absorber las deformaciones radiales previsibles en el caso en que no se haya podido esperar el tiempo suficiente hasta alcanzar la estabilización total.

El siguiente vídeo explica bien este método constructivo utilizado en los túneles de Alta Velocidad de Levante, Tramo Contreras – Villargordo del Cabriel. Túneles Hoya de la Roda, Rabo de la Sartén y Umbría.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia, 52 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «Omega» de ejecución de pilotes de desplazamiento por rotación

Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

El sistema Omega de ejecución de pilotes permite, mediante la aplicación de rotación y empuje a la cabeza en la fase de perforación y rotación y tiro en la fase de extracción, la instalación de pilotes con total ausencia de vibraciones y produciendo un desplazamiento lateral del terreno que lo compacta y evita la extracción de detritus.

Por encima del diámetro máximo de la cabeza, unas hélices horizontales y la inclinación adecuada del ángulo superior producen un segundo desplazamiento del terreno durante la secuencia de extracción y la fase de hormigonado. En esta fase, la presión controlada de inyección de hormigón a través de la varilla del tubo central induce un tercer estado de desplazamiento, asegurando una perfecta adherencia del pilote al terreno.

Se utiliza una perforadora de vuelo parcial con una sección de desplazamiento que comprime y mejora la densidad de los flancos del agujero. Esto mejora la fricción perimetral y la capacidad de carga del pilote vaciado en el molde.

Un documento explicativo lo podéis encontrar aquí: http://www.ifc-es.com/docs/doc478f25b17f2af6.04560118.pdf de la empresa IFC Cimentaciones Especiales S.A. Otro muy interesante, de Juan José Rosas: http://www.consultorsestructures.org/images/stories/quaderns/quaderns15.pdf?phpMyAdmin=1f73cb5e5b5871b17a5dd37e0ee619a6

Os dejo un vídeo en el que podéis ver cómo se realiza este tipo de pilote. Espero que os guste.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los tramos de prueba en la compactación de suelos

Figura 1. Tramo de prueba de suelo seleccionado. https://twitter.com/cytemsl/status/888377967256244224/photo/1

La compactación de suelos suele ser uno de los procedimientos constructivos en los que las patologías suelen presentarse por su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra se aconseja realizar tramos de prueba, en los que se pueden establecer los criterios que, bajo la perspectiva económica, resulten óptimos para alcanzar la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Veamos brevemente cómo se puede determinar el espesor de tongada y el número óptimo de pasadas.

Figura 2. Esquema de tramo de prueba (Rojo, 1988)

La humedad y la naturaleza del suelo, el espesor de compactación, el equipo seleccionado para la compactación, la velocidad de trabajo y el número de pases, entre otros, están relacionados entre sí y, con ellos, se puede alcanzar la densidad exigida para cada caso. Esta propiedad es cambiante con la profundidad de la capa, con una variación que depende del equipo de compactación, por lo que consideraremos una densidad media de capa. Los pliegos de condiciones pueden exigir que la compactación media de la capa sea superior a un valor determinado, según su densidad especificada, o bien que la compactación en cualquier punto sea superior a un valor determinado. Hoy en día se tienen en cuenta no solo los valores medios, sino también su dispersión.

La densidad es, en general, débil en los primeros centímetros, alcanza su máximo a los 10 o 20 cm y disminuye con rapidez, de forma variable según los materiales y el compactador utilizado. Sin embargo, el efecto de compactación de capas sucesivas produce un aumento de la densidad, de modo que la densidad media de la capa se aproxima a la obtenida con el método de ensayo.

Figura 3. Distribución de la compactación en profundidad

Los máximos de las curvas de compactación, con el número de pases, se sitúan cada vez más profundos en la compactación vibratoria; en cambio, se acercan a la superficie en la compactación por amasado (pata de cabra). Se dice en este último caso que la compactación es de “abajo hacia arriba”, tal y como vimos en un punto anterior.

El contenido de agua tiene un valor decisivo en la elección del grosor de la tongada, ya que para cada grosor existe una humedad óptima, y ambas variables crecen de forma conjunta. A mayor humedad, más efectiva es la acción del compactador en profundidad. Esta consideración es de gran importancia económica, puesto que se puede elegir un grosor de capa en función de la humedad natural previa a la corrección. También es decisivo, a la hora de calcular rendimientos, tener perfectamente establecido el número de pases, que disminuye con el espesor de la capa.

Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Se miden las densidades obtenidas en función del grosor de capa y del número de pases, lo que da lugar a curvas como las reflejadas en la Figura 3.

Figura 4. Curvas de resultados del tramo de pruebas

Una vez obtenido el conjunto de puntos “a”, “b”, etc., se elige el par formado por el número de pases y el espesor de tongada de mayor producción horaria.

El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes establece en su artículo 330 que «cuando lo indique el Proyecto o lo aconsejen las características del material o de la obra, y previa autorización del Director de las Obras, las determinaciones «in situ» de densidad, humedad, y módulo de deformación se complementarán por otras, como los ensayos de huella ejecutados según NLT 256 o el método de «Control de procedimiento» a partir de bandas de ensayo previas. En estas últimas deberán quedar definidas, para permitir su control posterior, las operaciones de ejecución, equipos de extendido y compactación, espesores de tongada, humedad del material y número de pasadas, debiendo comprobarse en esas bandas de ensayo que se cumplen las condiciones de densidad, saturación, módulo de deformación y relación de módulos que se acaban de establecer. En estas bandas o terraplenes de ensayo el número de tongadas a realizar será, al menos, de tres (3)”.

A continuación, os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cuchara bivalva hidráulica

La cuchara bivalva suele ser una máquina compuesta de cables, consta de una pluma de la cual pende una cuchara prensora, formada generalmente por dos valvas o mandíbulas articuladas en su parte superior, que se ajustan una con otra por los bordes cuando se encuentran juntas. Esta máquina puede excavar, recoger el material y verterlo en una misma vertical, o cerca de la misma, y por debajo o por encima del nivel de la máquina, siendo esta propiedad la que la distingue del resto de aparatos de excavación. Sin embargo, tal y como vemos en la figura y en los vídeos que os dejo, también se pueden accionar mediante mecanismos hidráulicos.

La cuchara prensora está formada por dos mandíbulas, cuyo borde puede ser liso o tener dientes intercambiables. Pueden estar accionadas por cables, teniendo cucharas de simple o doble suspensión, o bien las hidráulicas, que mediante cilindros montados en su armazón, accionan el cierre y la apertura de las mismas. Es importante advertir, que cada material puede requerir un tipo de cuchara en particular, aunque los fabricantes proporcionan modelos estandarizados. Las capacidades normales están entre 0,25 y 6 m3.

Aunque cuentan con menor capacidad de corte que las excavadoras hidráulicas, su uso es adecuado en espacios reducidos tales como pozos o zanjas de cimentación, o en profundidades no alcanzables por otro tipo de excavadoras. Es usada también en operaciones de dragado o carga en los muelles de los puertos de granel.

 

 

Espero que os gusten los vídeos que os dejo.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Tablestacas

Las tablestacas o tablaestacas (sheet piles) son un tipo de pantalla, o estructura de contención flexible, en la que la dimensión longitudinal es muy superior a las otras. Están formadas por elementos prefabricados que suelen ser de acero, aunque también las hay de otros materiales. Los elementos prefabricados que componen las tablestacas se hincan en el terreno mediante vibración o golpeo.

Constituyen una estructura de contención flexible, definitiva o temporal (recuperable), que permiten realizar excavaciones de cualquier tipología: talud, zanja, pozo, sótano, etc., adaptándose a cualquier forma o dimensión en planta. También se puede utilizar el tablestacado como encofrado.

Se utilizan fundamentalmente para el sostenimiento lateral del terreno y, sobre todo, en presencia de nivel freático. Sirve para delimitar espacios y funciones en terrenos con desniveles.  En ocasiones, el uso de tablestacas ofrece ventajas frente a otros sistemas de contención tradicionales (por ejemplo, los muros pantalla), tales como el aumento de los rendimientos en la ejecución de su obra y un mejor acabado de los elementos hormigonados (por ejemplo, acabado superficial y ejecución de una correcta impermeabilización en muros de sótano).

Os he grabado un vídeo explicativo sobre las tablestacas que espero que os sea útil.

En este enlace: http://www.cype.net/pdfs/congreso_cmm_2005.pdf  podéis consultar aspectos relativos a su cálculo. También os dejo algunos vídeos sobre esta unidad de obra. Espero que os gusten.

En el vídeo siguiente podéis ver cómo se han utilizado las tablestacas como parte del procedimiento constructivo del túnel submarino más largo en China.

Por cierto, podéis ver el manual de cálculo de tablestacas de ArcelorMittal aquí: http://sheetpiling.arcelormittal.com/uploads/wp-content/uploads/AMCRPS_PHB_%209thEdition_web.pdf

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Perforación con coronas

La perforación con corona es el método de sondeo más difundido en el ámbito de la ingeniería civil, siendo imprescindible cuando se trata de extraer un testigo continuo en formaciones rocosas.

La zona de corte consta de la matriz, que es una aleación de distintas características según el terreno a perforar y en la que se insertan los diamantes, y de un cuerpo principal, que da soporte a la matriz y sirve de unión por roscado al varillaje. Si hay necesidad de extraer testigos, la matriz debe ser hueca (de corte anular) y en el caso contrario, maciza o ciega.

La función de la corona es fragmentar la roca hasta dejarla en condiciones de ser extraída a la superficie. La eficacia de esta función, su precio y la duración (que dependerá del desgaste) son los tres aspectos básicos en su elección. Según la dureza y abrasividad del terreno, la corona puede ser de widia o de diamantes.

Las coronas de widia son apropiadas para perforar rocas blandas o de dureza media. Están compuestas por prismas octogonales de unos 15 mm de longitud, insertados en las zonas más sobresalientes del perfil que forma el perímetro de la corona. La widia (aglomerado de carburo de wolframio, tungsteno, molibdeno, cobalto y otros metales) es mucho más resistente y menos sensible a la abrasión que los aceros especiales, pero su costo es bastante más elevado, aunque menor que el del diamante.

Las coronas de diamante se emplean en rocas muy duras y abrasivas, donde el rápido desgaste de las coronas de widia no compensaría la economía obtenida en su compra.

Por la forma de fabricación y distribución de los diamantes, estas coronas puedes ser de inserción o de concreción.

  • En las coronas de inserción los diamantes están incrustados sobre la superficie de la corona de la que sobresalen en forma de casquete. El tamaño de los diamantes es en estos casos de 10-80 p.p.q. (piedras por quilate: 1 quilate = 0,2 gramos).
  • En las coronas de concreción, los diamantes son de bastante menor tamaño (80-1000 p.p.q.), están mezclados y distribuidos regularmente por la matriz.
Coronas de diamantes de inserción

Al cabo de cierto tiempo de utilización, la corona no proporciona ya un avance aceptable, por lo que es necesario su recambio. Ese momento puede medirse aproximadamente, cuando con la máxima carga sobre la corona, el avance es inferior a unos 2 cm/min. El intentar en estos casos mantener el rendimiento aumentando la carga podría provocar la fractura de algún diamante o de la matriz.

Os dejo unos vídeos sobre el tema.

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València. 89 pp.

Compactación dinámica rápida

La compactación dinámica rápida (“rapid impact compaction”, RIC) es una técnica de mejora del terreno que se desarrolló en Inglaterra en los años 90. La técnica densifica suelos granulares sueltos a poca profundidad utilizando un martillo hidráulico que golpea una placa de impacto. Se trata de generar impactos mediante un elevador hidráulico con pesos de 7 a 16 toneladas que cae desde una pequeña altura de 1 a 2 m, sobre una placa de 1,5 m en contacto con la superficie del terreno a una velocidad de 40 a 80 golpes por minuto. En condiciones adecuadas se podría compactar capas un espesor entre 4 y 7 m, aunque se han compactado capas de hasta 10 m. Los puntos de impacto se distribuyen en mallas de 2 a 3 m de lado..

Figura 1. Compactación dinámica rápida

La energía se transfiere por impacto directo en la superficie, pero también por transmisión de ondas de «choque» dinámicas que se desplazan en el suelo, al igual que en la compactación dinámica (Figura 2). Se ha conseguido una capacidad portante de 190 kPa con este método en capas de 6 m de un relleno heterogéneo. No obstante, la compactación depende de las condiciones del suelo y es más efectiva para materiales granulares que contengan menos de un 15% de finos.

Una de las ventajas de la compactación dinámica rápida es que la placa permanece siempre en contacto con el terreno, lo que asegura el control de la compactación. Además, la baja altura y el tamaño relativamente pequeño del equipo permiten acceder a lugares difíciles en los que otras técnicas de compactación profunda pueden no ser apropiadas o posibles. Es una buena alternativa a la retirada de 4-5 m de suelos naturales o rellenos existentes para rellenar y compactar dicho material en capas de 15 a 30 cm con un compactador de rodillos convencional.

Figura 2. Efecto de la compactación dinámica rápida. Cortesía de Keller.

A continuación os dejo un folleto explicativo de Menard.

Pincha aquí para descargar

Os dejo algunos vídeo explicativos. Espero que os gusten.

https://www.youtube.com/watch?v=O-z9xenTP6I

[politube2]65103:450:358[/politube2]

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «Franki» de ejecución de pilotes de desplazamiento

Figura 1. Procedimiento constructivo de un pilote Franki. Fuente: http://www.frankipile.co.id/frankipile.php

El sistema «Franki» de ejecución de un pilote de desplazamiento se base en una entubación metálica que presenta un tapón de hormigón en la punta. Dicho conjunto se hinca «a golpes» mediante una maza. Una vez se llega a la profundidad adecuada, se sujeta la entubación y se golpea el tapón en la punta para expulsarlo hacia abajo, creando así un bulbo o “punta ensanchada” a base de compactar el terreno, lo que hace que este pilote sea también muy eficiente trabajando a tracción. No se recomienda su uso en suelos cohesivos, donde la compactación de la base no es posible.

Fue desarrollado en el año 1909 por el ingeniero belga Frankignoul Edgard y desde entonces ha logrado un éxito considerable en todo el mundo.  Este método se puede aplicar en diferentes condiciones, y sigue siendo utilizado debido a su alta capacidad de carga y tracción, y los bajos niveles de ruido y las vibraciones del suelo.

En la Figura 1 se representan las fases constructivas de este tipo de pilote:

  • Ejecución, en tongadas de pequeño espesor y fuertemente compactadas, del tapón de gravas, arena y hormigón (de consistencia 0) dentro de la entubación, de espesor 3Φ.
  • Introducción de la entubación hasta la profundidad necesaria golpeando el tapón.
  • Golpeo del tapón y retirada de la entubación, quedando el ensancho como punta del pilote.
  • Instalación de la armadura dentro de la entubación, cuidando el recubrimiento mínimo
  • Extracción de la entubación a la vez que se va hormigonando por tongadas.

También se ha argumentado que la hinca del tapón presenta algunas ventajas claras, como la eliminación de fangos bajo la punta, el control de la existencia de capas blandas intercaladas inmediatamente bajo la punta y la aparición de un bulbo de hormigón que equivale a una base ensanchada. Todo ello hace que este tipo de pilotes con tapón son muy adecuados como pilotes trabajando en punta. Hay que indicar aquí que el aumento de la resistencia por punta se hace a costa de una disminución de la resistencia por el fuste en las cercanías de la base. Como desventajas principales de este tipo de pilote destaca la escasa mecanización del proceso y el riesgo durante la extracción de la entubación.

A continuación podéis ver un vídeo explicativo de los pilotes de desplazamiento con tapón de gravas, que en la nomenclatura de las NTE se denomina CPI-3.

Os recomiendo el enlace de Enrique Montalar, y también los siguientes vídeos explicativos que espero os gusten.

Os dejo este folleto explicativo que espero os sea de utilidad.

Pincha aquí para descargar

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hidrofresas

La ejecución de muros pantalla con hidrofresa está especialmente indicada en terrenos de dureza elevada, que sean excavaciones profundas o que requiera un método de seguro y preciso de excavación. En este sentido, las obras urbanas pueden ser un buen ámbito de aplicación de esta tecnología de excavación. La hidrofresa consta de una estructura pesada de acero provista en su parte inferior de dos ruedas dentadas que giran en sentido contrario, arrancando el terreno. El accionamiento hidráulico de dichas ruedas, en combinación con el empuje vertical vinculado al peso del bastidor, produce el corte del terreno. La elevada fricción que se produce en las ruedas dentadas, hace necesaria su refrigeración, así como de la roca. Para ello se suele emplear lodo bentonítico, que se inyecta mediante un dispositivo de la propia máquina. Los propios lodos se mezclan con los detritus de la excavación, gracias a lo cual se extraen del fondo de la zanja. Dado que los lodos bentoníticos se recirculan para permitir esta extracción, han de ser “reciclados”, mediante la eliminación de los restos de terreno extraídos del fondo de la zanja. La hidrofresa, a pesar de ser el mejor sistema —pues apenas produce vibraciones y es el más rápido—, presenta el inconveniente de ser una máquina cara, por lo que suele elevar el coste de la construcción de la pantalla.

Esquema de funcionamiento de hidrofresa.

Es posible perforar con hidrofresas suelos duros y rocas de hasta 100 MPa de resistencia a compresión. Los muros pantalla pueden tener de 600 a 1200 mm de espesor, requiriéndose equipos especiales para mayores espesores. Esta técnica es una alternativa a los terrenos con una resistencia a compresión simple superior a los 5 MPa. Si la profundidad es superior a 35 m, la hidrofresa, independientemente de la dureza del terreno, es el método más fiable, pudiéndose llegar a profundidades de 80 m, aunque en este caso se complican las labores de ejecución del muro pantalla. En cuanto al espesor mínimo de la pantalla, este depende de las características del bastidor de la hidrofresa, pues debe alojar la bomba de aspiración; estamos hablando de un mínimo de 640 mm, aunque los espesores habituales son los de 640, 800, 1000, 1200 y 1500 mm.

Ejecución de muro pantalla con hidrofresa

Un ejemplo de aplicación de esta técnica es la realización del aparcamiento de la plaza de Cervantes de San Sebastián (ver aquí). Os dejo también un par de vídeos sobre esta técnica de excavación que espero que os gusten.

En este otro vídeo podemos ver el inicio de la excavación de muro pantalla con hidrofresa para la construcción de sótanos en rehabilitación de edificio.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.