El ensayo que inventó Ralph R. Proctor, ¿por qué es tan importante?

Figura 1. Ralph Roscoe Proctor (1894-1962) https://www.eng.hokudai.ac.jp/labo/geomech/ISSMGE%20TC202/proctor.html

El peso específico seco es un índice que evalúa la eficiencia de un proceso de compactación, pero debido al diferente comportamiento de los distintos rellenos, suele utilizarse el denominado grado de compactación o porcentaje alcanzado respecto a un peso unitario patrón, obtenido con cada suelo en un ensayo normalizado.

El ingeniero Ralph Roscoe Proctor inició en 1929 una serie de trabajos, publicados en 1933, en los cuales se constató la relación entre humedad-peso específico seco y la influencia de la energía de compactación. Propuso un ensayo normalizado con el cual obtener la curva de ensayo Proctor correspondiente a una determinada energía, comunicada a una muestra del terreno mediante la caída desde altura fija de una pesa y un determinado número de veces. Por cierto, a pesar de que la palabra Proctor es llana y en castellano debería acentuarse, por respeto al apellido del autor, se mantiene este sin modificarlo. Esta es la tradición que han seguido los libros de texto españoles en carreteras en el ámbito universitario.

Con posterioridad, el Corps of Engineers de la U. S. Army propuso el Proctor Modificado, con una aplicación de energía unas cuatro veces y media superior al Proctor Normal. El ensayo Proctor Modificado consume una energía de 0,75 kWh/m3, mientras que el Proctor Normal equivale a 0,16 kWh/m3. Estos ensayos se encuentran normalizados en España por las normas UNE 103-500-94 y UNE 103-501-94 (ASTM D-698 o ASTM D-1557, en normas americanas).

Para realizar el ensayo, además del equipamiento de laboratorio común a muchos ensayos como son una báscula, una estufa de secado o pequeño material (bandejas, mazo de goma, palas, etc.), se requiere un equipamiento específico tal y como muestra la Figura 2.

Hay que hacer notar que el procedimiento para realizar tanto el Proctor Normal como el Proctor Modificado es el mismo, siendo sus diferencias principales los parámetros básicos del ensayo. En particular, las diferencias relevantes son el tipo de maza y molde de las probetas.

Figura 2. Molde del ensayo del Proctor Modificado

El experimento consiste en introducir capas sucesivas, con una humedad conocida, en el interior de un cilindro y golpear cada una con idéntico número de golpes mediante una maza que cae desde una altura normalizada. Se trata de medir el peso específico seco de la muestra y construir una curva para cada humedad diferente tomada. Son suficientes en general cuatro o cinco operaciones para trazar dicha curva y determinar el peso específico máximo y su humedad óptima correspondiente. No hay una relación definida entre las densidades máximas obtenidas en los ensayos Proctor Normal y Modificado, aunque a modo orientativo podemos decir que en éste último la densidad oscila entre el 5 y 10% de incremento según sean suelos granulares a cohesivos. Se debe considerar que las curvas Proctor obtenidas reutilizando el terreno ofrecen pesos específicos máximos algo superiores a las que se obtienen con muestras de terrenos nuevas.

Figura 3. Curva de compactación del Proctor Modificado. http://www2.caminos.upm.es/departamentos/ict/lcweb/ensayos_suelos/proctor_modificado.html

El ensayo Proctor origina una compactación por impacto, en tanto que en obra no siempre son habituales los compactadores de este estilo. Así existen otros ensayos en laboratorio, como NLT-311/96 que determina la densidad máxima y humedad óptima de compactación, mediante martillo vibrante, de materiales granulares con o sin productos de adición. Sería adecuado este ensayo cuando se utilizasen en obra rodillos vibratorios.

Las normas PG3 fijan como límites inferiores de la densidad máxima Proctor Normal 1,45 t/m3 para los suelos tolerables y 1,75 t/m3 para los suelos adecuados y seleccionados. En el lenguaje coloquial a veces se confunden pesos específicos con densidades, aunque son conceptos distintos. La unidad de masa común en laboratorio de 1 g/cm3 se debe multiplicar por la aceleración de 9,81 para convertirlo en kN/m3, que es la unidad correcta en el Sistema Internacional. A efectos prácticos suelen usarse indistintamente dichos conceptos, aunque es recomendable el uso del Sistema Internacional.

Raras veces de admite un peso específico seco inferior al 95% del máximo Proctor Normal obtenido en laboratorio, ya que un material suelto, sin apisonar, presenta un valor próximo al 85%. La normativa limita (ver Tabla 1) los valores para carreteras en función de la Intensidad Media Diaria (IMD) de vehículos pesados. De esta forma, para la zahorra artificial y tráficos T00 y T2, se exige un mínimo del 100% PM; para zahorra artificial y tráficos T3, T4 y arcenes, un mínimo del 98% PM. En cambio, para la zahorra natural, que suele colocarse en las capas inferiores (subbase), la densidad mínima es del 98% PM.

Es importante indicar que a veces es posible superar el 100% del Proctor correspondiente sin que por ello se pueda afirmar que la capa está suficientemente compactada. Ello es posible, entre otras posibles causas, cuando la capa ensayada presenta gran cantidad de gruesos cuyo elevado peso específico respecto al promedio del resto de la capa hace subir el valor del peso específico in situ. Tengamos presente que el ensayo en laboratorio se realiza sobre la fracción de suelo inferior a 20 mm. En estos casos es necesario realizar una corrección.

El proyecto (o Director de las obras) debe definir el ensayo de referencia: el ensayo Proctor Normal o Proctor Modificado. En la mayoría de los casos, el ensayo de referencia es el Proctor Modificado, pues puede reproducir con mayor fidelidad las condiciones de compactación de la obra, que emplea compactadores más pesados debido al aumento de la carga por eje experimentado por los vehículos. Sin embargo, en suelos expansivos se recomienda el Proctor Normal. Este ensayo también es más útil en compactaciones menores, como son las correspondientes a relleno de zanjas o ejecución de caminos.

Os dejo un vídeo elaborado por los alumnos de Ingeniería Civil de la Universidad de Granada donde nos cuentas cómo realizar el ensayo Proctor.

Aquí tenéis una explicación del profesor Agustín Rodríguez, que igual os puede complementar ideas.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a los equipos de compactación mecánica

Figura 1. https://www.noticiasmaquinaria.com/nuevos-modelos-de-la-serie-de-rodillos-tandem-de-hamm-en-conexpo/

Existe una amplia variedad de equipos capaces de compactar, pero la naturaleza del terreno y su humedad condicionarán la máquina y método empleado. La elección también depende de la función que desempeñe el relleno compactado.

La compactación en obra se basa en hacer circular cargas elevadas sobre capas de suelo el número de veces necesario para alcanzar la densidad especificada. Los esfuerzos transmitidos son máximos bajo la aplicación de la carga y decrecen con la profundidad. Los medios mecánicos usados para este menester combinan, en general, cuatro esfuerzos elementales: vertical estático, de amasado, de impacto y vibratorio.

  • El esfuerzo estático vertical produce fundamentalmente tensiones verticales que comprimen el suelo.
  • El esfuerzo de amasado provoca tensiones en al menos dos direcciones diferentes.
  • El esfuerzo de impacto alcanza mayor profundidad que el estático, al propagar una onda de presión hacia abajo.
  • El esfuerzo vibratorio supone una sucesión rápida de impactos, reduciendo el rozamiento interno entre las partículas y favoreciendo la densificación.

El tipo de esfuerzo aplicado influye en la estructura adoptada por las partículas del suelo. Estas se encontrarán menos “floculadas”, es decir, más orientadas y ordenadas, en orden creciente según sea el esfuerzo estático, vibratorio, de impacto y de amasado. La orientación de las partículas aumenta con las deformaciones de corte a que ha sido sometido el terreno, y éste será más resistente si la energía de compactación se utilizó en disminuir huecos y no en desarrollar deformaciones de corte.

La norma UNE-EN ISO 6165:2006 define al compactador como la “máquina autopropulsada o remolcada sobre ruedas, rulo o masa diseñada para aumentar la densidad de los materiales por: peso estático, impacto, vibración, amasado (presión dinámica) o combinación de estos efectos”.

Figura 2. http://www.wikivia.org/wikivia/index.php?title=Equipos_de_compactaci%C3%B3n

Estos equipos, que junto a las motoniveladoras se pueden considerar como máquinas de acabado de movimiento de tierras, se emplean para otros materiales tales como aglomerados asfálticos, grava-cemento, hormigón seco u otros.

Los equipos de compactación se pueden clasificar de varias formas. Atendiendo al modo en que se trasladan, se dividen en:

  • Compactadores remolcados.
  • Compactadores de conducción manual.
  • Compactadores autopropulsados.

Atendiendo al principio básico de trabajo, estos equipos se clasifican en:

  • Apisonadoras estáticas.
  • Rodillos vibratorios.
  • Compactadores de impactos.

A su vez, los compactadores pueden utilizar como herramienta de trabajo, en diversas combinaciones:

  • Rodillo liso.
  • Rodillo de patas apisonadoras o con tacos.
  • Ruedas neumáticas.
  • Bandeja vibrante.
  • Martinetes.
  • Pisones.

Atendiendo a su arquitectura, estos equipos pueden ser:

  • Tipo triciclo.
  • Tipo tándem.
  • De chasis articulado.
  • Monocilíndrico.
  • Mixto.

De esta forma podemos tener un rodillo autopropulsado vibratorio articulado con rodillos lisos, o bien un compactador autopropulsado estático tipo tándem de ruedas neumáticas. Las combinaciones son variadas.

Os dejo un vídeo explicativo que os he preparado explicando brevemente estas ideas básicas.

Otros vídeos explicativos son los siguientes:

 

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio remolcado de patas apisonadoras

Figura 1. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756845554179

Son de características similares a los lisos en cuanto a dimensiones, peso y vibración, montándose incluso en el mismo bastidor. Las formas de las patas son distintas según los modelos. Se utilizan fundamentalmente en arcillas, limos arcillosos, arcilla limosa y grava con aglutinantes arcillosos, es decir, suelos cohesivos y muy cohesivos, especialmente en terrenos con humedad excesiva. No obstante, este tipo de compactador está casi en desuso, fundamentalmente por su pequeña velocidad de trabajo (2 km/h) y el gran número de pasadas (6-8 como mínimo).

Figura 2. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756838887513

Os dejo a continuación un vídeo explicativo de este compactador remolcado.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio remolcado de rodillo liso

Consisten en un bastidor en forma de marco sobre el que se apoya el cilindro mediante unos amortiguadores y donde se sitúa también el motor que acciona las vibraciones. Ahora bien, algunos modelos toman la energía vibrante del tractor remolcador para evitar que la vibración perjudique al motor situado sobre el rodillo. Son máquinas aún utilizadas, que precisan de un tractor, difíciles de maniobrar, con grandes radios de giro y solo permiten el trabajo en un sólo sentido.

Figura 1. Compactador remolcado vibrante de rodillo liso Bomag BW6.  https://exarmyuk.files.wordpress.com/2015/09/dsc03804-20150908-153057.jpg

Se puede estimar el esfuerzo necesario en el gancho del tractor T como:

donde:

P = Peso del rodillo remolcado en kg.

% = Pendiente a superar por el rodillo.

e = Espesor de la tongada a compactar en cm.

Sus pesos oscilan entre las 3 y 15 t, con anchura de compactación de unos 2,00 m y diámetro de cilindro de hasta 1,80 m. Son normales frecuencias entre 25 y 30 Hz y amplitudes nominales del orden de los 2 mm. Su velocidad de trabajo se sitúa entre 2,0 y 5,0 km/h.

Este tipo de rodillo se utiliza cada vez menos, salvo los muy pesados en pedraplenes. Tratándose de suelos, las tongadas óptimas para un rodillo de 3-4 t es de 20 a 30 cm. Los rodillos de 10-12 t pueden compactar tongadas de hasta 50-60 cm. En el caso de pedraplenes, se llegan a utilizar los de mayor tonelaje sobre tongadas de 60-80 cm, que en ocasiones pueden llegar hasta 100-150 cm, aunque en este caso la efectividad es más bien escasa.

Os dejo a continuación algunos vídeos del funcionamiento de este compactador.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Condiciones de seguridad de los compactadores

Los equipos de compactación presentan un elevado índice de accidentabilidad, materializado en atropellos, colisiones y vuelcos, debido fundamentalmente a la sencillez de manejo, monotonía del trabajo, continuo desplazamiento sobre el mismo circuito y posición relativamente elevada del centro de gravedad de la máquina, lo que les hace muy inestables al tratar de salvar pequeños desniveles.

Figura 1. Peligro por desnivel en compactación. https://www.equipmentworld.com/workforce/safety/article/14953939/how-to-avoid-deadly-roller-compactor-rollovers-on-jobsites-with-slopes-or-embankments

Como riesgos directos podemos citar las caídas de los operarios de las máquinas (por ejemplo, a una zanja), la caída del compactador sobre los miembros inferiores, causando aplastamiento, golpes o cortes y la quemadura por contacto con partes calientes de la máquina. También se pueden recibir golpes o daño por los fragmentos que se disparan al compactar, irritación de los ojos o de las vías respiratorias por el polvo, sordera por ruido a niveles altos, incendios y explosiones por averías y defectos de la máquina, golpes y atropellos por vehículos dentro de la obra o durante trabajos en vías abiertas y accidentes por falta de dirección o señalización de las maniobras.

Figura 2. Accidente de un compactador. https://reinadelaselva.pe/noticias/6511/rodillo-compactador-casi-ocasiona-accidente-en-pedro-ruiz

Normalmente los riesgos que surgen al manipular los compactadores tienen su origen en la falta de dispositivos de protección de los equipos, no seguir el manual de instrucciones del aparato y en las distracciones de los trabajadores.

Como normas generales, aplicables a cualquier tipo de máquina, antes de arrancar se comprobarán los niveles y controles, que no existen personas en las cercanías, que la máquina tiene extintor y desconectador de batería para combatir incendios, se eliminará el polvo del parabrisas, se organizará el tráfico, se repararán las pistas, se prohibirá el transporte de personas y se aumentará al máximo la precaución en las maniobras de marcha atrás. Al finalizar el trabajo, se descenderá el equipo al suelo, se parará el motor y se estacionará la máquina en el lugar adecuado.

Como normas particulares para evitar las situaciones de riesgo se recomienda la rotación del personal, controlando los períodos de permanencia en su manejo, emplear personal cualificado, dotar al conductor de medios de protección personal y controlar el mantenimiento de la maquinaria.

Figura 3. Accidente provocado al volcar un compactador. http://radiolavozbaguagrande.blogspot.com/2012/06/rodillo-compactador-se-voltea-y-chofer.html

En este último aspecto, referido al mantenimiento, se pueden dar las siguientes recomendaciones según el tipo de máquina:

Apisonadores:

  • Limpiar el filtro de aire una vez al día y examinarlo por si tiene escapes.
  • Procurar que no entre aire sin filtrar en el motor ya que perdería compresión y sufriría un daño irreparable.
  • Limpiar las lumbreras e inspeccionar el silenciador.
  • Examinar la mezcla de combustible y aceite.
  • Inspeccionar periódicamente el filtro del combustible.
  • Apretar los pernos de arado en la zapata e inspeccionar todas las tuercas que sujetan el silenciador.
  • Utilizar personal cualificado.

Placas vibrantes:

  • Limpiar el filtro de aire diariamente.
  • Examinar y cambiar el aceite del motor según las recomendaciones dadas para cada modelo.
  • Examinar y cambiar el aceite del excitador.
  • Examinar la tensión de la correa.
  • Levantar las máquinas con grúas.
  • Mantener la base de la plancha limpia y libre de tierra adherida.

Rodillo:

  • Examinar y cambiar el aceite del motor según las recomendaciones dadas para cada modelo.
Figura 4. Accidente de pequeño rodillo. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CR.1943-5495.0000144

Os dejo algunos vídeos sobre seguridad en los compactadores.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes de compactación

Figura 1. Hincado de pilotes prefabricados. https://geotecniafacil.com/pilotes-prefabricados-hincados/

En ocasiones se hincan pilotes en suelos granulares para compactar el terreno en superficie y permitir el uso de cimentos poco profundos. Suelen ser pilotes de desplazamiento cortos, aunque son las pruebas de campo las que pueden determinar cuál es la longitud razonable. Esta longitud depende de la densidad relativa del terreno antes y después de compactar y de la profundidad de compactación requerida (Das, 1999).

Los pilotes podrían ser de cualquier material, como los de madera o los prefabricados. La hinca de pilotes de madera se ha utilizado en la construcción de terrapalenes para carreteras. No obstante, también se podría emplear un pilote de arena compactada o de grava por sustitución. Estos elementos se disponen en mallas regulares. Estos elementos se hincan desde la periferia hacia el centro del área que se quiere mejorar.

El objetivo de estos pilotes es compactar el terreno entre elementos, formando un conjunto relativamente rígido de columnas donde se concentran las cargas. En consecuencia, se aumenta la capacidad de carga por fricción. El volumen desplazado, añadido a la vibración de la hinca, son los responsables de la densificación del terreno circundante. Con este efecto se mejora la resistencia del terreno y se reducen los asientos totales y diferenciales. Además, limitan el riesgo de licuación. La profundidad no suele pasar de 20 m.

Figura 2. Efecto del pilote de compactación

El cimiento no se apoya directamente sobre el pilote de compactación, sino sobre el conjunto del terreno densificado. También se puede hincar, mediante vibración o golpeo, un tubo con un tapón en su parte inferior. Una vez llega a la profundidad requerida, se rellena el orificio con material granular que se compacta por tongadas a la vez que se extrae la tubería, quedando el tapón en el terreno, formando un pilote de arena compactada.

Los pilotes de compactación se suelen utilizar bajo las mismas condiciones estructurales y subterráneas de la vibroflotación y Terra-Probe. No obstante, los resultados son mejores para un terreno de arenas flojas que la vibroflotación para un mismo espaciamiento entre puntos de tratamiento.

A continuación os dejo un vídeo donde se puede observar el proceso de hincado de un pilote prefabricado.

Referencias:

DAS, B. M. (2001). Principios de ingeniería de Cimentaciones. 4ª edición, International Thomson Editores, México, pág 575.

DELGADO, M. (1999). Ingeniería de cimentaciones: Fundamentos e introducción al análisis geotécnico. 2ª Edición, Alfaomega Grupo Editor, México.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a los compactadores vibratorios

Figura 1. Compactadores de Suelos Vibratorios de la serie GC de Cat®. Fuente: https://www.cat.com/es_MX/campaigns/npi/Compactadores-de-Suelo-Vibratorios-de-la-SerieGC.html

Son máquinas caracterizadas por transmitir el esfuerzo de compactación al terreno mediante la vibración de una masa, que puede ser un cilindro o bien un bloque aislado. La primera máquina de este tipo se empleó en Alemania en los años 30, siendo una bandeja vibratoria autopropulsada.

Estos equipos combinan los esfuerzos estáticos con los dinámicos. Eliminan en gran medida la fricción interna entre las partículas del suelo y mejoran la compactación. El resultado es mejor en terrenos granulares que en cohesivos. Otro efecto es el despegue del rodillo del suelo debido al impacto ejercido por el mismo a causa de la vibración. Todo ello ha propiciado mayores rendimientos respecto a la compactación estática, pudiéndose compactar tongadas de mayor espesor. La acción de un rodillo vibrante equivale a la de otro estático de mucho mayor peso, dependiendo del material a compactar. Como idea orientativa esta equivalencia es de 12 en gravas y escollera, y de 8 en suelos cohesivos.

El número de impulsos ejercidos por unidad de tiempo se nomina frecuencia y se expresa en ciclos por segundo. La distancia máxima que recorre la masa vibrante desde su posición de equilibrio se nombra amplitud.

La energía que el rodillo transmite al suelo depende, no solo de su masa, sino de la amplitud alcanzada por la oscilación. Esta amplitud está relacionada con la frecuencia, creciendo ambas hasta llegar a la frecuencia natural o de resonancia del sistema suelo-rodillo. Posteriormente disminuye asintóticamente la amplitud hasta el límite de la nominal del rodillo.

Figura 2. Frecuencia-amplitud. A0 : Amplitud nominal del rodillo, fr : Frecuencia de resonancia

Empleando el mismo compactador, la frecuencia natural aumenta a medida que se incrementa la densidad y disminuye la compresibilidad del terreno. Utilizan este fenómeno ciertas máquinas para evaluar el grado de compactación. Por ello a medida que se dan pases del cilindro sobre el relleno varía la frecuencia de resonancia y, por consiguiente, para seguir compactando en condiciones óptimas se tendrá que modificar en cada pasada la frecuencia de vibración, incrementándola. El asiento aumenta con rapidez al acercarse a la frecuencia natural, siendo este superior al producido por una carga estática de la misma magnitud que la fuerza vibratoria. Se llama zona crítica de frecuencias aquella donde se produce el mayor asiento y se extiende normalmente entre 0,5 y 1,5 veces la frecuencia natural.

La fuerza total aplicada sobre el suelo depende de la componente vertical de la fuerza centrífuga de la masa excéntrica, que varía sinusoidalmente, y del peso del cilindro. Puede “despegar” el rodillo del suelo en determinadas circunstancias y añadirse una acción de “impacto” sobre el terreno, consiguiéndose cierto efecto en “profundidad” de la compactación.

La amplitud de la vibración influye en el reparto de densidades en profundidad. De este modo, las amplitudes bajas dan mayores valores en superficie, y las altas en el fondo.

Como regla válida en gran número de casos, se puede decir que los materiales granulares se compactan mejor con frecuencia alta y amplitud reducida, mientras que para los cohesivos es preferible más amplitud y menor frecuencia.

Estas circunstancias implican que, en un rodillo vibrante, se debe:

  1. Utilizar la máxima amplitud posible acorde al tipo de relleno a compactar.
  2. Tener un dispositivo de ajuste de frecuencias, para acercarse a la de resonancia.
  3. Disponer una suspensión elástica en la máquina que debe aislar al menor costo el chasis del elemento vibrador.

Son idóneos en arenas y gravas sin finos, y en terrenos húmedos cohesivos. No son adecuados para limos y arcillas, suelos con un 5% o más de finos, o en suelos secos.

Generalmente el efecto en profundidad con los rodillos vibratorios es mayor del lado húmedo que del seco, y más importante cuanto más arcilloso es el material.

Os dejo algún vídeo de este tipo de maquinaria.

Os dejo también un folleto de la empresa Caterpillar sobre sus compactadores de suelos vibratorios de un solo tambor.

Descargar (PDF, 5.97MB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cemento

Figura 1. https://www.obrasurbanas.es/stabile-estabilizacion-suelos-carreteras/

Un suelo se puede estabilizar con cemento. Según el artículo 512 del PG3, consiste en la mezcla íntima, convenientemente compactada, de terreno, cemento, agua y eventualmente adiciones, a la cual se le exigen unas determinadas condiciones de insusceptibilidad al agua, resistencia y durabilidad.

En efecto, al fraguar e hidratarse los silicatos y aluminatos cálcicos anhidros, une las partículas del suelo, reduce su sensibilidad al agua, disminuye la deformación del suelo estabilizado y proporciona cierta resistencia a tracción según la dosificación empleada. Se pueden estabilizar tanto los suelos granulares como los de grano fino, excepto si son muy plásticos o presentan mucha humedad. En este último caso, se podrían tratar previamente con cal. No se podrán utilizar suelos con material vegetal u orgánica, o cualquier otra sustancia que perjudiquen el fraguado del cemento.

Según las propiedades de la mezcla resultante, el suelo estabilizado con cemento se puede dividir en dos grupos:

  • Suelos mejorados con cemento, al que se agrega una cantidad relativamente pequeña de cemento para mejorar algunas propiedades, como es su sensibilidad a los cambios de humedad o su mayor capacidad de soporte, quedando suelto el material tras su tratamiento. Es una técnica orientada a mejorar las explanadas. La mezcla se realiza in situ, con dosificaciones inferiores al 3% sobre el peso seco del suelo. El PG3 los clasifica en S-EST 1 y S-EST 2.
  • Suelos estabilizados con cemento, donde tras el fraguado del cemento, se obtiene un material con cierta resistencia mecánica. No se trata de un hormigón, pues los granos no se ven envueltos en pasta de cemento, sino que su unión es puntual. El PG3 los divide en S-EST 3 si la resistencia a compresión a 7 días es de 1,5 MPa, para uso en explanadas, y los suelos estabilizados para subbases y bases, donde se eleva dicha resistencia mínima a 2,5 MPa. En este último caso, su denominación habitual es suelocemento, cuya fabricación se realiza en central. Se exige un adecuado curado, lo que implica que tras la extensión y compactación de la capa, se riega con una emulsión bituminosa de rotura rápida para evitar la evaporación prematura.

Se necesitaría un elevado contenido de cemento si el suelo presenta muchos finos plásticos, lo que, además, dificultaría el mezclado. Por ello se limitan los tratamientos con cemento a suelos que cumplan las siguientes condiciones:

  • Límite líquido < 40 en los S-EST 2 y S-EST 3
  • Índice de plasticidad < 15
  • Cernido ponderal por el tamiz UNE 2 mm > 20 %
  • Cernido ponderal por el tamiza UNE 0,063 mm ≤ 35 % (50 % en los S-EST 1 y S-EST 2)

Con carácter general, el procedimiento constructivo de una estabilización con cemento para por las siguientes fases: preparación del terreno, mezclado “in situ” o en central, compactación, ejecución de juntas y curado de la mezcla. Normalmente se compacta por capas de 20 a 30 cm.

Los cementos más adecuados para estabilizar suelos son aquellos que presentan un plazo elevado para que se puedan trabajar fácilmente, un moderado calor de hidratación y un lento desarrollo de resistencia que minimice las fisuras de retracción. Por ello son adecuados cementos con mayor contenido de adiciones activas (escorias de horno alto, puzolanas naturales y cenizas volantes), tales como los tipos CEM III, IV y V.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí podéis ver una pequeña explicación de la profesora Ana María Pérez, de la Universitat Politècnica de València, de lo que es un suelocemento.

Os dejo algunos vídeos de esta técnica de mejora de suelos.

A continuación os dejo una guía de soluciones para obras de estabilización de suelos, ejecución de suelo-cemento in situ y reciclado de firmes elaborada por la Asociación Nacional Técnica de Estabilizados de Suelos y Reciclados de Firmes (ANTER).

Descargar (PDF, 5.38MB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactadores remolcados de ruedas neumáticas. Los supercompactadores

Figura 1. Compactador de neumáticos remolcado. https://www.conquestattachments.com/wobbly-compactors

Los compactadores remolcados de neumáticos no son de uso habitual. Está formando dos ejes de 7 ruedas, 3 delante y 4 detrás. Su peso oscila sobre las 10 t, no superando la presión de inflado las 0,4 MPa.

Un caso especial son los supercompactadores. Consisten en una caja lastrable que puede sobrepasar las 50 t, llegando a las 200 t. Tienen un solo eje con dos o cuatro ruedas de gran tamaño, con una presión de inflado de hasta 1,0 MPa, rellenándose parcialmente de líquido para reducir el peligro de posibles reventones. El sistema de suspensión debe permitir que cada neumático soporte la misma carga, aunque actúen sobre superficies irregulares. Se utilizan en suelos arenosos, gravas y otros ligeramente cohesivos. Son muy robustos y de escaso entretenimiento. Necesitan grandes superficies para ser rentables, por lo que se usan cada vez menos por falta de maniobrabilidad en los tajos, aunque son exigidas por algunas administraciones, especialmente para detectar fallos y recibir obras.

Figura 2. Supercompactador

El PG-3 define en su artículo 304 la prueba con supercompactador. A una velocidad entre 4 y 8 km/h, el supercompactador señala la presencia de zonas inestables, que deben corregirse mediante un escarificado previo y una compactación adicional.

Descargar (PDF, 15KB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactadores estáticos autopropulsados de ruedas neumáticas

Figura 1. Compactación de suelos con compactador de neumáticos. http://www.corinsa.es/tecnologia/compactacion/compactacion-de-tierras/

Los compactadores de neumáticos normalmente se utilizan en la compactación de mezclas asfálticas, pero también se emplean en la densificación de tierras (Figura 1). En el caso de la compactación de firmes, es importante la suavidad en los arranques y en la inversión de marchas. Estos equipos combinan el efecto estático, con el de amasado, debido a la deformación de los neumáticos en contacto con la superficie. De este modo las partículas ni se rompen ni se aplastan.

Se llama presión de contacto PC al cociente entre la carga por rueda P y el área de contacto del neumático, variable con la deformabilidad del suelo. La diferencia entre considerar rígida o deformable la superficie de apoyo puede dar resultados para la presión de contacto de igual al doble. La variación de PC no es grande, debido a que un aumento de P, también incrementa el área de contacto.

La presión de inflado Pi tiene una influencia superior en la compactación, ya que un aumento de Pi supone una disminución del área de contacto, y por tanto una mayor presión de contacto. Esta presión suele variar entre 0,4 y 0,7 MPa.

La carga por rueda P, influirá sobre todo en la profundidad a la que llegue el esfuerzo de compactación, según podemos comprobar en la Figura 2.

Figura 2. Superposición de bulbos de presión

Para que la compactación sea efectiva no es apropiado que las capas tengan un espesor superior a 1,5 – 2 veces el radio del área de contacto, por lo que suelen ser de 20-40 cm.

A efectos prácticos, se conseguirá la máxima compactación superficial subiendo la presión de inflado, mientras que incrementando la carga por rueda, el área de contacto, o ambas, se aumentará el efecto en profundidad. Tanto si se incrementa la carga por rueda como la presión de inflado, se consigue un peso específico seco máximo más alto, con el correspondiente descenso en el contenido de humedad óptimo.

Los neumáticos con dibujo dotan de mayor adherencia a la máquina y ejercen cierta acción de amasado (Figura 3). Caso de no querer dejar huella, o cuando se descompacten los dos o tres primeros centímetros de la capa, es preferible el neumático liso, tal y como se utiliza para compactar aglomerados asfálticos.

Figura 3. Compactador con neumáticos con dibujo. http://www.corinsa.es/tecnologia/compactacion/compactacion-de-tierras/

Los compactadores de neumáticos se prestan bien a cambios en su carga total y presión de contacto para adaptarlos a cada caso. La velocidad de traslación adecuada es algo mayor que en los compactadores de pata de cabra. Por otro lado, la máxima compactación se consigue en la superficie.

Estos compactadores son especialmente eficaces con los suelos algo cohesivos, y también suelen ser eficientes en rellenos compuestos de limos poco plásticos, comportándose peor en suelos granulares sin cohesión, en concreto los de granulometría uniforme. Tampoco son adecuados en arcillas muy blandas o en suelos de consistencia muy variable.

Se aconseja una presión de inflado máxima compatible con el estado de la superficie del terreno, ya que en caso de estar blando es posible que las ruedas patinen, por lo que se recomienda una menor presión de inflado para aumentar la superficie adherente. En cambio, cuando se exige un buen acabado superficial, puede ser perjudicial una fuerte presión que puede dejar huellas de importancia que no puedan ser borradas en pasadas posteriores de un rodillo.

Otra condición imprescindible sería la del isostaticismo del rodillo (ver Figura 4). Para conseguir una buena homogeneidad del trabajo es preciso que cada rueda transmita al suelo la misma fuerza, cualquiera que sea la desigualdad existente.

Figura 4. Sistema de suspensión isostática

Por consiguiente, un compactador de ruedas neumáticas deberá cumplir las siguientes condiciones:

  • Elevada carga por rueda.
  • Ser isostático.
  • Neumáticos de gran anchura de huella.
  • Disponer de un sistema de tracción que permita un arranque y una parada suave y progresiva.
  • Instalación de inflado de ruedas centralizado.
  • Solapamiento de las ruedas delanteras y traseras, incluso en curvas.

Las características fundamentales de los compactadores de ruedas autopropulsados son las siguientes. Constan de dos ejes, con un total de 7, 9 e incluso 11 ruedas. La anchura de trabajo es de 2,00 m, con modelos que llegan a 2,50 m. El efecto de compactación varía al lastrarlos con agua o arena, y variando la presión de los neumáticos. Se pueden clasificar estos equipos en tres grupos, atendiendo a su carga total y por rueda:

  • Ligeros: hasta 15 toneladas de carga total y 2,5 toneladas por rueda.
  • Medios: hasta 25 y 4 toneladas respectivamente.
  • Pesados: hasta 45 y 6 respectivamente.

La presión de inflado varía entre 0,2 y 0,9 MPa, y puede regularse en marcha. Estas máquinas pueden trasladarse hasta a 30 km/h, aunque su velocidad de trabajo oscila entre 6 y 8 km/h.

Os he preparado un vídeo donde os explico esta máquina. Espero que os guste.

Os dejo varios vídeos explicativos de este compactador.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.