El profesor Dan M. Frangopol de estancia con nosotros en la Universitat Politècnica de València

Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.

El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.

De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”

A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/

Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.

Descargar (PDF, 108KB)

Big-Bang: Un nuevo algoritmo aplicado a la optimización de redes de transporte del tipo VRPTW

YEPES, V.; MEDINA, J.R. (2006). Big-Bang: Un nuevo algoritmo aplicado a la optimización de redes de transporte del tipo VRPTW. Actas  del VII Congreso de Ingeniería del Transporte CIT-2006. Libro CD, 8 pp. Ciudad Real, 14-16 de junio. ISBN: 84-689-8341-1.

RESUMEN

La ponencia presenta un procedimiento de optimización económica de rutas de reparto con flotas de vehículos heterogéneas y horarios de servicio flexibles VRPHESTW. Para ello se presenta una nueva heurística, denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes. La simulación de esta heurística de relajación consiste en reducir la velocidad de todos los vehículos, que al principio es muy alta para estabilizarse al final en su verdadera magnitud. El algoritmo emplea para explorar el espacio de soluciones una búsqueda probabilista en entornos variables con una aceptación de máximo gradiente. El algoritmo propuesto encuentra soluciones de elevada calidad, con la ventaja de poder utilizar otros procedimientos de búsqueda local que resulten más eficientes que el de máximo gradiente (algoritmo del solterón, aceptación por umbrales, búsqueda tabú, etc.).

  1. INTRODUCCIÓN

La asignación de rutas de reparto a una flota de vehículos “Vehicle Routing Problem” (VRP) constituye un problema habitual en las empresas dedicadas a la distribución de bienes o personas que conlleva un impacto económico, social y medioambiental importante. Sin embargo, los problemas de optimización que representan numerosas situaciones reales sólo pueden resolverse mediante procedimientos aproximados debido a su elevada complejidad intrínseca (ver Ball et al., 1995).

En las últimas décadas se han aplicado una gran variedad de técnicas para optimizar el problema de las rutas con horarios de servicio “vehicle routing problem with time windows” (VRPTW), tanto con heurísticas de construcción de soluciones (ver Solomon, 1987) o de mejora (ver Potvin y Rousseau, 1995), como metaheurísticas (ver Homberger y Gehring, 2005; Russell y Chiang, 2006). Sin embargo, son escasas las publicaciones que abordan la optimización con modelos más cercanos a la realidad incorporando horarios de servicio flexibles “vehicle routing problem with soft time windows” (VRPSTW) (ver Taillard et al., 1997), flotas heterogéneas de vehículos “vehicle routing problem with a heterogeneous fleet of vehicles” (VRPHE) (ver Gendreau et al., 1999), o ambas “vehicle routing problem with a heterogeneous fleet of vehicles and soft time windows” (VRPHESTW) (ver Yepes y Medina, 2002, 2004, 2006).

Además, los problemas reales de rutas difieren significativamente de los problemas teóricos. En efecto, la optimización jerárquica empleada habitualmente en la literatura (donde las mejores soluciones son las que, en primer lugar, presentan un menor número de rutas; y posteriormente, una menor distancia recorrida por todos los vehículos), no representa adecuadamente los costes reales de las empresas ni sus políticas de tarifas. Yepes (2002) indicó la trascendencia de utilizar una función objetivo de tipo económico para resolver estos problemas ante cambios en los escenarios de tarifas y costes. Asimismo, las restricciones legales y sociales, así como la calidad del servicio también se deben incluir dentro de una función objetivo de tipo económico, que contemple los ingresos y los costes de las operaciones de transporte (Medina y Yepes, 2003).

En la ponencia se presenta una nueva heurística basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes, y que se ha denominado “Big-Bang”. Esta estrategia de relajación, a su vez, se anida en una variante de la búsqueda en entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) apoyada en la elección probabilista de un operador distinto en cada movimiento, empleada con éxito en el trabajo de Yepes y Medina (2006). Todo ello se ensaya con un problema de rutas del tipo VRPHESTW donde, además, se emplea una función objetivo de tipo económico, unas jornadas laborables con distintos costes y con tiempos de viaje dependientes del tiempo de acceso y alejamiento a cada nodo (congestión, tráfico, etc.).

  1. EL ALGORITMO BIG-BANG

El algoritmo Big-Bang que se propone parte de la siguiente idea: Si todos los vehículos tuviesen una velocidad mayor a la real, dicho fenómeno se podría interpretar como que los clientes se encuentran en un espacio donde, físicamente, las distancias fuesen menores. Un procedimiento de búsqueda encontraría un óptimo local en este escenario favorable a la reducción del número de vehículos. Si se desciende escalonadamente la velocidad, y en cada caso se encuentra su óptimo local, probablemente el nuevo óptimo sería similar al anterior, siempre que la disminución fuera suficientemente suave. Esta relajación de la velocidad se interrumpiría en el último escalón, donde el óptimo local encontrado satisfaría la velocidad real de los vehículos. El efecto sería un aumento gradual del espacio físico donde se ubican los clientes, efecto por el cual se ha querido llamar a la heurística algoritmo Big-Bang. En la situación inicial las restricciones fundamentales que condicionan el problema son la capacidad de los vehículos y los horarios de servicio. Al final, la lejanía entre los clientes y el almacén central, son condiciones que se han introducido progresivamente al final de la heurística.

En efecto, un vehículo con una velocidad v llega de 0 a 1 en el instante t01 (ver Figura 1). Se supone, sin perder generalidad, que el tiempo de servicio es nulo. Si la velocidad se incrementase a v’, entonces la llegada ocurriría en t01’. Esta situación equivale a suponer que el nodo, en vez de estar en 1 está más cerca de 0, es decir, en 1’ y la velocidad se mantiene en v. Así, la llegada ocurre en el instante t’01, que es igual al t01’. Por tanto, un aumento en la rapidez de los vehículos es equivalente a un acortamiento físico de las distancias. Sin embargo, las ventanas temporales interfieren en el razonamiento anterior. La existencia de esperas provoca que, aunque la velocidad v’ favorece el acortamiento a la distancia 1’, no es posible iniciar el servicio puesto que lo impide la ventana temporal. La situación equivalente es la representada en la Figura 1 cuando el vehículo circula a una velocidad v’’. En este caso, el acortamiento de distancias a 1’ se ve interrumpido por la limitación en el inicio del servicio a la situación 1’’, donde el inicio del servicio s1’ es coincidente con el s1’’. La conclusión es que el aumento de la rapidez de los vehículos permite relajar las restricciones en las distancias, acortando éstas mientras las limitaciones horarias no lo impidan.

fIG 1
Fig. 1 – Incidencia en la variación de la velocidad de un vehículo en el inicio del servicio

Una de las características más interesantes de esta heurística de relajación consiste en la posibilidad de emplear como procedimientos de búsqueda local en cada escalón de velocidad, metaheurísticas más agresivas de búsqueda que la simple aceptación por umbrales (búsqueda tabú, algoritmo del solterón, cristalización simulada, etc.). En la ponencia que se presenta se ha optado por utilizar una búsqueda de máximo gradiente para comprobar la eficacia intrínseca del algoritmo, para no empañarla con la de otras metaheurísticas que por sí solas resultan, muy eficaces para el problema VRPHESTW (ver Yepes y Medina, 2004).

  1. DESCRIPCIÓN DE LA METAHEURÍSTICA PROPUESTA

El método presentado consta de dos fases. En la primera se genera una solución inicial mediante una heurística de construcción de rutas específica. Posteriormente se emplea el algoritmo “Big-Bang” basándose en una versión probabilista de la búsqueda por entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) y un criterio de aceptación de máximo gradiente.

3.1 Fase 1: Heurística económica de construcción secuencial de rutas.

Se ha empleado el método de Yepes y Medina (2006) para generar una solución inicial de elevada calidad al problema VRPHESTW. El procedimiento inicia una ruta seleccionando adecuadamente al primer cliente para posteriormente agregar otros mientras se cumplan las restricciones impuestas. Además, se elige el vehículo de mayor capacidad para disminuir en lo posible el número necesario.

3.2 Fase 2: Algoritmo “Big-Bang” con búsqueda probabilista en entornos variables.

El algoritmo que se propone consta de un número M+1 de ciclos de búsqueda local por entornos. Cada ciclo de búsqueda termina con la obtención de un óptimo relativo correspondiente con unas velocidades de los vehículos fijadas para dicho ciclo. En el primer ciclo, la velocidad de los vehículos se amplifica por un factor de incremento D= D1>1. Este factor debe reducirse progresivamente hasta llegar al último ciclo de búsqueda local, en el cual D =DM+1 =1. Para este trabajo, la reducción de la velocidad ha sido lineal con el número de ciclos; sin embargo, se podría adoptar otro tipo de función reductora.

Como técnica de búsqueda local se ha empleado la metaheurística propuesta por Yepes y Medina (2006) para el problema VRPHESTW, de búsqueda por entornos variables basada en la elección probabilística de 9 operadores distintos y un criterio de aceptación por máximo gradiente. Los movimientos elegidos han sido los siguientes:

  • Movimientos dentro de una ruta: se emplea el operador relocate (un nodo salta a otro lugar dentro de la ruta) y el swap (dos nodos de la ruta se intercambian entre sí).
  • Movimientos entre dos rutas: se utiliza el operador CROSS-exchange (Taillard et al., 1997) y dos casos particulares, el movimiento 2-opt* (Potvin y Rousseau, 1995) y el 2-exchange (Osman, 1993).
  • Movimiento de vehículos: vehicleswap cambia entre sí los vehículos de dos rutas, y replacement sustituye el vehículo de una ruta por otro de la flota que no está utilizándose.
  • Reconstrucción de soluciones: R&R0 desconecta un nodo al azar y lo introduce en la posición y ruta más favorable, mientras que R&Rseq rompe la ruta con menor número de nodos, y los reintroduce en la mejor posición y ruta (ver Schirmpf et al., 2000).

 

La Tabla 1 contiene las probabilidades que tiene cada operador de ser elegido. Dichos valores han ofrecido buenos resultados en experiencias anteriores (ver Yepes, 2002).

Tabla 1
Tabla 1 – Probabilidad de elección de los operadores
  1. EJEMPLO DE APLICACIÓN AL PROBLEMA VRPHESTW

Se analiza un problema del tipo VRPHESTW denominado HES-A descrito en Yepes y Medina (2004, 2006). Este caso deriva del ejemplo R103 de Solomon (1987), al cual se incorporan horarios flexibles de entrega, flotas heterogéneas y una función económica caracterizada por unos ingresos y unos costes fijos y variables. El lenguaje código utilizado ha sido Visual Basic 6.0 ejecutándose los ejemplos en un ordenador Pentium IV 3.00 GHz.

En las Figuras 2 y 3 se representa el beneficio obtenido y el tiempo empleado por la heurística descrita cuando se aplica al problema HES-A. El número de iteraciones empleadas para cada escalón de velocidad ha oscilado entre 1000 y 50000. Los escalones de velocidad ensayados varían entre 3 y 100. La mejor solución encontrada se corresponde con un beneficio de 164752, obtenida para un factor inicial de modificación de la velocidad D1=130, así como 30000 iteraciones en cada uno de los 30 escalones de velocidad considerados. Sin embargo, esta solución no atiende a todos los clientes (sólo el 96.70% de la demanda queda cubierta). La mejor solución que atiende toda la demanda se corresponde con un beneficio de 155184, obtenida para un D1=150, así como 50000 iteraciones en 100 escalones de velocidad. Destacamos cómo el algoritmo es capaz de aumentar el beneficio de las operaciones a costa de renunciar al servicio a determinados clientes. La mejor solución no factible sólo precisa 12 vehículos y recorre 1224.71 unidades de distancia total, frente a los 13 vehículos y las 1260.54 unidades de distancia de la mejor solución factible. Si se pretende servir toda la demanda, bastaría endurecer las penalizaciones en la función objetivo.

Fig. 2 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por el factor inicial de incremento de velocidad
Fig. 2 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por el factor inicial de incremento de velocidad
Fig. 3 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por la factibilidad de la solución
Fig. 3 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por la factibilidad de la solución

 

En la Tabla 2 se han recogido los valores óptimos en el sentido de Pareto de las soluciones factibles (ver Voorneveld, 2003). Dichos óptimos se corresponden con los valores de mayor beneficio en el menor tiempo de cálculo posible. Se observa que es favorable el aumento del factor de modificación inicial de la velocidad, del número de escalones y del número de iteraciones. Sin embargo, ello comporta un mayor tiempo de cálculo.

Tabla 2 – Resultados óptimos de Pareto para el problema HES-A, para las soluciones factibles
Tabla 2 – Resultados óptimos de Pareto para el problema HES-A, para las soluciones factibles

El mejor resultado obtenido por esta metaheurística (ver Tabla 3) es inferior al encontrado por el algoritmo del solterón propuesto por Yepes y Medina (2004) para un tiempo de cálculo similar. En aquella ocasión se obtuvo un beneficio de 170335, con 13 vehículos que recorrieron un total de 1229.13 unidades de distancia. Esta circunstancia sugiere que la búsqueda local de máximo gradiente empleada podría sustituirse por un algoritmo de búsqueda más agresiva, como el algoritmo del solterón.

Tabla 3 – Resultados obtenidos para el problema HES-A
Tabla 3 – Resultados obtenidos para el problema HES-A
  1. CONCLUSIONES

Se ha presentado una nueva heurística denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan los clientes. Esta estrategia de relajación consiste en reducir progresivamente, de forma escalonada, la velocidad de todos los vehículos, de forma que, al final del proceso, todos dicha velocidad sea la que corresponde con las restricciones del problema. Este procedimiento permite una fuerte tendencia hacia la reducción inicial del número de vehículos necesarios. En la ponencia se ha empleado este procedimiento para la resolución del problema VRPHESTW. Como estrategia de búsqueda local se ha empleado un esquema de búsqueda aleatoria en entornos variables, que emplea de forma probabilista un conjunto de 9 operadores y un criterio de aceptación de nuevas soluciones de máximo gradiente. En los ensayos se ha comprobado que un aumento en el factor de incremento inicial de la temperatura, del número de escalones, y de las iteraciones proporciona un incremento en la calidad de las soluciones, si bien con un mayor tiempo de cálculo. Los resultados obtenidos son de elevada calidad, si bien se sugiere el empleo de procedimientos de búsqueda local más agresivos, como por ejemplo el algoritmo del solterón, que ha dado muy buenos resultados para la resolución de este problema.

 

AGRADECIMIENTOS

Los autores agradecen el apoyo en este trabajo del Ministerio de Educación y Ciencia y de los fondos FEDER (Proyectos: BIA2005-03197 y REN2002-02951).

REFERENCIAS

BALL, M.O.; MAGNANTI, T.L.; MONNA, C.L.; NEMHAUSER, G.L. (Eds.) (1995). Network Routing, Handbooks in Operations Research and Management Science, vol. 8. North-Holland, Amsterdam.

GENDREAU, M.; LAPORTE, G.; MUSARAGNY, C.; TAILLARD, É.D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research 26, pp. 1153-1173.

HOMBERGER, J.; GEHRING, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research 162, pp. 220-238.

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions 27(1), pp. 95-112.

MLADENOVIC, N.; HANSEN, P. (1997). Variable neighborhood search. Computer and Operations Research 24(11) pp. 1097-1100.

OSMAN, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, pp. 421-451.

POTVIN, J.Y.; ROUSSEAU, J.M. (1995). An exchange heuristic for routing problems with time windows. J. Operational Res. Soc. 46(12), pp. 1433-1446.

RUSSELL, R.A.; CHIANG, W.C. (2006). Scatter search for the vehicle routing problem with time windows. European Journal of Operations Research 169, pp.606-622.

SCHIRMPF, G.; SCHENIDER, J.; STAMM-WILBRANDT, H.; DUECK, G. (2000). Record breaking optimization results using the ruin and recreate principle. Journal of Computation Physics 159, pp. 139-171.

SOLOMON, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), pp. 254-265.

TAILLARD, É.; BADEAU, P.; GENDREAU, M.; GUERTIN, F.; POTVIN, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science 31(2), pp. 170-186.

VOORNEVELD, M. (2003). Characterization of Pareto dominance. Operations Research Letters 31, pp. 7-11.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis doctoral. Universidad Politécnica de Valencia. 352 pp.

YEPES, V.; MEDINA, J.R. (2002). Criterio económico para la optimización de rutas con flotas heterogéneas VRPHESTW, en Ibeas, A. y Díaz, J.M. (Eds.):  Actas del V Congreso de Ingeniería del Transporte. Vol. 2, pp. 693-700. Santander, 11-13 junio.

YEPES, V.; MEDINA, J.R. (2004). Algoritmo del solterón aplicado a la optimización de rutas con flotas heterogéneas VPRHESTW, en Larrodé, E. y Castejón, L. (Eds.): Actas del VI Congreso de Ingeniería del Transporte. Vol. 2, pp. 759-766. Zaragoza, 23-25 de junio.

YEPES, V.; MEDINA, J.R. (2006). Economic heuristic optimization for heterogeneous fleet VRPHESTW. Journal of Transportation Engineering, ASCE 132(4), pp. 303-311.

¿Cómo se pueden proyectar puentes de bajo consumo energético?

ph_vigas-artesa
Puente de vigas artesa prefabricadas. Fuente: Pacadar

¿Cómo se pueden diseñar puentes pretensados prefabricados en vigas artesa haciendo que el consumo energético para su fabricación y puesta en obra sea el mínimo posible?

Highlights

  • An automated procedure for optimizing the design of structures is presented.
  • There is a parabolic relation between the span length and the minimum energy.
  • The energy reduction has an average cost impact of 3.23€ per square meter of deck.
  • Since both criteria are dependent, 1€ reduction is equivalent to 4 kW h saving.

Abstract

S09596526An automated procedure for optimizing the design of precast-prestressed concrete U-beam road bridges is presented. The economic cost and the embodied energy are selected as the objective functions based on production materials, transport and placement. Heuristic optimization is used to search for the best geometry, the concrete type, the prestressing steel, and the reinforcement for the slab and the beam. The results for both objectives provide improved opportunities to learn about low-energy designs. The most influential variables for the energy efficiency goal are analyzed. The relationship between the span length and the embodied energy is described by a good parabolic fit for both optimization criteria. The findings indicate that the objectives do not exhibit conflicting behavior, and also that optimum energy designs are close to the optimum cost designs. The analysis also revealed that a reduction by 1 Euro can save up to 4 kWh. It is recommended to reduce the reinforcement in the slab as well as increase the volume of concrete in both slab and beams in order to achieve higher energy efficiency. It is also worth noting that web inclination angle should be increased when the depth increases for longer span lengths to maintain the optimum slab span lengths in the transverse direction.

Keywords

  • Heuristic optimization;
  • energy savings;
  • sustainable construction;
  • precast-prestressed concrete structures

 

Referencia:

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy.Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024(link)

Descargar (PDF, 1.57MB)

 

 

Trucos para representar gráficas de superficie en MATLAB

Las gráficas de superficie resultan de interés, por ejemplo, para representar la Superficie de Respuesta en un Diseño de Experimentos, o bien cuando estamos representando la predicción de un fenómeno a través de unas redes neuronales. Sea cual sea el motivo, dejo a continuación algunas pautas para que esta tarea sea sencilla.

Sea, por ejemplo, la parametrización de un algoritmo de Simulated Annealing donde hemos realizado experimentos con distintas longitudes de cadenas de Markov (columnas) y distintos coeficientes de enfriamiento (filas). En la tabla se encuentran los resultados medios en coste encontrados tras realizar 9 ensayos en cada caso.

20000 30000 40000 50000
0,95 2652 2645 2637 2634
0,96 2650 2644 2637 2635
0,97 2648 2644 2637 2636
0,98 2647 2642 2637 2636
0,99 2647 2641 2637 2637

 

Para poder representar dichos puntos, necesitamos definir dos vectores fila: x será, por ejemplo, el vector fila de los coeficientes de enfriamiento, e y será el vector fila de las longitudes de cadena de Markov.

>> x=[0.95 0.96 0.97 0.98 0.99]

x =

0.9500 0.9600 0.9700 0.9800 0.9900

>> y=[20000 30000 40000 50000]

y =

20000 30000 40000 50000

>> z=[2652 2645 2637 2634

2650 2644 2637 2635
2648 2644 2637 2636
2647 2642 2637 2636
2647 2641 2637 2637]

z =

2652 2645 2637 2634
2650 2644 2637 2635
2648 2644 2637 2636
2647 2642 2637 2636
2647 2641 2637 2637

 Sin embargo, la matriz z tiene que trasponerse, de forma que en filas vengan los datos de y:

>> z=z’

z =

2652 2650 2648 2647 2647
2645 2644 2644 2642 2641
2637 2637 2637 2637 2637
2634 2635 2636 2636 2637

Ahora  ya podemos dibujar la superficie, con varias opciones:

>> mesh (x,y,z)

Superficie mesh

 >> surf(x,y,z)

 

Superficie surf

>> contour (x,y,z)

Superficie contour

 >> surfc (x,y,z)

Superficie surfc

 >> pcolor (x,y,z)

Superficie pcolor

 

 

La programación lineal y el método Simplex en el ámbito del hormigón

La programación lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de un sistema de inecuaciones lineales, optimizando la función objetivo, también lineal. Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.

Os dejo un vídeo tutorial donde se explica la programación lineal y se avanzan las ideas básicas del método Simplex.

 

 

 

 

 

Existen páginas web, como PHPSimplex, donde puedes solucionar on-line problemas sencillos. También puede resolverse este tipo de problemas con las herramientas de MATLAB: Optimization Toolbox.

A continuación os dejo un vídeo donde se explica cómo resolver un problema de Programación Lineal mediante MS Excel 2007. Es importante que aprendáis a utilizar el Solver. Espero que os guste el vídeo.

También os dejo el siguiente enlace del canal FdeT donde podéis aprender más sobre programación lineal: https://www.youtube.com/playlist?list=PL0_FimzlChzLfAeFbjv0S2nnj8fAi82wB

¿Seríais capaces de resolver los siguientes problemas, donde el objetivo es maximizar el beneficio?:

  1. Una empresa produce hormigón usando los ingredientes A y B. Cada kilo de ingrediente A cuesta 60 unidades monetarias y contiene 4 unidades de arena fina, 3 unidades de arena gruesa y 5 unidades de grava. Cada kilo de ingrediente B cuesta 100 unidades monetarias y contiene 3 unidades de arena fina, 6 unidades de arena gruesa y 2 unidades de grava. Cada amasada debe contener, por lo menos, 12 unidades de arena fina, 12 unidades de arena gruesa y 10 unidades de grava. Formule un modelo de programación lineal y resuélvalo gráficamente.
  2. Una empresa especializada en la construcción de estructuras de edificios tiene patentes de tres tipos de forjados F1, F2 y F3. Los beneficios que consigue por metro cuadrado de forjado construido son 100, 90 y 120 unidades monetarias respectivamente. Por razones de almacenamiento y financiación, diariamente sólo se dispone de dos toneladas de acero, 200 m3 de hormigón y 8 m3 de madera para encofrados. Maximizar el beneficio a obtener. Las cantidades de acero, hormigón y madera que se necesitan por m2 en cada uno de los forjados son:

 

 

Tipo de forjado

Materia prima

Cantidad

F1

Acero

0,2 kg/m2

Hormigón

80 dm3/m2

Madera

0,001 m3/m2

F2

Acero

0,25 kg/m2

Hormigón

37,5 dm3/m2

Madera

0,00125 m3/m2

F3

Acero

0,225 kg/m2

Hormigón

35 dm3/m2

Madera

0,0015 m3/m2

Tesis doctoral: Optimización heurística de forjados de losa postesa

Sin títuloHoy 9 de diciembre de 2015 ha tenido lugar la lectura de la tesis doctoral de D. Ángel Rodríguez-Calderita Facundi denominada “Optimización heurística de forjados de losa postesa”, dirigida por Víctor Yepes Piqueras y Julián Alcalá Gonzalez. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen

El objetivo fundamental de esta tesis consiste en el desarrollo de un nuevo algoritmo de optimización que permita una mayor eficiencia que otros algoritmos empleados en la optimización de estructuras, así como la obtención de reglas de diseño a partir de los resultados de la optimización de forjados de losa postesa.

Los forjados son los elementos estructurales que se repiten constantemente en el diseño de los edificios y que, por tanto, requieren de un grado de atención importante. Por esto su optimización presenta un indudable interés. Los forjados de losa postesa, en particular, suponen una mejora tecnológica respecto a los forjados convencionales, y resultan ventajosos dentro de determinados campos de aplicación.

Del análisis de los trabajos de investigación previamente publicados, se ha podido concluir que la optimización de estructuras de hormigón en general, y de forjados losa en particular, se aborda de forma eficaz mediante el uso de metaheurísticas. El uso de estas técnicas ha demostrado ser ventajoso al hacer posible considerar todos los elementos que conforman el forjado, dando al resultado de la optimización un enfoque muy práctico pues el resultado del proceso es un forjado completamente definido.

A partir de aquí se han implementado tres algoritmos mono-objetivo basados en otras tantas metaheurísticas: el recocido simulado (SA), la aceptación por umbrales (TA) y el algoritmo del solterón, este último con dos variantes (OBA, OBA1). Estos algoritmos han sido debidamente calibrados para mejorar su funcionamiento. La comparación entre ellos muestra que funcionan de un modo muy similar. El que ha proporcionado los mejores resultados ha sido el TA, con losas entre un 0.5% y un 1% más económicas que el resto de algoritmos. El algoritmo que mejores resultados ha obtenido a continuación es casi siempre el OBA 1, pues mejora al OBA, e incluso al TA para parametrizaciones de corta duración de cálculo.

En cualquier caso, el algoritmo TA ha mejorado el coste de una solución de referencia en un 31.63%. Este ahorro tan significativo se justifica por la reducción de canto, lo que reduce la medición de hormigón, y por tanto de peso, por lo que permite reducir también cuantías de acero. Asimismo se ha implementado un algoritmo multiobjetivo (SMOSA), enfrentando dos funciones objetivo que entran en conflicto: el coste económico y la seguridad estructural, evaluada mediante un factor definido como el menor de los factores de seguridad de todos los estados límite examinados. Los resultados indican que un incremento del factor de seguridad envolvente de un 5% sobre el mínimo impuesto por las normas requiere un sobrecoste del 2%, pero esta proporción no se mantiene lineal. Para aumentar la seguridad al doble del valor normativo, el coste se incrementa en un 89.54%.

2015-12-09 09.56.35

Con todos estos resultados, y analizando los resultados del algoritmo TA, se ha diseñado un nuevo algoritmo de optimización que se ha denominado Destrucción puntual más reconstrucción guiada (DP+RG). Se trata de un algoritmo inspirado en los algoritmos de destrucción-reconstrucción, con elementos de los algoritmos de búsqueda en entornos amplios. Se basa en emplear movimientos más sofisticados que dirigen la búsqueda no solo en función de la variación en la función objetivo, sino también en la alteración en el cumplimiento de los requisitos estructurales. Aunque se ha aplicado únicamente a este tipo de forjados es totalmente generalizable a la optimización de cualquier estructura de hormigón.

A pesar del requerimiento de memoria del equipo informático, este algoritmo ha resultado ser entre seis y doce veces más rápido que los algoritmos anteriores. También es más robusto, en el sentido de que las ejecuciones consecutivas del algoritmo proporcionan soluciones con una desviación máxima entre ellas del 0.29% en el peor de los casos, frente a valores de hasta el 12.5 % en el TA. Finalmente, los resultados obtenidos llegan a mejorar al TA entre un 1.1 y un 2.3% de media.

El forjado optimo desde el punto de vista económico será aquel que tenga un menor canto para la misma resistencia característica de hormigón, el canto ha resultado la variable más determinante de las analizadas lo que justifica que su ajuste se realice centímetro a centímetro y no en escalones de cinco centímetros que suele ser lo habitual.

Pero, ¿es verdad lo del cambio climático?

Islas Cíes (Rías Bajas, Vigo). Imagen de V. Yepes
Islas Cíes (Rías Bajas, Vigo). Imagen de V. Yepes

La semana pasada tuve oportunidad de intervenir en una jornada organizada por el Instituto de la Ingeniería de España donde tuve la ocasión de explicar a grandes rasgos algunos impactos que podría tener el cambio climático en el turismo. Hasta aquí todo normal. Íñigo Losada, director de investigación del Instituto de Hidráulica Ambiental de la Universidad de Cantabria, así como experto del IPCC (Intergovermental Panel on Climate Change) expuso los datos científicos actuales sobre la incidencia del cambio climático en la subida del nivel medio del mar en el litoral español y Ángel Muñoz explicó las acciones que la administración española está tomando al respecto desde el Ministerio de Agricultura y Medio Ambiente.

Independientemente de las causas que originan este fenómeno, sorprende cómo existen colectivos que niegan de forma contundente y sistemática la veracidad de los datos aportados por los científicos. Otros, sin leer los informes científicos al respecto y sin ningún tipo de reflexión, se creen a pie juntillas todo lo que los medios informan, incluido lo del cambio climático. Basta leer los comentarios que en los medios de prensa se dan a cualquier noticia al respecto. Mi impresión es que las redes sociales permiten amplificar cualquier tipo de postura o ideología magnificando el impacto sobre la opinión pública. Parece como si el debate sobre el cambio climático perteneciera al espacio de la opinión y las ideas, donde unos y otros son “creyentes” o “negacionistas” de fenómenos detectados por la Ciencia. Los debates superan cualquier racionalidad y entran en descalificaciones en los dos sentidos que no tienen lógica posible. Incluso este post, donde no estoy entrando en ningún tipo de argumentación a favor o en contra, también será objeto de opinión y debate. Seguro.

El fondo del asunto trasciende el contenido de este post. En numerosas ocasiones la Ciencia sorprende al sentido común y origina fuertes controversias. La Tierra es la que gira alrededor del Sol y la evolución de las especies parece que está más que demostrada. Lo primero parece que se acepta claramente, lo segundo aún hay colectivos que lo niegan. Mi experiencia aplicando la teoría de la evolución a la optimización de estructuras es sorprendentemente positiva, lo cual confirma lo que ya muchos investigadores saben: la validez de los supuestos en los que se basan los algoritmos genéticos. La constatación de que un crecimiento exponencial de la población es insostenible ya fue explicada por Malthus. También esta teoría ha sido duramente criticada, como también denostada por algunos el concepto de sostenibilidad. La Física actual, especialmente la cuántica, nos sorprende constantemente y rebate cualquier tipo de interpretación sensorial de la realidad. La dualidad onda corpúsculo genera una paradoja conceptual que tiene explicaciones en forma de la interpretación de Copenhague, la formulación de integrales de caminos o la teoría universos múltiples. Si una función de onda cuántica colapsa por el hecho de ser medida, ello implica que la existencia material de un objeto sólo es posible si alguien la observa. Paradojas científicas difíciles de entender.

Eppur si muove o E pur si muove (y sin embargo, se mueve, en español) es la hipotética frase en italiano que, según la tradición, Galileo Galilei habría pronunciado después de abjurar de la visión heliocéntrica del mundo ante el tribunal de la Santa Inquisición.

Por mi parte, os dejo tanto la presentación que hice en la jornada como el vídeo completo de las mismas, por si os interesa. También un par de enlaces a medios de prensa donde se recogieron algunas de las conclusiones:

http://www.elconfidencial.com/tecnologia/2015-11-02/horizonte-2100-como-afectara-el-cambio-climatico-al-turismo-en-espana_1076348/

http://www.tendencias21.net/Urge-proteger-el-turismo-del-cambio-climatico-alertan-expertos-en-el-IIE_a41420.html

Descargar (PDF, 5.91MB)

 

 

 

 

Aplicación a la docencia de posgrado en ingeniería: la optimización de distintas tipologías de muros

Variables geométricas del muro de contrafuertes

Resumen:

Este artículo trata sobre la formación universitaria en ingeniería de proyectos en un curso de postgrado dentro del Máster en Ingeniería del Hormigón de la UPV, centrado en el diseño automatizado de estructuras de hormigón, optimizando el coste de ejecución material. El curso considera la mayoría de los algoritmos heurísticos básicos aplicándolos al diseño práctico de estructuras reales, tales como muros, pórticos y marcos de pasos inferiores de carreteras, pórticos de edificación, bóvedas, pilas, estribos y tableros de puentes. Se presentan dos tipos distintos de muros de hormigón armado in situ usados en la construcción de carreteras. Se aplica el algoritmo recocido simulado (SA), en primer lugar a un muro ménsula de 10,00 metros de altura, y en segundo lugar a un muro nervado de la misma altura. El primer modelo consta de 20 variables que definen la geometría estructural, así como las características del hormigón y los armados. El segundo modelo necesita 32 variables para su definición. Los parámetros son los mismos para los dos casos. Finalmente, se concluye que la optimización heurística es una buena herramienta para diseñar muros y comparar las distintas tipologías de proyecto, reduciendo los costes.

Palabras clave:

Educación posgrado; Diseño estructural; Optimización; Algoritmos heurísticos; Estructuras de hormigón; Muros.

Referencia:

MARTÍ, J.V.; YEPES, V. (2015). An engineering postgraduate course on heuristic design of different types of retaining walls. 19 th International Congress on Project Management and Engineering, 15-17 July, Granada (Spain).

Descargar (PDF, 20.71MB)

Una aproximación cognitiva a la optimización multiobjetivo de estructuras de hormigón

BBA027Acaban de publicarnos un artículo muy novedoso sobre la aproximación cognitiva a los problemas de optimización multiobjetivo de las estructuras de hormigón. La revista es Archives of Civil and Mechanical Engineering, que es una revista de alto impacto en el campo de la ingeniería civil, indexada en el JCR en el primer cuartil. El resultado de combinar técnicas de decisión multicriterio junto con la optimización multiobjetivo supone una auténtica revolución en la forma de abordar el diseño de las estructuras. Ya no basta con aplicar la experiencia, la imaginación y las normas para proyectar una estructura. Se hace necesario abordar el problema desde el origen, considerando múltiples perspectivas y buscando soluciones que optimicen a la vez aspectos como los costes, la seguridad, la sostenibilidad, los riesgos laborales, la durabilidad, la estética y tantos otros.

El artículo plantea la metodología básica necesaria para establecer la resolución de este tipo de problemas. Sin embargo se deben potenciar los estudios que permitan valorar los aspectos más subjetivos que intervienen en la decisión de la mejor opción de las posibles. Esta línea de investigación se encuadra dentro del proyecto de investigación BRIDLIFE, del cual soy investigador principal. Además, supone un ejemplo de colaboración con otras universidades, en este caso con la Universidad de Zaragoza.

Referencia:

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001

Abstract:

This paper proposes a cognitive approach for analyzing and reducing the Pareto optimal set for multi-objective optimization (MOO) of structural problems by means of jointly incorporating subjective and objective aspects. The approach provides improved knowledge on the decision-making process and makes it possible for the actors involved in the resolution process and its integrated systems to learn from the experience. The methodology consists of four steps: (i) the construction of the Pareto set using MOO models; (ii) the filtering of the Pareto set by compromise programming methods; (iii) the selection of the preferred solutions, utilizing the relative importance of criteria and the Analytic Hierarchy Process (AHP); (iv) the extraction of the relevant knowledge derived from the resolution process. A case study on the reinforced concrete (RC) I-beam has been included to illustrate the methodology. The compromise solutions are obtained through the objectives of economic feasibility, structural safety, and environmental sustainability criteria. The approach further identifies the patterns of behavior and critical points of the resolution process which reflect the relevant knowledge derived from the cognitive perspective. Results indicated that the solutions selected increased the number of years of service life. The procedure produced durable and ecological structures without price trade-offs.

Heuristic optimization of RC bridge piers with rectangular hollow sections

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/50736, siendo el Copyright de Elsevier.

El artículo debe ser citado de la siguiente forma:

Martínez, FJ.; Gonzalez-Vidosa, F.; Hospitaler, A.; Yepes, V. (2010). Heuristic optimization of RC bridge piers with rectangular hollow sections. Computers and Structures. 88:375-386. doi:10.1016/j.compstruc.2009.11.009

Descargar (PDF, 394KB)