Las dificultades asociadas a las vigas Vierendeel y su rotura frágil

Jules Arthur Vierendeel (1852-1940). https://es.wikipedia.org/wiki/Jules_Arthur_Vierendeel

Los entramados en bastidor, también llamados Vierendeel, surgieron de la patente de 1897 de una viga reticulada que lleva el nombre de su creador, el ingeniero belga Jules Arthur Vierendeel (1852-1940). La viga Vierendeel tiene una forma de celosía ortogonal que presenta la ventaja de prescindir de las tradicionales diagonales. Esta característica obliga a rigidizar fuertemente los nudos, estando sometidas sus barras a esfuerzos flectores y cortantes, además de los esfuerzos axiles. La tipología de la estructura presenta ventajas como la de permitir el paso a su través, ya sea de personas o de conducciones, facilitando también la colocación de carpinterías en edificación.

En el caso de los puentes, los de este tipo se hicieron muy populares en el primer tercio del siglo XX, existiendo un buen número de ejemplos en Bélgica y en el antiguo Congo Belga. El primer puente de estas características se construyó en Avelgem, Bélgica, en 1902. En España, por ejemplo, tenemos un ejemplo en Riera de Caldas, terminado en 1933.

 

Vigas Vierendeel en el teatro Alla Scala de Milán. https://www.e-zigurat.com/blog/es/ejemplos-estructurales-aplicacion-vigas-vierendeel/
Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

Sin embargo, esta tipología no está exenta de dificultades relacionada con la tenacidad del acero y la mecánica de fractura. Un ejemplo es el colapso del puente Vierendeel de Hasselt, sobre el canal Alberto, en Bélgica, en 1938. Este desastre ocurrió con una temperatura de -20ºC. Se trataba de un puente metálico soldado donde, al desaparecer las diagonales de la celosía, se debía reforzar los cordones y montantes. Pero lo más importante, la ejecución de los nudos soldados requiere de una delicadeza y cuidado máximos. En efecto, estos nudos soldados fueron el origen de sonados desastres como el descrito debido a que con las bajas temperaturas del invierno y con cierta sobrecarga, se produce con cierta facilidad la rotura frágil del acero si no se concibe y ejecuta los innumerables detalles asociados a la soldadura.

Otra dificultad añadida es su deformabilidad frente a otras tipologías de celosías trianguladas. Por ejemplo, para una pasarela de 60 m, la flecha de una viga Vierendeel es unas 10 veces mayor que el resto. Aproximadamente del orden de Luz/100, mientras que en las celosías son menores que Luz/1000.

Sin embargo, hoy día existe cierta tendencia en arquitectura en utilizar este tipo de estructura sin informar claramente sobre las dificultades de esta tipología, muy tentadora, como nos comenta Javier Rui-Wamba en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“.

Os dejo a continuación un vídeo sobre la construcción con vigas Vierendeel en el Centro Cultural Nestor Kirchner, en Buenos Aires (Argentina).

En este otro vídeo, donde unos estudiantes rompen un modelo reducido de viga Vierendeel, vemos la gran deformabilidad de esta estructura.

Un ejemplo arquitectónico singular fue la construcción de las Torres Gemelas, donde se recurrió a la viga Vierendeel y a un sistema invertido de estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los buques Liberty, la presa Hoover y Henry John Kaiser

Henry John Kaiser (1882-1967). https://www.timetoast.com/timelines/emprendedor-9b6a7454-6cc7-44e6-b64e-962191522820

Pocos emprendedores han influido tanto en el desarrollo de su país como Henry John Kaiser (1882-1967). No solo se le conoce como el padre de la moderna construcción naval norteamericana, con la construcción de los buques de la Clase Liberty, sino que sus empresas abordaron aspectos tan dispares como la construcción de la presa Hoover, la fabricación de automóviles, la producción de cemento o la construcción de viviendas prefabricadas y autopistas. Pero también destaca su labor altruista construyendo centro cívicos, hospitales y escuelas de medicina.

Una de sus primeras compañías construyeron en 1915 las primeras carreteras de hormigón en Cuba. Ganó en 1921 su primer contrato de pavimentación en California y fue ganando contratos por sus costes y plazos reducidos, destacando los buenos salarios de sus trabajadores. Pero fue en 1931, tras la Gran Depresión, cuando asociándose con Bechtel Corporation, construyeron la presa Hoover, acabándola dos años antes de lo previsto.

Pero uno de los hitos de este empresario fue la construcción de unos 2700 buques de la Clase Liberty con motivo de la participación de Estados Unidos en la Segunda Guerra Mundial. Eran barcos que se construyeron sustituyendo las uniones roblonadas por la incipiente soldadura. La rapidez en la construcción de estas embarcaciones era asombrosa. Así, la quilla del Robert E. Peary de 10.500 toneladas se izó el domingo 8 de noviembre de 1942, y el barco se botó desde el Astillero de Richmond (California) el jueves 12 de noviembre, cuatro días y 15 horas y media después. Estas embarcaciones se diseñaron para una vida media de 5 años, participando en todos los escenarios de la guerra, incluido el Desembarco de Normandía.

Pero, como suele ser habitual, las innovaciones tecnológicas pasan por un calvario técnico. Los cascos soldados de estas embarcaciones presentaban una fragilidad desconocida hasta entonces. Las temperaturas bajas hacían fallar las soldaduras, lo que partía en dos el casco. Por ejemplo, en 1943, el buque cisterna Schenectady se partió cuando navegaba por las frías aguas entre Siberia y Alaska. La fisura apareció en el ángulo agudo de la escotilla de la cubierta, pasando prácticamente de modo casi instantáneo a través de la cubierta y por ambos bordes del cuerpo hasta la obra viva junto a la misma quilla. Todo ello ocurrió durante un tiempo sin viento a temperatura del aire de 3 °C bajo cero y temperatura del agua de 4,5 °C sobre cero. la placa de acero de un buque, no son perfectamente elásticas, ya que sufren importantes deformaciones plásticas en la punta de una grieta. Era la primera vez que se utilizaba la soldadura para construir los cascos de los buques y el acero empleado no tenía las características de ductilidad y tenacidad necesarias, siendo frecuente que los detalles de las zonas singulares no estuviesen bien resueltos.

Avería del petrolero «Schenectady» (enero de 1943). https://es.m.wikipedia.org/wiki/Archivo:TankerSchenectady.jpg

Este tipo de problemas alumbró la mecánica de fractura, que ya tenía antecedentes en 1920 con la publicación del artículo “The Phenomena of Rupture and Flow in Solids”, del ingeniero aeronáutico Alan Arnold Griffith (1983-1963). Pero a este tema ya le dedicaremos un artículo, que bien se lo merece.

Os dejo un par de vídeos sobre Henry Kaiser (en inglés). Espero que os gusten.

La Guerra de Crimea, Bessemer y el acero estructural

Sir Henry Bessemer (1813-1898). https://es.wikipedia.org/wiki/Henry_Bessemer

No es casual que un conflicto bélico y el despegue de la industria armamentística provoquen crisis de calado que acelera y transforma, paradógicamente, la calidad de vida en muchos países. La Guerra de Crimea (1853-1856) empezó y concluyó en medio de una auténtica revolución debida a Sir Henry Bessemer. Fue este ingeniero inglés el que, hacia 1855, descubrió en Inglaterra la posibilidad de afinar el arrabio procedente de los altos hornos, patentando el proceso ese mismo año. Eso cambió profundamente la industria armamentística, pero también la civil, con la construcción de barcos, ferrocarriles, edificios industriales y puentes. Fue el inicio de la Era del Acero.

Pero vayamos por partes. La Guerra de Crimea enfrentó al Imperio ruso y al reino de Grecia contra una coalición formada por el Imperio otomano, Francia, Gran Bretaña y el reino de Cerdeña. El origen de la guerra puede encontrarse en la decadencia del Imperio otomano y el expansionismo ruso, que acrecentaron el temor de Francia y Gran Bretaña de que el Imperio otomano se desmoronase y pasase a ser un vasallo ruso. El conflicto terminó con la derrota de Rusia. Se puso fin al orden europeo surgido del Congreso de Viena, resurgió Francia como potencia, el Imperio austríaco entro en declive y Rusia empezó reformas como la abolición de la servidumbre y cambios en la estructura, reclutamiento y entrenamiento de su ejército. Pero lo que más nos interesa en este artículo es resaltar que la de Crimea fue la primera guerra moderna que utilizó nuevas tecnologías como el ferrocarril, el barco de vapor, el telégrafo, la fotografía y una nueva generación de fusiles. “Agua, sol y guerra en Sebastopol” es un viejo dicho de los agricultores castellanos con motivo de la Guerra de Crimea. El agua y el sol multiplicaban las cosechas y la guerra cerraba la salida del trigo de las estepas ucranianas y rusas cuando se bloqueaba  el puerto de Sebastopol. Esta guerra propició  la subida del precio del cereal español y era motivo de alegría de sus agricultores.

En plena Guerra de Crimea, Inglaterra buscaba producir acero más resistente y en grandes cantidades, pues algunos cañones no resistían el calibre de determinados disparos. A Bessemer se le ocurrió insuflar aire a través del baño fundido en los recipientes o convertidores asociados a su nombre. La revolución tecnológica ocurrió en ese mismo momento. Los altos hornos eran capaces de producir arrabio, fundición líquida de las menas del hierro, pero con el inconveniente de presentar contenidos de carbono entorno al 4%. Este arrabio, una vez enfriado, daba lugar a un material de gran dureza pero muy frágil, que solo era apto para moldear piezas de fundición. Pero la inyección de aire presurizado por el fondo del alto horno provocaba la reducción por oxidación del carbono, el silicio y el fósforo del arrabio, dando lugar a la producción del acero en cantidades industriales, con un contenido en carbono inferior al 0,25%. Con su innovación, solo en 25 minutos se podía convertir 25 toneladas de hierro en acero.

Convertidor Bessemer, Kelham Island Museum, Sheffield, Inglaterra (2002). https://es.wikipedia.org/wiki/Convertidor_Thomas-Bessemer

Este nuevo proceso productivo disparó la demanda de acero en cantidad y calidad, especialmente con el ferrocarril de la época. Hoy día existen procedimientos más eficientes que los convertidores Bessemer, como los convertidores de oxígeno y los hornos eléctricos. Pero la revolución fue imparable. El acero de calidad permitió una auténtica revolución en la construcción con este nuevo material, el acero estructural.

Hoy en día, los convertidores de oxígeno y los hornos eléctricos acaparan la producción mundial de acero. Se vierte el material en lingoteras de fundición para introducirse en trenes de laminación que conforman, por etapas, chapas, carriles y perfiles laminados. La introducción de sistemas continuos de laminación está eliminado las lingoteras, simplificando los procesos y facilitando la aplicación de los tratamientos térmicos.

En este vídeo os dejo una breve semblanza de Bessemer y su invención.

Os dejo varios vídeos de producción del acero.

 

 

Análisis comparativo del ciclo de vida de los puentes de hormigón y mixtos en función del reciclaje del acero

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el primer cuartil del JCR. En este caso se ha realizado un análisis comparativo del ciclo de vida de los puentes de hormigón y mixtos en función del porcentaje de acero reciclado utilizado. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En este trabajo se propone la evaluación del ciclo de vida (ACV) y la comparación de cuatro alternativas de tableros de puentes para diferentes longitudes de vano con el fin de determinar cuáles son las soluciones más sostenibles. Se utiliza el método ReCiPe para realizar el análisis del ciclo de vida, mediante el cual se obtiene el valor de impacto para cada alternativa y longitud de vano. Se ha utilizado la base de datos Ecoinvent 3.3. El ciclo de vida se ha dividido en cuatro fases: fabricación, construcción, uso y mantenimiento, así como su desmantelación. Se han tenido en cuenta las incertidumbres asociadas, y los resultados se muestran tanto en los enfoques de punto medio como de punto final. Los resultados muestran que, para vanos inferiores a 17 m, la mejor alternativa es la losa maciza de hormigón pretensado. Para luces entre 17 y 25 m, dado que no se utiliza la solución de viga cajón, la losa aligerada de hormigón pretensado es la mejor alternativa. Para luces entre 25 y 40 m, la mejor solución depende del porcentaje de acero estructural reciclado. Si este porcentaje es superior al 90%, la mejor alternativa es el tablero de puente compuesto de vigas cajón. Sin embargo, si el porcentaje es inferior, la alternativa más limpia es el tablero de vigas cajón de hormigón pretensado. Por lo tanto, los resultados muestran la importancia de reciclar y reutilizar el acero estructural en los diseños de los tableros de los puentes.

Abstract:

Achieving sustainability is currently one of the main objectives, so a consensus between different environmental, social, and economic aspects is necessary. The construction sector is one of the main sectors responsible for environmental impacts worldwide. This paper proposes the life cycle assessment (LCA) and comparison of four bridge deck alternatives for different span lengths to determine which ones are the most sustainable solutions. The ReCiPe method is used to conduct the life cycle analysis, by means of which the impact value is obtained for every alternative and span length. The Ecoinvent 3.3 database has been used. The life cycle has been divided into four phases: manufacturing, construction, use and maintenance, and end of life. The associated uncertainties are considered, and the results are shown in both midpoint and endpoint approaches. The results of our research show that for span lengths less than 17 m, the best alternative is the prestressed concrete solid slab. For span lengths between 17 and 25 m, since the box-girder solution is not used, then the prestressed concrete lightened slab is the best alternative. For span lengths between 25 and 40 m, the best solution depends on the percentage of recycled structural steel. If this percentage is greater than 90%, then the best alternative is the composite box-girder bridge deck. However, if the percentage is lower, the cleanest alternative is the prestressed concrete box-girder deck. Therefore, the results show the importance of recycling and reusing structural steel in bridge deck designs.

Keywords:

Life cycle assessment; sustainability; structures; ReCiPe; environment; bridges

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

Descargar (PDF, 1.29MB)

Salto cualitativo en el proyecto de investigación HYDELIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.

La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.

Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.

El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:

  • Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
  • Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
  • Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
  • Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
  • Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
  • Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.

Referencias

  • AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
  • GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017b). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Struct., 145:381-391.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
  • MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
  • MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
  • MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
  • SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
  • SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
  • SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
  • TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto HYDELIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.

La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.

Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:

  • Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
  • Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
  • Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
  • Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 6: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de puentes mixtos y estructuras modulares.
  • Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
  • Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trascendencia del proyecto de investigación HYDELIFE en su ámbito temático

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior detallamos los antecedentes y la motivación del proyecto de investigación HYDELIFE. Ahora vamos a explicar la relevancia de la propuesta, que se centra tanto en la utilización de una metodología emergente y novedosa en el ámbito de las estructuras, como es la hibridación de las metaheurísticas con la inteligencia artificial, en especial con el aprendizaje profundo (Deep Learning, DL), como en el objeto de estudio, que es la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. Justificamos a continuación la importancia de esta propuesta.

La Inteligencia Artificial (IA) se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras (Taffese et al., 2017). Sin embargo, los métodos más recientes como el reconocimiento de patrones (Pattern Recognition, PR), el aprendizaje automático (Machine Learning, ML) y el aprendizaje profundo (DL) son métodos emergentes en este ámbito de la ingeniería (Salehi et al., 2018). Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales. Son capaces de descubrir información oculta, no trivial, sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, ML y DL tienen una elevada potencialidad en el dominio de la mecánica computacional, como, por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos.

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas (Afzal et al., 2020). Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables. La idea es aprovechar la inmensa cantidad de datos generados por el elevado número de iteraciones que requiere la optimización estructural mediante metaheurísticas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017a) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación. Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). HYDELIFE trata de dar un paso más allá. Se pretende que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Concretando, la propuesta se centra en el aprendizaje profundo (DL) que, dentro del ML, utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. El foco metodológico del proyecto es la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Nuestro grupo ha tenido ocasión de comprobar la eficacia de este hibridaje en estructuras sencillas, como son los muros de contrafuertes (García et al., 2020a, 2020b; Yepes et al., 2020). Además, hemos lanzado al respecto un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“ (https://www.mdpi.com/journal/mathematics/special_issues/Deep_Learning_Hybrid-Metaheuristics_Novel_Engineering_Applications).

Modern methods of construction. https://www.lancashirebusinessview.co.uk/latest-news-and-features/let-s-talk-modern-methods-of-construction

En cuanto al objeto del proyecto, la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero, su justificación deriva de su importancia creciente y los huecos en la investigación encontrados. En efecto, la construcción modular y la prefabricación son técnicas ya veteranas desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados. Sin embargo, la auténtica revolución que supone la IA, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. La reciente norma UNE 127050:2020 trata de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación. Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente”, constituyen alternativas a la construcción tradicional. Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o “off-site”, que está revolucionando la forma de construir de forma más rápida, rentable y eficiente. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la crisis sanitaria. Países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. La construcción MMC permite un ahorro de tiempo de hasta el 50%, permite el uso de materiales sostenibles, reduciéndose el desperdicio. La construcción en fábrica permite tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega. Nuestro grupo de investigación (Sánchez-Garrido y Yepes, 2020) ha empezado a aplicar técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, comparando la construcción tradicional de una vivienda unifamiliar con dos alternativas basadas en MMC. Propusimos un índice de sostenibilidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental. HYDELIFE pretende profundizar en esta vía con la optimización multiobjetivo híbrida de este tipo de construcción modular.


Constructalia – ArcelorMittal. Puente mixto Wirkowice: El primer puente de carretera en Europa con vigas de acero autopatinable Arcorox® 460 – Constructalia

Otro de los huecos detectados por nuestro grupo en este ámbito son los puentes mixtos (Martínez-Muñoz et al., 2020). El análisis del estado del arte indica que la investigación se ha centrado en el diseño preliminar de puentes con un enfoque principalmente económico (Yepes et al., 2019) sin abordar la optimización multiobjetivo social y ambiental de su ciclo de vida completo que permitan aplicar técnicas de decisión desde el diseño. mientras que a nivel mundial la preocupación se dirige a la búsqueda de soluciones sostenibles. También se ha detectado un vacío en los puentes ejecutados con vigas armadas híbridas. En este tipo de estructuras se utilizan diferentes límites elásticos de acero en las chapas de alas y alma para disminuir el espesor de las chapas de mayor límite elástico, lo cual supone una reducción de peso por unidad de longitud de la sección transversal (Chacón, 2014). Sin embargo, la reducción del espesor puede acarrear la disminución de la capacidad de la sección ante otros fenómenos, como es el caso de la inestabilidad. Se debe garantizar un buen comportamiento de las vigas a cortante, estudiando su inestabilidad, a cargas concentradas y a pandeo lateral. Por tanto, nos encontramos ante un caso de optimización de gran interés donde, además, no se ha abordado hasta ahora su optimización completa a lo largo de su ciclo de vida. Asimismo, en nuestro equipo de investigación se ha desarrollado una patente sobre vigas en cajón mixtas (Alcalá y Navarro, 2020) que permiten resolver el problema de las vigas descolgadas en forjados de elementos prefabricados y que consiste en un cajón metálico que formará parte de un sistema de forjados slim-floor. HYDELIFE aplicará la metodología híbrida antes descrita para cubrir este vacío en el ámbito de la investigación de las estructuras.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. J. Clean. Prod., 260:120623.

ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.

CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Struct. Multidiscip. Optim., 56(1):139-150.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Adv. Civ. Eng., 2020, 8823370.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. J. Manage. Eng., 30(1):69-77.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Eng. Struct., 171:170-189.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. J. Clean. Prod., 258: 120556.

TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Autom. Constr., 77:1-14.

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. App. Sci., 9(16), 3253.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación HYDELIFE (2021-2023)

Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

El proyecto HYDELIFE aborda directamente el reto de la sostenibilidad social y medioambiental de las estructuras a lo largo de su ciclo de vida, desde el proyecto hasta la demolición. Para ello se propone una metodología híbrida emergente entre el aprendizaje profundo (Deep Learning, DL) procedente de la inteligencia artificial (IA), metamodelos y metaheurísticas de optimización multiobjetivo y técnicas de toma de decisión multicriterio. El foco del proyecto se centra en el diseño robusto y resiliente aplicado a la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. El proyecto se apoya en los avances realizados en los proyectos de investigación anteriores (HORSOST, BRIDLIFE y DIMALIFE), donde se desarrollaron metodologías que se aplicaron a puentes e infraestructuras viarias, pero con una propuesta metodológica y un foco de atención innovador respecto a los anteriores. El proyecto se orienta hacia el objetivo 9 de desarrollo sostenible (ODS): construir infraestructuras resilientes, promover la industrialización sostenible y fomentar la innovación. También se alinea con la Estrategia Nacional de Inteligencia Artificial-ENIA (Gobierno de España, 2020). A continuación, se justifica la propuesta en función de los antecedentes y el estado actual.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen, entre otros, del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). La construcción y el mantenimiento de las infraestructuras influyen en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012).

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos como los terremotos, huracanes o inundaciones afectan al rendimiento previsto de estas infraestructuras (Biondini y Frangopol, 2016). Esto constituye una auténtica bomba de relojería (Thurlby, 2013) que, junto al reto de la reducción de los impactos ambientales, son razones más que suficientes para mejorar el mantenimiento de nuestros puentes. Hoy día los gestores de las infraestructuras tienen ante sí un reto importante consistente en mantenerlas en un estado aceptable con presupuestos muy limitados. Si a ello añadimos la profunda crisis financiera y sanitaria que ha afectado la economía de nuestro país y que ha provocado el declive de la actividad constructora, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto. Esta situación puede provocar una alarma social puntual, sobre todo con la interrupción de grandes vías de comunicación debidas a un excesivo deterioro. Un estudio sobre “Necesidades de Inversión en Conservación 2019-2020” de la Asociación Española de Carreteras, centrado en los firmes y la señalización, estima que el deterioro del patrimonio viario presenta un déficit acumulado de 7.500 millones de euros. Sin embargo, este problema es común a otros países desarrollados. En el año 2019, 47000 puentes del total de los puentes en Estados Unidos, (más del 20% del total) presentan deficiencias estructurales (American Road & Transportation Builders Association, 2019); en Reino Unido, más de 3000 puentes estaban por debajo de los estándares y requerían reparación (RAC Foundation, 2019). Además, el problema pasa a ser grave cuando una parte significativa del parque de infraestructuras se encuentra cercano al final de su vida útil. Y lo que aún es peor, cuando existen riesgos de alto impacto y de baja probabilidad que pueden afectar gravemente a las infraestructuras. Estos son buenos argumentos para aumentar la vida útil de los puentes. Se trata de una verdadera crisis en las infraestructuras. El reto social consistirá en aplicar unos presupuestos muy restrictivos que minimicen los impactos ambientales y los riesgos a las personas, y que la gestión sea socialmente sostenible dentro de una política de conservación del patrimonio, incluyendo la dimensión de género. Por lo tanto, nos encontramos antes un problema de optimización muy complejo, con muchas restricciones y sometido a grandes incertidumbres, lo cual representa un reto científico importante, pues no se presta fácilmente a la exploración con los instrumentos analíticos y de previsión tradicionales.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Proc. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trabajo Final de Grado en Ingeniería Civil de una pasarela ciclopeatonal

En el día de hoy, 29 de junio de 2021, Víctor José Yepes Bellver ha defendido su Proyecto Final de Grado, de forma presencial, como culminación de sus estudios del Grado en Ingeniería Civil, en la Escuela Técnica Superior en Ingeniería de Caminos, Canales y Puertos de Valencia.

El título del TFG fue “Diseño estructural de pasarela ciclopeatonal en el Anillo Verde Metropolitano Sur de Valencia sobre la línea Valencia-Villanueva de Castellón de FGV. PK 1,5 de la carretera CV-407. Término municipal de Valencia“. Este TFG fue dirigido por el profesor Julián Alcalá González. La calificación fue de Sobresaliente, 9. ¡Enhorabuena al nuevo ingeniero y a su director!

 

 

Toma de decisiones aplicada a la construcción de un puente mixto en cajón

Os dejo a continuación un ejemplo sencillo de aplicación de la técnica AHP de toma de decisiones dirigida a la selección de alternativas en la construcción de un puente mixto en cajón. Se trata de un caso que utilizamos con nuestros estudiantes para enseñar la técnica. Tratamos de evitar que, en los estudios de soluciones, los estudiantes recurran siempre a las matrices de valoración ponderada, donde los pesos de cada criterio siempre se ponen de forma más o menos arbitraria, o bien para justificar la solución preferida. Este tipo de problemas también suelen aparecer en los concursos de licitación de obras públicas.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

Descargar (PDF, 441KB)