Construcción prefabricada de pilas de puente

ph_pilas5
Pilas prefabricadas. Fuente: Grupo Pacadar, www.pacadar.es

La prefabricación en la construcción de pilas de puente constituye una alternativa a la construcción mediante sistemas tradicionales de encofrado, los encofrados trepantes o los deslizantes. Las ventajas de la prefabricación se relacionan con la industrialización del proceso constructivo, mejoras de acabados, reducción de plazos, etc. Este tipo de construcción prefabricada ha evolucionado fuertemente, pudiéndose adecuar hoy día a la construcción de un buen número de tipologías de pilas, al contar con sistemas auxiliares de transporte y montaje cada vez de mayor potencia, desde las correspondientes a pequeños pasos superiores a las de grandes puentes con pilas de incluso más de 40 m de altura. Los medios auxiliares de transporte y montaje permiten manejar pesos de 100 a 200 t, aunque es posible superar ampliamente estos valores.

Las tipologías habituales de pilas prefabricadas son las siguientes:

  • Fustes independientes con o sin capitel de apoyo
  • Pilas pórtico formadas por fustes verticales y cabecero superior de unión
  • Pilas construidas por dovelas horizontales
ph_dinteles1
Montaje de dinteles prefabricados. Fuente: Grupo Pacadar, www.pacadar.es

Quizá uno de los inconvenientes de la prefabricación, en este momento superados, es la unión entre elementos o entre elementos y partes “in situ”, especialmente en aquellas estructuras hiperestáticas. Las secciones de pilas pequeñas, de 60 x 60 cm², suelen empotrarse en cálices dejados en las zapatas de cimentación, rellenándose el hueco libre con hormigón. Sin embargo, para mayores secciones, suele dejarse en la zapata vainas corrugadas de 100 mm de diámetro, con longitud suficiente para el anclaje de las armaduras del fuste. Posteriormente, se rellenan estas vainas con un mortero sin retracción.

El montaje de estos elementos prefabricados se empieza con unos apoyos blandos de madera que sirven para calzar las piezas y evitar las concentraciones de tensiones en la superficie de la junta. Estas juntas posteriormente se rellenan y ajustan con un mortero líquido sin retracción que garantice la transmisión de tensiones.

En pilas altas, las pilas son de sección hueca para optimizar el uso del material, reducir el peso y facilitar el transporte y montaje. Suelen ser habituales las pilas octogonales o a secciones I enlazadas dos a dos para formar una sección en cajón.

También son prefabricados los dinteles colocados sobre las pilas individuales o formando pórtico con varias pilas. Pueden ser también macizos o aligerados con sección en pi.

A continuación podemos ver el montaje de un dintel prefabricado.

 

También podemos ver el montaje de un viaducto en Sot Gran, en Eix Transversal C-25. En el vídeo se ve una secuencia de fotos del montaje por parte de Alvisa de la estructura prefabricada de hormigón del Viaducto Sot Gran para el tramo Espinelves – Santa Coloma de Farners, correspondiente al desdoblamiento del Eje Transversal de la carretera C-25 (Girona – Lleida). Se trata de tres vanos de 28, 39 y 32 m de longitud, con monoviga hiperestática y pilas palmera prefabricadas de 21 m de alto y peso 170 t.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La historia del hormigón convencional

El Salginatobel construido en Suiza en 1930, de Maillart, uno de mis puentes preferidos. Wikipedia.

La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. En esta entrada continuamos con otra anterior donde también se abordaba este tema, pero desde el punto de vista de los orígenes del hormigón en España. Aquí os dejo un vídeo del profesor Antonio Garrido, aunque con un enfoque más amplio. Espero que os guste.

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

Optimización multiobjetivo basada en fiabilidad del ciclo de vida de un puente en cajón postesado

Fuente: http://www.freyssinet.es/wp/?cat=3

Os presentamos un artículo, que se ha editado en formato abierto, donde se ha realizado la optimización a lo largo de su ciclo de vida de un puente en cajón postesado basándose en fiabilidad. Para ilustrar la metodología, se ha utilizado como ejemplo un puente situado en una zona costera y, por tanto, sometido a la corrosión por ambiente marino. Se ha optimizado el puente con múltiples objetivos simultáneos: el coste, las emisiones totales de CO₂ (incluyendo la recarbonatación), el inicio de la propagación de la corrosión y la seguridad. Primero se ha construido una frontera de Pareto con todas las soluciones óptimas con los múltiples objetivos y luego se ha estudiado el mantenimiento del puente, optimizando este mantenimiento atendiendo a criterios económicos, sociales y ambientales. Este artículo se enmarca dentro del proyecto de investigación BRIDLIFE. Espero que os sea de interés el artículo, que lo podéis descargar gratuitamente y compartir sin problemas (open-access).

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

 

Descargar (PDF, 1.23MB)

 

Puentes y pasarelas de polímero reforzado con fibras

Pasarela sobre el AVE en Lérida. 2001 Proyecto de PEDELTA. Arco biapoyado de 38 metros de luz y 3 de ancho. Elementos atornillados.
Pasarela sobre el AVE en Lérida. 2001 Proyecto de PEDELTA. Arco biapoyado de 38 metros de luz y 3 de ancho. Elementos atornillados.

Los nuevos materiales compuestos basados en polímeros reforzados con fibras (PLR), están presentes en casi todos los objetos de nuestra vida diaria. También se usan en el mundo de la construcción: elementos estructurales, cerramientos opacos o traslúcidos, sanitarios, pavimentos, conducciones, elementos de instalaciones eléctricas, etc.

La historia de los plásticos podría iniciarse en 1839 con la vulcanización de la goma por Charles Goodyear, aunque los olmecas ya lo hacían hace 3500 años. En 1860 Parker patenta la parkesita, el primer celuloide. En 1869 Hyatt descubre el celuloide. En 1907 Baekeland descubre la baquelita, primer polímero sintético, y así hasta nuestros días.

Los PRF se empezaron a utilizar en la industria aeronáutica desde la década de los sesenta, pero ya en este siglo se están empezando a utilizar en los proyectos de puentes y pasarelas. Desde la construcción del primer puente de polímeros en Asturias en 2004, en España se han hecho realizaciones en otros sitios como Madrid o Cuenca, entre otros.

Suelen ser estructuras híbridas, donde se combinan elementos tradicionales con nuevos materiales. En general son de dos tipos:

  • Las que el tablero superior es de PRF que se apoya sobre vigas de acero, de madera o de hormigón
  • Las que las vigas son de PRF y sobre ellas apoya un tablero tradicional (hormigón armado, madera)

 

Entre las ventajas de los puentes y pasarelas realizados con plásticos reforzados con fibras, podemos resaltar las siguientes:

  • Ligereza
  • Elevada resistencia y rigidez específica
  • Gran resistencia a la corrosión y agentes ambientales
  • Baja conductividad térmica
  • No producen interferencias en campos electro-magnéticos
  • Gran libertad de formas, tamaños y diseños

 

Entre las desventajas:

  • Elevado precio inicial (necesario un análisis a lo largo de toda la vida)
  • Degradación de sus propiedades a temperaturas no excesivamente altas, especialmente de la matriz polimérica (100 °C)
  • Inercia del sector
  • Falta de experiencia
  • Inexistencia de normas y recomendaciones
  • Mal comportamiento en caso de incendio

 

A continuación os paso la serie de tuits que sobre este tema tuvimos ocasión de publicar el 15 de mayo de 2015. Espero que os gusten.

https://twitter.com/vyepesp/status/599139100524941312

 

 

 

 

Pilote de desplazamiento con azuche

http://www.generadordeprecios.info/obra-nueva/CPI/CPI020.html
http://www.generadordeprecios

Los pilotes de desplazamiento con azuche (pilotes CPI-2 en la nomenclatura de las antiguas Normas Tecnológicas de Edificación), consiste en un tubo de acero hincado en el terreno con un azuche de punta cónica o plana en su extremo inferior, que puede ser metálica o de hormigón prefabricado. Este pilote se realiza sin extracción de terreno, por lo que durante su ejecución no puede comprobarse la naturaleza del suelo que se va atravesando. El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, generando el pilote propiamente dicho. El azuche posee un diámetro exterior mayor en aproximadamente 5 cm que el pilote, con la parte superior cilíndrica ya preparada para introducir en el extremo inferior de la entubación. Se utilizan con diámetros pequeños (entre 30 y 65 cm) y cuando el terreno es resistente, pero poco estable. La armadura tiene una longitud mínima que será el mayor valor de los siguientes: 6 m o 9 veces el diámetro del pilote. La longitud del pilote viene limitada por la longitud de la resbaladera sobre la que desliza la tubería, estando en torno a los 22 m.

Su uso habitual es como pilotaje de poca profundidad, trabajando por punta, apoyado en roca o capas duras de terreno, después de atravesar capas blandas. También como pilotaje, trabajando por fuste y punta en terrenos granulares, medios o flojos, o en terrenos de capas alternadas, coherentes y granulares, de alguna consistencia. Se recupera la tubería, si es preciso mediante vibradores, dejando el azuche o tapa perdido.

Con golpes de maza o martillo se hinca desde la parte superior de la entubación y se encaja hasta la profundidad que se requiere para el pilotaje. Luego se extrae la entubación con la precaución de que quede un mínimo de hormigón igual a 2 veces el diámetro interior; de esta manera se impide la entrada de agua por la parte inferior de la entubación y el corte del pilote. Durante la extracción se pierde el azuche. La forma de extraer la entubación es con un golpe en la cabeza, logrando el efecto de vibrado del hormigón, circunstancia que ha dado nombre al pilote “Vibro”, que es el más conocido dentro de este tipo. Para la hinca se usa el martinete (martillo hidráulico o diésel), que consiste en un mazo mecánico que va dando golpes periódicos sobre la cabeza del pilote para introducirlo en el terreno. Aparte del pilote Vibro, otros pilotes comerciales que utilizan técnicas parecidas son el Simplex, Alpha o Western.

http://www.construmatica.com/construpedia/Archivo:Pilotes_in_situ_con_entubacion_recup.jpg

 

 

Este pilote se clava hasta la capa firme y la capacidad portante se puede comprobar por el número de golpes necesarios para alcanzar una penetración determinada. Es muy frecuente emplear la denominada fórmula de los holandeses, aplicándose un coeficiente de seguridad de 6.

Se pueden describir las siguientes fases de ejecución:

  • Puesta en obra y colocación de un azuche metálico o tapón en la base.
  • Hincado de tubería hueca y azuche mediante golpeo con maza o martillo hasta llegar al rechazo.
  • Colocación de la armadura hasta el fondo del pilote
  • Hormigonado en seco.
  • Extracción de la camisa, dejando el azuche o tapa perdido.
  • Demolición de una longitud no menor a 1 m (descabezado del pilote)

 

Os dejo a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.

CPI-2

Pilote de desplazamiento con azuche CPI-2. Norma Tecnológica de Edificación

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

(Demoler) y construir un puente en solo 80 horas

El método de construcción acelerada de puentes tiene un gran arraigo en Estados Unidos, y únicamente se puede llevar a cabo mediante el empleo de soluciones industrializadas. Este caso que traemos es llamativo, pues la demolición del puente anterior y su restitución por uno nuevo, solo necesitó 80 horas para realizarlo, en lugar del año aproximado que hubiera tardado en caso de haberlo realizado enteramente por la vía tradicional. En su construcción, se recurrió al empleo de elementos prefabricados de hormigón que conformaron un único vano de 36 metros, mediante losas prefabricadas de cierre, muros de contención, pretiles y losas peatonales. Con este ejemplo, se ilustra una vez más que una construcción rápida y ordenada, es la ideal para la creación de pasos elevados nuevos o reposición de los antiguos, y normalmente acaba siendo la solución más económica al término de la obra. Y es que cuanto más tarde una construcción en ejecutarse, los gastos (personal, grúas, plataformas elevadoras de personal, otra maquinaria, imprevistos, etc.) más se disparan, sin contar con el perjuicio ocasionado para las zonas contiguas (desvíos provisionales del tráfico, atascos, etc.) que también repercuten social y económicamente.

Os paso un vídeo que me ha recomendado Alejandro López (ANDECE) para que lo veáis:

Preguntas básicas sobre el control de las estructuras de hormigón

El Capítulo 14 de la Instrucción de Hormigón Estructural EHE-08 recoge las bases generales del control de las estructuras de hormigón. Estas bases se desarrollan con mayor profundidad en los siguientes capítulos relacionados con el control de calidad del proyecto, el control de la conformidad de los productos y el control de la ejecución. A continuación se responden a ciertas preguntas que suelen hacerse respecto a este tema. El post trata de aclarar ciertos conceptos y términos que, en numerosas ocasiones, resultan confusos o poco claros. Espero que os sean de interés.

CUESTIÓN 1. ¿Qué tipo de controles debe realizar la Dirección Facultativa durante la ejecución de una estructura de hormigón armado?

El artículo 78 de la EHE-08 indica la realización de los siguientes controles:

  • Control de la conformidad de los productos que se suministren a la obra, de acuerdo con el Capítulo XVI
  • Control de ejecución de la estructura, de acuerdo con el artículo 92
  • Control de la estructura terminada, de acuerdo con el artículo 100

 

CUESTIÓN 2. ¿Cómo se debe considerar dentro de un proyecto el coste del control de recepción?

El artículo 78 de la EHE-08 indica que, siempre que la legislación aplicable lo permita, el coste del control de recepción incluido en el proyecto deberá considerarse de forma independiente en el presupuesto de la obra. Esta consideración, tal y como se explica en los comentarios de la EHE-08, se realiza con el objeto de procurar la independencia necesaria para que el control sea eficaz, es decir, se aconseja especialmente que la Propiedad contrate y abone directamente cualquier actividad de control, evitando así que dicho abono se efectúe a través de la actividad controlada (Autor del Proyecto o Constructor).

CUESTIÓN 3. A los efectos de las actividades de control contempladas por la EHE-08, ¿Qué diferencias existe entre los siguientes conceptos: partida, remesa y acopio?

El artículo 78.1 define los conceptos de partida, remesa y acopio a los efectos de las actividades de control contempladas por la EHE-08:

Partida: cantidad de producto de la misma designación y procedencia contenido en una misma unidad de transporte (contenedor, cuba, camión, etc.) y que se recibe en la obra o en el lugar destinado para su recepción. En el caso del hormigón, las partidas suelen identificarse con las unidades de producto o amasadas.

Remesa: conjunto de productos de la misma procedencia, identificados individualmente, contenidos en una misma unidad de transporte (contenedor, camión, etc.) y que se reciben en el lugar donde se efectúa la recepción.

Acopio: cantidad de material o producto, procedente de una o varias partidas o remesas, que se almacena conjuntamente tras su entrada en la obra, hasta su utilización definitiva.

CUESTIÓN 4. A los efectos de las actividades de control contempladas por la EHE-08, ¿Qué diferencias existe entre los siguientes conceptos: lote de material o producto, lote de ejecución y unidad de inspección?

El artículo 78.1 define los conceptos de lote de material o producto, lote de ejecución y unidad de inspección a los efectos de las actividades de control contempladas por la EHE-08:

Lote de material o producto: cantidad de material o producto que se somete a recepción en su conjunto.

Lote de ejecución: parte de la obra, cuya ejecución se somete a aceptación en su conjunto.

Unidad de inspección: conjunto de las actividades, correspondientes a un mismo proceso de ejecución, que es sometido a control para la recepción de un lote de ejecución.

CUESTIÓN 5. ¿Qué obligaciones tiene la Dirección Facultativa respecto al control según la EHE-08?

El artículo 78.2.1 indica que la Dirección Facultativa, en uso de sus atribuciones y actuando en nombre de la Propiedad, tendrá las siguientes obligaciones respecto al control:

  1. Aprobar un programa de control de calidad para la obra, que desarrolle el plan de control incluido en el proyecto, y
  2. Velar por el desarrollo y validar las actividades de control en los siguientes casos:
    1. Control de recepción de los productos que se coloquen en la obra,
    2. Control de la ejecución, y

En su caso, control de recepción de otros productos que lleguen a la obra para ser transformados en las instalaciones propias de la misma.

 

CUESTIÓN 6. ¿Qué implica que los laboratorios y entidades de control de calidad deban ser independientes respecto al resto de los agentes involucrados en la obra? ¿Cómo lo demuestran?

La independencia a la que se refiere el artículo 78.2.2 de la EHE-08 implica que los laboratorios y entidades de control deben poder demostrar que no existen relaciones empresariales con el resto de los agentes involucrados en la estructura de hormigón (Autor del Proyecto, Constructor, Suministrador de los productos, etc.). Esta independencia no es exigible en el caso de que estas entidades pertenezcan a la Propiedad. Para ello, previamente al inicio de las obras, estas entidades deberán entregar a la Propiedad una declaración, firmada por persona física, que avale la referida independencia y que deberá ser incorporada por la Dirección Facultativa a la documentación final de la obra.

CUESTIÓN 7. A efectos de la EHE-08, ¿qué diferencia existe entre un laboratorio de control y una entidad de control de la calidad?

Los laboratorios de control realizan los ensayos necesarios para comprobar la conformidad de los productos a su recepción en la obra. En cambio las entidades de control de la calidad realizan la asistencia técnica del control de recepción de los productos, el control de ejecución y, en su caso, el control de proyecto.

CUESTIÓN 8. ¿Qué es el “Plan de Control” necesario para cualquier proyecto de ejecución de una estructura de hormigón?

Según el artículo 79.1 de la EHE-08, el Plan de Control es un anejo de la memoria del proyecto donde se defina la estructura de hormigón que sirve para identificar cualquier comprobación que pudiera derivarse del mismo, así como la valoración del coste total del control, que se reflejará como un capítulo independiente en el presupuesto del proyecto.

CUESTIÓN 9. ¿Qué es el “Programa de Control” de una estructura de hormigón y qué tiene que contemplar?

El artículo 79.1 de la EHE-08 establece que, de forma previa al inicio de las actividades de control en la obra, la Dirección Facultativa debe aprobar un Programa de Control, que es un documento preparado de acuerdo con el Plan de Obra del Constructor y con el Plan de Control definido en el proyecto. Deberá contemplar, al menos, los siguientes aspectos:

  1. La identificación de productos y procesos objeto de control, definiendo los correspondientes lotes de control y unidades de inspección, describen para cada caso las comprobaciones a realizar y los criterios a seguir en el caso de no conformidad;
  2. La previsión de medios materiales y humanos destinados al control con identificación, en su caso, de las actividades a subcontratar;
  3. La programación del control, en función del procedimiento de autocontrol del Constructor y el plan de obra previsto para la ejecución por el mismo;
  4. La designación de la persona encargada de las tomas de muestras, en su caso; y
  5. El sistema de documentación del control que se empelará durante la obra.

CUESTIÓN 10. ¿Qué es el control del proyecto de una estructura de hormigón y quién lo puede realizar?

Según el artículo 79.2 de la EHE-08, el control del proyecto tiene como objeto comprobar su conformidad de acuerdo con dicha instrucción y con el resto de la reglamentación que le fuera aplicable. Según el artículo 82.1, el control del proyecto trata de comprobar:

  • Que las obras a las que se refiere el proyecto están suficientemente definidas para su ejecución; y
  • Que se cumplen las exigencias relativas a la seguridad, funcionalidad, durabilidad y protección del medio ambiente establecidas por la EHE-08, así como las establecidas por la reglamentación vigente que le sean aplicables.

La Propiedad puede decidir realizar un control de proyecto a cargo de una entidad de control de calidad. Se recomienda que se realice dicho control en todo tipo de obras, pero especialmente en aquellas de importancia especial por la incidencia económica o social que pudiese derivarse de un fallo estructural, de una prematura puesta fuera de servicio o de un grave impacto medioambiental. Sin embargo, el Autor del Proyecto no pierde sus atribuciones y responsabilidades por el hecho de que la propiedad realice el control de dicho proyecto.

CUESTIÓN 11. ¿Qué es el control de recepción de los productos?, ¿qué ocurre cuando el producto dispone del marcado CE según la Directiva 89/106/CEE?, ¿qué control hay que hacer cuando no existe el marcado CE?

El control de recepción tiene como objeto, según el artículo 79.3 de la EHE-08, comprobar que las características técnicas de los productos cumplen lo exigido en el proyecto. Si los productos disponen del marcado CE, puede comprobarse su conformidad mediante la verificación de que los valores declarados en los documentos que acompañan al citado marcado CE permiten deducir el cumplimiento de las especificaciones indicadas en el proyecto, y en su defecto, en la EHE-08. En otros casos, el control de recepción de los productos comprenderá:

  1. El control de la documentación de los suministros que llegan a la obra,
  2. En su caso, el control mediante distintivos de calidad,
  3. En su caso, el control mediante ensayos.

CUESTIÓN 12. ¿Qué sistemas de seguimiento debe definir y desarrollar el Constructor para controlar la producción en la ejecución de una estructura de hormigón?

El Constructor, de acuerdo con el artículo 79.4.1 tiene la obligación de definir y desarrollar un plan de autocontrol y un sistema de gestión de los acopios (cuando el proyecto establezca un nivel de control ejecución intenso), que sea suficiente para conseguir la trazabilidad requerida de los productos y elementos que se colocan en la obra.

CUESTIÓN 13. ¿Qué debe incluir el Plan de Autocontrol del Constructor?, ¿qué se debe hacer con los resultados de las comprobaciones del autocontrol?

Según el artículo 79.4.1, el plan de autocontrol deberá incluir todas las actividades y procesos de la obra, así como incorporar el programa previsto para su ejecución, contemplando las particularidades de la misma. Los resultados de todas las comprobaciones realizadas en el autocontrol deberán registrarse en un soporte, físico o electrónico, que deberá estar a disposición de la Dirección Facultativa. Cada registro deberá estar firmado por la persona física que haya sido designada por el Constructor para el autocontrol de cada actividad. Para ello debe haber un registro actualizado de las personas responsables de efectuar en cada momento el autocontrol relativo a cada proceso de ejecución. Dicho registro se incorporará a la documentación final de la obra.

CUESTIÓN 14. ¿Cuándo se debe realizar una trazabilidad de los productos?, ¿cuándo se debe realizar la trazabilidad de los suministradores?, ¿cuándo debe el Constructor introducir un sistema de gestión de los acopios?

El artículo 80 de la EHE-08 indica que la trazabilidad entre los productos que se colocan en la obra con carácter permanente (hormigón, armaduras o elementos prefabricados) y cualquier otro producto que se haya empleado para la elaboración de la estructura se debe realizar siempre para garantizar la conformidad de la estructura. Cuando el proyecto establezca un control de ejecución intenso para la estructura, la conformidad debe ampliarse a la trazabilidad de los suministradores y de las partidas o remesas de los productos con cada elemento estructural ejecutado en la obra. En este caso, y a fin de lograr esta trazabilidad, el Constructor deberá introducir en el ámbito de su actividad un sistema de gestión de los acopios, preferiblemente mediante procedimientos electrónicos.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El impacto ambiental de una obra

Fuente: Wikipedia

El hombre impacta con sus acciones al medio ambiente, especialmente cuando actúa sobre el territorio con sus construcciones. De hecho, durante mucho tiempo la ingeniería civil parecía ser el antagonista del medio ambiente. Hoy en día el paradigma está cambiando, de forma que en los planes de estudios de ingeniería civil los aspectos ambientales cobran cada vez mayor peso. No se puede entender una actuación en ingeniería que no intente ser respetuosa con el medio ambiente.

Hablar de estos temas supone no un post, sino un blog entero dedicado en exclusivamente al impacto de las obras. Pero quien mejor nos puede introducir a este tema tan importante y apasionante es el profesor Santiago Hernández Fernández, doctor ingeniero de caminos, catedrático de Proyectos e Ingeniería Medioambiental de la Universidad de Extremadura y presidente de la Junta Rectora del Parque Nacional de Monfragüe. Santiago Hernández, además, ha sido Premio Nacional de Medio Ambiente. Para ello os dejo un pequeño vídeo de poco más de tres minutos donde nos ofrece algunos puntos de vista al respecto. Espero que os guste.

 

Gánguil o pontón

https://www.omarsub.com/dragados-marinos-equipos/buque-ganguil-elmar-dos/

El gánguil, también llamado pontón o barcaza, es una embarcación plana, con una cántara o depósito donde se almacena el material dragado y que sirve para transportarlo hasta el lugar de vertido.

Presenta una capacidad entre 50 y 2000 m³. Pueden ser autopropulsados (mar abierto) o remolcados (aguas poco profundas).

 

https://sectormaritimo.es/wp-content/uploads/2016/07/Greenport_1_3.jpg

Según el modo de descarga, los gánguiles se pueden clasificar en:

  • Gánguil cerrado: descarga por medios mecánicos auxiliares
  • Gánguil de compuerta de fondo: descarga por la apertura de una compuerta giratoria
  • Gánguil de charnela: vaciado por apertura longitudinal del casco
  • Gánguil de volcado lateral

Vamos a ver en un par de vídeos varios ejemplos de cómo funciona esta máquina de transporte. En el primer vídeo veremos un gánguil de 57 m de eslora y 11,20 m de manga, con una capacidad de transporte de 1400 toneladas de escollera.

En el segundo, podremos ver el sistema de apertura de cántara de doble sentido y de velocidad controlable.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hinca silenciosa de pilotes y tablestacas

800px-Silent_piler
Figura 1. Máquina para hincado silencioso. Fuente: https://commons.wikimedia.org/wiki/File:Silent_piler.jpg

La hinca por presión, también llamada hinca silenciosa, introduce el pilote o la tablestaca en el terreno mediante una fuerza estática vertical aplicada con gatos hidráulicos. En este caso se mide la capacidad portante del pilote directamente con el manómetro del gato, por lo que la hinca de cada pilote se comporta en realidad como un ensayo de carga correspondiente a un rechazo deseado. Es un procedimiento útil cuando no se permiten vibraciones o no hay espacio para los martillos. Su uso es habitual en el recalce de cimentaciones, donde la propia estructura sirve de reacción a los gatos. Sin embargo, es un procedimiento que presenta bajos rendimientos y tiene un campo de actuación reducido a suelos suficientemente blandos. Las secciones empleadas con este sistema deben desplazar el terreno fácilmente, como sería el caso de tablestacas o pilotes de hormigón pretensado y sección tubular sin tapa. La hinca por presión provoca un menor asentamiento del terreno, siendo eficiente en suelos arcillosos, pero menos en terrenos cohesivos densos. A veces se les provee a estos equipos de un equipo de chorro a presión (jetting) para mejorar la hinca. En la Figura 1 puede verse el procedimiento de hinca silencioso de tablestacas, donde se puede observar cómo la máquina utiliza la reacción procedente del rozamiento negativo del grupo de tablestacas ya hincadas para hincar la nueva tablestaca. En este caso, la prensa es del tipo “japonés”, pues la máquina se ha diseñado para “caminar” sobre las tablestacas ya instaladas, sin necesidad de una grúa, que serían prensas del tipo panel, o bien de una estructura de soporte móvil (Figura 2).

Figura 2. Prensa autónoma tipo panel. Fuente: https://www.liebherr.com

Aquí os dejo una explicación, no solo de la hinca por presión, sino también de otros métodos como la hinca por inyección de agua y prebarrenado.

Os dejo a continuación algunos vídeos para que veáis el funcionamiento del sistema.

En este otro vídeo podéis ver la hinca a presión de pilotes prefabricados.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.