Un depósito de relave se puede definir como un potencial yacimiento de origen minero secundario, residual, proveniente de un yacimiento geológico de minerales que han sido explotados para recuperar elementos tales como cobre, hierro, plata, oro, plomo, etc.
Os paso a continuación un manual de uso público que trata sobre las técnicas de perforación, muestreo y caracterización de estos depósitos publicado recientemente por Irene Aracena y Tania Triviño, en el contexto de Chile. Agradezco a Tania que me haya facilitado este documento para compartir con todos vosotros.
En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.
Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):
Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.
Referencias:
RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.
La perforación rotativa por corte tuvo su máximo desarrollo en la década de los 40 en las minas de carbón americanas. Hoy día su uso se limita a las rocas blandas y de pequeños diámetros, aunque en los trabajos a cielo abierto este sistema entra en competencia con el arranque directo y en los trabajos subterráneos con la perforación rotopercusiva.
Con este sistema, la fuerza de avance trata de mantener en contacto el útil de corte con la roca, de forma que el filo sea el encargado de realizar los sucesivos cortes.
El corte se realiza con bocas que presentan elementos de carburo de tungsteno u otros materiales como los diamantes sintéticos, pudiéndose distinguir varios tipos:
Bocas bilabiales o de tenedor, en diámetros de 36 a 50 mm
Bocas trialetas o multialetas, en diámetros de 50 a 115 mm
Bocas de labios reemplazables, con elementos escariadores y perfil de corte escalonado, en diámetros de 150 a 400 mm
El ángulo de ataque α del útil de corte varía entre 110º y 140º, siendo más obtuso cuanto más dura sea la roca. El ángulo del labio de corte β varía entre 75º y 80º. El ángulo de corte γ oscila entre -6º y 4º, siendo positivo en rocas blandas y negativo en las duras.
Existe una relación empírica entre el diámetro de perforación, la velocidad de penetración y el tipo de roca:
donde
Vp = Velocidad de penetración
μ = Coeficiente de fricción de la roca
E = Empuje sobre la boca
Vr = Velocidad de rotación
re = Radio efectivo de la roca
Ev = Energía específica de la roca
Ar = Área de la sección transversal del barreno
Sin embargo, en la práctica existe una desviación importante de los datos, pues el coeficiente de fricción depende del empuje y la velocidad de rotación se limita por el desgaste continuo que se produce en las bocas al aumentar el número de revoluciones.
En la práctica, se pueden definir dos campos claros de operatividad de este sistema de perforación rotativa:
Aquellas rocas de resistencia a compresión menor a 80 MPa
Rocas con contenido en sílice menor al 8%, para evitar un desgaste excesivo
La eliminación del detrito de perforación suele realizarse con un fluido de barrido que puede ser aire, en los trabajos a cielo abierto o agua o aire húmedo en los trabajos de interior. Emplear aire con inyección de agua no sólo facilita la evacuación del detritus y favorece la velocidad de avance, sino que también refrigera las bocas de perforación y disminuye su desgaste. Además, evita el colmatado de la perforación y elimina el polvo. Se necesita aproximadamente de 1000 a 1500 l/min de aire y por cada perforadora unos 250 cm3/min de agua.
En rocas muy blandas (30 a 40 MPa) puede emplearse varillaje helicoidal, de paso mayor cuanto más grande sea la velocidad de penetración, para evacuar el residuo de la perforación.
Os dejo a continuación un vídeo donde explico, en general, la perforación rotativa de rocas. Espero que os complemente la información anterior.
Referencias:
INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
En un artículo anterior explicamos los fundamentos de la perforación por extracción de material. De entre los procedimientos existentes, la perforación mecánica por rotación constituye uno de los procedimientos más habituales. Aquí vamos a explicar los principios básicos en los que se basa.
El principio utilizado por las perforadoras rotativas consiste en aplicar energía al terreno haciendo rotar un útil de corte o destroza conjuntamente con la acción de una fuerza de empuje. Este tipo de perforación se empezó a emplear en minería sobre rocas blandas; sin embargo, la rapidez de desplazamiento y montaje de estos equipos, la variedad de útiles de corte han favorecido su uso en otros campos.
El giro del útil lo realiza el motor de la perforadora en superficie, que acciona una mesa o cabeza de rotación que, a su vez, mueve el tren de varillaje y este finalmente transmite el giro al útil. Los útiles de corte que se emplean en rotación son las barrenas helicoidales, las coronas circulares y las cabezas tricono, según el tipo de terreno, del diámetro del talador y de la finalidad de la perforación (extracción de testigos o avance a destroza).
La perforación a rotación presenta características diferentes si se efectúa en roca o en suelos. En roca el avance se produce por corte y compresión: el giro se ejecuta mediante sonda o rotor y la presión por barra de carga, varillaje y empuje hidráulico. En el caso de los suelos, si estos son granulares no demasiado cohesivos, la perforación se realiza con una barrena helicoidal; en el caso de granulares muy sueltos es necesario el uso de cucharas.
El avance de la perforación rotativa en rocas se produce por la influencia simultánea de la presión que el útil de corte ejerce sobre el terreno y el efecto producido por el giro de dicho útil sobre la roca. Estas dos acciones se pueden provocar con diversos medios y potencia según las fuentes de energía y los sistemas de empuje y rotación empleados.
Las formas de energía motriz de uso más frecuente son la térmica y la eléctrica. La primera se suele utilizar en perforadoras pequeñas y medianas, generalmente montadas sobre camión en equipos accionados por el propio motor del camión o más frecuentemente por dos motores, el del camión más otro independiente. Para perforadoras montadas en equipos de mayor tamaño (diámetros de perforación superior a 250 mm, lo más normal es usar energía eléctrica a media tensión, alimentando la perforadora con corriente alterna. En algunas instalaciones mineras también se emplean equipos diésel-eléctricos cuyo coste de mantenimiento es aproximadamente un 15 % inferior al de los equipos diésel.
La aplicación de la potencia se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se efectúa con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.
Empuje y elevación
El empuje a aplicar dependerá de la resistencia del terreno y del diámetro de la perforación (Figura 3). El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 t. Los sistemas de empuje, además de proporcionar la presión suficiente sobre el fondo de la perforación, sirven para elevar y manipular el conjunto de varillas o barras que hay que añadir o quitar durante la ejecución de la perforación. Se pueden emplear sistemas mecánicos (por cadena o cremallera) o hidráulicos. Los sistemas hidráulicos están formados por dos cilindros combinados, son más potentes y fácilmente controlables.
El empuje transmitido al fondo del taladro debe ser suficiente para que el efecto conjunto sobre la roca genere una tensión superior a su resistencia a compresión. Pero tampoco conviene un empuje excesivo que aumente el desgaste del equipo. La velocidad de penetración aumenta proporcionalmente al empuje hasta un límite a partir del cual el útil se agarrota y los insertos se incrustan en la roca. En estas condiciones, el desgaste aumenta considerablemente junto con un mayor consumo de energía y, si la roca es dura, puede producirse la rotura de los dientes del útil (Figura 4).
Como suele ser habitual, os dejo unos vídeos al respecto.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
Cuando se utilizan lodos tixotrópicos para el sostenimiento de la perforación, o estamos ante la presencia de agua, la barrena helicoidal no puede retirar el material, pues éste se escurre entre los pasos de ésta. En estos casos se emplea la perforación rotativa con cazo (bucket auger boring).
La perforadora con cazo rotativo utiliza un accionamiento mecánico o hidráulico que hace girar una Kelly que se fija a la cuchara. Para perforar, la cuchara gira para permitir que la parte inferior de los dientes de corte llene la cuchara. Las aletas en el fondo de la cuchara se cierran para mantener los detritus en su interior. El fondo de la cuchara es abatible (Figura 1) para permitir el vertido de la excavación.
La perforación con cazo es más lenta, con rendimientos previstos pueden ser la mitad (40-50 m/turno) de los conseguidos con hélices. Si bien es cierto que pueden triplicar los alcanzados con cuchara de valvas. Existen variantes de cazo con dientes de tierra, con dientes de widia, de fondo plano, se entrada simple, doble, etc.
Este sistema presenta algunos inconvenientes, además de los asociados a la perforación con lodos. Cuando se extrae el cazo se ejerce cierta succión que puede inestabilizar las paredes. Este efecto es particularmente sensible con diámetros de 500 mm o menos, por lo que lo habitual es perforar con cazo por encima de los 600 mm de diámetro.
Os dejo algunos vídeos que ilustran la forma de trabajar con este tipo de perforación rotativa.
En el siguiente vídeo de Keller se muestra la perforación de un pozo de gran diámetro mediante cazos de diámetros sucesivamente mayores. Previamente se ha realizado una pantalla de pilotes secantes.
Referencias:
INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.
En una entrada anterior ya se comentaron los fundamentos básicos de la perforación a rotopercusión. El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Este sistema de perforación suele usarse en terrenos muy duros y semiduros. Estas perforadoras, tal y como se comentó anteriormente, pueden tener el martillo en cabeza o en fondo.
La potencia necesaria de un martillo se puede estimar mediante la siguiente expresión:
donde,
P = potencia del martillo
pf = presión del fluido (aire o aceite) en el interior del cilindro
s = superficie de trabajo del pistón
Ip = carrera del pistón
mp = masa del pistón
Es posible estimar la velocidad de penetración Vp1 para un diámetro dado d1, cuando, utilizando el mismo equipo en similares condiciones, se conoce la velocidad Vp2 que se alcanza para otro diámetro d2.
Referencias:
INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.
Las operaciones necesarias para la ejecución con éxito de perforación con extracción de material son el troceo, la extracción del material propiamente dicha y la contención de las paredes. Estas operaciones se realizan en ocasiones de forma simultánea a la ejecución de la perforación.
La rotura o corte del terreno puede realizarse mediante varios procedimientos diferentes. Entre otros, destacan los siguientes:
Perforación mecánica: se deben aplicar tensiones sobre el material que superen su resistencia de corte. Este efecto puede realizarse por impacto (percusión), presión (empuje), fricción (rotación) o desgaste (barrido), o por efectos combinados de ellos.
Perforación térmica: realizada mediante soplete o lanza térmica, plasma, fluido caliente o congelación.
Perforación química: realizada mediante microvoladura o por disolución.
Perforación hidráulica: provocada por efecto de un chorro de agua a alta presión, por erosión o cavitación.
Otros tipos de perforación: eléctrica, sónica, nuclear, etc.
La eliminación del detritus puede ser discontinua, en el caso de interrupción de la perforación y la eliminación mecánica del detritus, o continua, empleando un fluido en circulación (aire, agua o lodos) que, a su vez, refrigera el útil de perforación y sostiene las paredes de la perforación. La extracción hidráulica presenta dos variantes, la circulación directa y la circulación inversa.
Cuando se utiliza un fluido para extraer el detritus, la circulación directa se refiere a que el fluido de perforación y el detritus se elevan hacia la superficie entre las paredes del sondeo y el varillaje. La circulación directa es el sistema más empleado en perforaciones relativamente cortas (menos de 50 m) y hasta ahora ha sido universal en los martillos neumáticos.
En cambio, con la circulación inversa, el fluido y el material se eleva por el interior del varillaje. En este caso se mantiene inundada la perforación, siendo el ascenso del material por depresión o por inyección forzada. Se emplea también con martillos en fondo. Este método tiene interés en formaciones relativamente blandas poco permeables, con fisuración débil, poco abrasivas y de paredes estables (arcillas, algunas formaciones yesíferas y sales potásicas, por ejemplo). Es un método seguro, pero más caro, aunque mejora la limpieza del sondeo, recupera detritus de mayor tamaño y aumenta la velocidad de perforación. Normalmente se emplea un sistema de doble pared, es decir, dos tubos concéntricos: por la cámara exterior se inyecta el fluido y por la interior asciende.
La perforación en suelos es más sencilla que en roca, pero en numerosas ocasiones se necesita un sostenimiento de las paredes del sondeo para evitar su derrumbe. El sostenimiento se puede realizar mediante fluidos como el agua (equilibrio hidrostático) o lodos (películas tixotrópicas) que sirven, además, para la eliminación del detritus; o bien mediante entubaciones, que pueden ser provisionales o definitivas.
El lodo es una mezcla de agua y bentonita sódica (a veces, sepiolita) tratada, a la que en ocasiones se añade arcilla y algún aditivo. Esta mezcla forma una lámina o “cake” que impermeabiliza el sondeo, de forma que si se mantiene llena de lodo la perforación, la presión en la cara interna de la pared supera a la existente en el exterior, lo que permite la estabilidad de la pared.
En sondeos y perforaciones helicoidales, el residuo de la perforación se extrae con la propia hélice.
Según la resistencia a compresión de las rocas y el diámetro de perforación, se pueden delimitar distintos métodos de perforación, según se refleja en la Figura 4. Sin embargo, en obras de construcción, lo habitual son los métodos rotopercutivos en la perforación de rocas, mientras que en minería a cielo abierto, también se utiliza la perforación rotativa.
Referencias:
INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.
En una entrada anterior se describió el sistema de montaje de perforación mediante jumbos. En esta entrada, el sistema de montaje será el de vagones y carros perforadores. Los vagones y carros perforadores son las unidades remolcadas o autoportantes que permiten trasladar martillos medianos o pesados, de accionamiento neumático o hidráulico, y que están pensadas para perforaciones a cielo abierto.
La mayoría de estos equipos disponen de un sistema de avance con potencia suficiente para alcanzar profundidades superiores a 50 m, longitud que rebasa el límite de los 20 m impuesto por las desviaciones que son más habituales en este tipo de perforación.
Los equipos más simples, diseñados para excavación en banco y explotación de minas y canteras, constan de un chasis remolcable sobre el que se apoya un martillo de fondo ligero montado sobre una deslizadera de unos 2-2,5 m con avance de cadena.
Los equipos pesados, con diámetro superior a 12 cm y 3 – 4 t, montados sobre orugas, disponen de una deslizadera de mayor longitud (5-6 m) y de un sistema de avance con la potencia adecuada al peso del varillaje o sarta de tubos que se requiere en perforaciones más profundas.
Os dejo algunos vídeos al respecto:
Referencia:
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.
En este artículo me gustaría incidir en el tema de la instalación de fibra óptica. La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos y telecomunicaciones, consiste en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.
Sin embargo, la perforación horizontal dirigida se está convirtiendo en una alternativa real y económica frente a los métodos tradicionales de aperturas de zanjas. A continuación os dejo el ejemplo de máquinas que utilizan esta tecnología. El vídeo que presento es de la empresa Ditch Witch. En este caso, la máquina puede realizar trabajos de instalación de tubos o fibra óptica en tramos de 300 a 400 m, presenta una fuerza de tiro de 26,7 toneladas y puede perforar incluso roca.
Raise Boring Rig (RBR) constituye un sistema de construcción de pozos en roca de hasta 2000 m de profundidad. Se trata de un equipo de perforación que se instala por encima del terreno. Se taladra una perforación piloto, con un ángulo que puede ser de hasta 45º. Se perfora hasta llegar al túnel o caverna ya existente. Posteriormente se retira la broca piloto y se fija un escariador a la sarta de perforación, que amplía la perforación hacia arriba.
Os dejo a continuación un vídeo de la empresa Herrenknecht donde podéis ver el procedimiento constructivo. Espero que os guste.
Referencia:
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.