Optimización de puentes mixtos mediante aceptación por umbrales

Hemos presentado en el 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, una comunicación sobre la optimización de puentes mixtos mediante el algoritmo de aceptación por umbrales. Este congreso se desarrolla en Barcelona, del 11 al 15 de julio del 2022. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La complejidad de la optimización de los puentes se debe, entre otras razones, a que el diseño de este tipo de estructuras presenta muchas variables. Estas generan un espacio de soluciones con demasiadas posibilidades para ser evaluadas en su totalidad. Por ello, en este trabajo se ha realizado la optimización de un puente mixto de vigas cajón considerando el coste como función objetivo mediante el uso de métodos heurísticos. Para lograr este objetivo, se ha elegido un Operador de Aceptación de Umbral con Mutación (TAMO) para la optimización estructural de un puente compuesto de acero-hormigón. La adición de celdas en las conexiones entre almas y alas mejora el comportamiento estructural de la sección transversal. El diseño de doble acción compuesta propuesto permite reducir el número de rigidizadores para este caso de estudio. Este método automatiza el proceso de optimización de un diseño inicial de un puente de material compuesto, permitiendo alcanzar diseños óptimos sin necesidad de contar con una experiencia significativa en el diseño estructural de puentes.

Abstract

The bridge optimization’s complexity is due to the design of this type of structure’s many variables. These generate a space of solutions with too many possibilities to be evaluated in their totality. Because of this, in this work, the optimization of a steel-concrete composite box girder bridge has been performed considering cost as an objective function by using heuristic methods. To achieve this objective, a Threshold Accepting with a Mutation Operator (TAMO) has been chosen for the structural optimization of a steel-concrete composite bridge. The addition of cells on the connections between webs and flanges improves the cross-section structural behaviour. The proposed double composite-action design allows for reducing the number of stiffeners for this study case. This method automatizes the optimization process of an initial design of a composite bridge, allowing it to reach optimum designs without significant expertise in bridge structural design.

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Steel-concrete composite bridge optimization through threshold accepting. 11th International Conference on Bridge Maintenance, Safety and Management IABMAS 2022, 11-15 July 2022, Barcelona, Spain.

Descargar (PDF, 760KB)

 

Optimización heurística de pórticos de paso de carretera de hormigón armado

A continuación recojo uno de los primeros trabajos que hizo nuestro grupo de investigación en el año 2005 sobre optimización heurística de estructuras de hormigón. Se trata de la optimización mediante varias heurísticas (máximo gradiente, aceptación por umbrales y recocido simulado) de un pórtico de paso de carretera de hormigón armado. En este caso se consideraron 28 variables para definir una solución de pórtico. Este artículo se publicó en la revista Hormigón y Acero. Espero que os sea de interés.

 

Referencia:

CARRERA, J.M.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2005). Optimización heurística de pórticos de paso de carretera de hormigón armado. Hormigón y Acero, 236: 85-95.

Descargar (PDF, 318KB)

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

Técnicas heurísticas para el diseño de pasarelas mixtas

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este trabajo ha sido aplicar técnicas de optimización heurística a un puente peatonal compuesto de hormigón y acero, modelado como una viga biapoyada. Se ha desarrollado un programa específico en Fortran, capaz de generar puentes peatonales, comprobar todos sus estados límite y evaluar su coste. Se han utilizado en este trabajo los siguientes algoritmos: búsqueda local de descenso (DLS), un recocido simulado híbrido con un operador de mutación (SAMO2) y una optimización de enjambres de luciérnagas (GSO) en dos variantes. Los resultados se compararon según el coste más bajo. Los algoritmos GSO y DLS combinados obtuvieron los mejores resultados en términos de coste. Además, se ha estudiado la comparación entre las emisiones de CO2 asociadas a la cantidad de materiales obtenidos por cada técnica heurística y la solución de diseño original. Finalmente, se realizó un estudio paramétrico en función de la longitud de vano del puente peatonal.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/9/16/3253

ABSTRACT:

The objective of this work was to apply heuristic optimization techniques to a steel-concrete composite pedestrian bridge, modeled like a beam on two supports. A program has been developed in Fortran programming language, capable of generating pedestrian bridges, checking them, and evaluating their cost. The following algorithms were implemented: descent local search (DLS), a hybrid simulated annealing with a mutation operator (SAMO2), and a glow-worms swarm optimization (GSO) in two variants. The first one only considers the GSO and the second combines GSO and DLS, applying the DSL heuristic to the best solutions obtained by the GSO. The results were compared according to the lowest cost. The GSO and DLS algorithms combined obtained the best results in terms of cost. Furthermore, a comparison between the CO2 emissions associated with the amount of materials obtained by every heuristic technique and the original design solution were studied. Finally, a parametric study was carried out according to the span length of the pedestrian bridge.

Keywords: pedestrian bridgecomposite structuresoptimizationmetaheuristicsstructural design

REFERENCIA:

Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López-Desfilis, V.J.; Martí, J.V. Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Appl. Sci. 20199, 3253.

Descargar (PDF, 3.69MB)

 

 

Optimización de pasarelas de sección en cajón mediante metamodelos Kriging

Uno de los objetivos del proyecto DIMALIFE es la obtención de procedimientos novedosos y rápidos para optimizar estructuras mediante metamodelos. Los algoritmos heurísticos siguen un proceso inteligente en el que se modifican las variables de diseño con el fin de optimizar la función objetivo y verificar las restricciones. Metodologías como la optimización del diseño basada en metamodelos, como es el caso del método Kriging, proporcionan una superficie de respuesta de la muestra que puede ser optimizada.

A continuación os dejo una comunicación que presentamos en el pasado congreso IALCCE 2018 en Gante (Bélgica) sobre la optimización de una pasarela hiperestática de sección en cajón de hormigón postesado. En este trabajo, la optimización heurística convencional y la optimización heurística basada en kriging se aplican al mismo estudio de caso. En este caso se trata de una pasarela peatonal continua de vigas de cajón. La comparación muestra las ventajas y desventajas de ambas metodologías. Espero que os sea de interés.

ABSTRACT:

The structural optimization aims to determine the best solutions for the project objectives while guaranteeing the structural constraints. The heuristic algorithms follow an intelligent process in which the design variables are modified for the purpose of optimizing the objective function and verify the constraints. Methodologies like metamodel-based design optimization or surrogate-based optimization carry out a pseudo optimization applicable to structures. The kriging method provides a response surface from the sample that can be optimized. In this paper, conventional heuristic optimization and kriging-based heuristic optimization are applied to the same case study. This case involves a continuous box-girder pedestrian bridge. The comparison of the methodologies shows the advantages and disadvantages of both methodologies. Furthermore, a major compression of both processes gain a better understanding of the methods and the most suitable cases.

REFERENCE:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V. (2018). Kriging-based heuristic optimization of a continuous concrete box-girger pedestrian bridge. Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), Ganth (Belgium), October 2018, pp. 2753-2759. ISBN: 9781138626331

Descargar (PDF, 592KB)

 

Optimización de rutas mediante la búsqueda en entornos variables y aceptación por umbrales estocásticos

Búsqueda local mejorada por el criterio de aceptación por umbrales

RESUMEN

La ponencia presenta un procedimiento de resolución aproximada en la optimización económica de rutas de reparto con flotas de vehículos heterogéneas y horarios de servicio flexibles VRPHESTW basado en la búsqueda probabilista en entornos variables y en la aceptación por umbrales estocásticos. Se ha ensayado en un problema concreto la eficacia de la búsqueda con múltiples operadores, así como la ventaja del empleo de la aceptación por umbrales. Sin embargo, la introducción de ruidos estocásticos gaussianos en los umbrales no ha representado una mejora significativa del procedimiento.

 

Referencia:

MEDINA, J.R.; YEPES, V. (2004). Optimización de rutas mediante la búsqueda en entornos variables y aceptación por umbrales estocásticos, en Larrodé, E. y Castejón, L. (Eds.): Infraestructuras de Transporte y Logística como Motor de Desarrollo de las Regiones EuropeasActas del VI Congreso de Ingeniería del Transporte. Vol. 4, pp. 1985-1992. Zaragoza, 23-25 de junio. ISBN (Vol. 4): 84-609-1364-3.

Descargar (PDF, 254KB)

Trabajos Fin de Máster sobre optimización de puentes postesados con modelos Kriging

El martes 18 de septiembre de 2018 tuvo lugar la defensa de dos trabajos fin de máster complementarios que versaron sobre la optimización de puentes postesados con modelos tipo Kriging. Se propuso una nueva metodología para el estudio de soluciones de este tipo de puentes que conseguía reducciones de coste entorno al 7%. Sus autores fueron Alejandro Brun Izquierdo y Lorena Yepes Bellver, y obtuvieron la máxima calificación de Sobresaliente 10, Matrícula de Honor. Sus directores fueron los profesores Julián Alcalá González y Tatiana García Segura. Estos TFMs se enmarcan dentro del proyecto de investigación DIMALIFEDiseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Además, se da la circunstancia que estos dos estudiantes son los primeros matriculados en el Doble Máster en Ingeniería de Caminos, Canales y Puertos e Ingeniería del Hormigón. ¡Enhorabuena a todos ellos!

Optimización de la energía necesaria para construir puentes losa postesados

Acaban de publicarnos en la revista Technologies un artículo que aplica el algoritmo de recocido simulado a la optimización del coste y de la energía empleada en un puente losa postesado con tablero aligerado. Se resuelve un problema complejo de optimización de 33 variables de diseño. Como resultados interesantes cabe señalar que, en ocasiones, las soluciones de menor coste no son necesariamente las que menos energía consumen. El artículo se ha publicado en abierto y se puede descargar en la web. Aquí tenéis la referencia y el artículo completo.

 

Referencia:

ALCALÁ, J.; GONZÁLEZ-VIDOSA, YEPES, V.; MARTÍ, J.V. (2018). Embodied energy optimization of prestressed concrete slab bridge decks. Technologies, 6(2):43. doi:10.3390/technologies6020043 (link)

Descargar (PDF, 1.88MB)

Revisión de los procedimientos de optimización heurística de las estructuras

Figura 1. Diseño tradicional de estructuras por prueba y error (Yepes, 2017)

El diseño de las estructuras se ha basado fundamentalmente en la experiencia del ingeniero proyectista. La topografía y las condiciones de tráfico, entre otros, determinan el diseño de un puente. A partir de ahí, las dimensiones de la sección transversal, el tipo de hormigón y la disposición general de las armaduras se definen atendiendo a la experiencia profesional y a las recomendaciones y criterios de diseño (Figura 1). A continuación, se ajustan el resto de variables, tras comprobar el cumplimiento de los estados límite último y de servicio. Si el proyectista quiere mejorar el diseño propuesto, normalmente se realiza un proceso de prueba y error, de forma que tras varios tanteos, se intenta reducir el consumo de materiales, y por tanto, el coste de la estructura. Frente a este planteamiento, los métodos heurísticos emplean técnicas basadas en la inteligencia artificial para seleccionar un diseño, analizar la estructura, controlar las restricciones y rediseñar la estructura modificando las variables hasta conseguir optimizar la función objetivo.

Cohn y Dinovitzer (1994) revisaron la investigación realizada en su momento en relación con la optimización de las estructuras y señalaron la brecha existente entre los estudios teóricos y la aplicación en problemas estructurales reales. Sarma y Adeli (1998) analizaron años más tarde los estudios relacionados con la optimización matemática de las estructuras, complementada más recientemente por Hare et al. (2013) que estudiaron la aplicación de los algoritmos heurísticos en la optimización estructural. Los algoritmos heurísticos difieren en cuanto a planteamiento y aplicabilidad de los métodos matemáticos exactos. De hecho, la optimización heurística resulta muy efectiva pues, aunque no garantiza la obtención del óptimo global del problema, proporciona soluciones casi óptimas en tiempos de cálculo razonables. Esta ventaja cobra importancia en la optimización de estructuras reales, donde el número de variables crece extraordinariamente de forma que desborda el tiempo de cálculo de los métodos exactos de optimización. Además, la programación matemática requiere el cálculo de gradientes de las restricciones, mientras que la optimización heurística incorpora las restricciones de diseño de una manera directa (Lagaros et al., 2006).

Las técnicas metaheurísticas utilizan estrategias de búsqueda para localizar óptimos locales en grandes espacios de soluciones de forma efectiva. Un ejemplo de ello son los Algoritmos Genéticos (Genetic Algorithms, GAs), que son procedimientos de búsqueda poblacionales inspirados en la evolución natural (Holland, 1975). Así, los GAs generan soluciones de alta calidad a través del cruce genético con otros individuos de una población y la mutación de algunas de sus características a lo largo de generaciones. Los padres suelen seleccionarse atendiendo a su aptitud (Coello, 1994) y los hijos mantienen ciertas características de sus padres. En cada generación sobreviven los hijos con mayores aptitudes. Además, para evitar la convergencia prematura del algoritmo, se utiliza un operador de mutación, al igual que ocurre en la Naturaleza, que cambia aleatoriamente de vez en cuando alguna de las características de las nuevas soluciones. Una variante a esta técnica son los Algoritmos Meméticos (Moscato, 1989), donde cada individuo de la nueva generación se mejora mediante una búsqueda local con el objetivo de mejorar los genes para que los padres obtengan mejores resultados en las siguientes generaciones. Esta técnica, por tanto, aplica los GAs a poblaciones de óptimos locales.

La inteligencia de enjambre (swarm intelligence) es una metaheurística poblacional empleada en los problemas de optimizacón. Estos algoritmos imitan el comportamiento colectivo de los sistemas descentralizados y auto-organizados, tales como algunas colonias de insectos, basándose en la interacción entre los vecinos, pero que siguen un patrón global. Los algoritmos de enjambre difieren en filosofía de los algoritmos genéticos porque utilizan la cooperación en lugar de la competencia (Dutta et al., 2011). Entre los algoritmos pertenecientes a este grupo, basados en el comportamiento biológico, destaca la optimización de colonias de hormigas (Ant Colony Optimization, ACO), la optimización de enjambre de partículas (Particle Swarm Optimization, PSO), las colonias de abejas artificiales (Artificial Bee Colony, ABC), la optimización en enjambres de luciérnagas (Glowworm Swarm Optimization, GSO), entre otros. ACO basa su estrategia en el comportamiento de las hormigas, que dejan un rastro de feromonas para encontrar alimento de forma efectiva (Colorni et al., 1991); PSO simula un sistema social simplificado (Kennedy y Eberhart, 1995); ABC imita el comportamiento alimentario forrajero de las abejas (Karaboga y Basturk, 2008); GSO imita un movimiento de las luciérnagas hacia los vecinos más brillantes (Krishnanand y Ghose, 2009).

Las metaheurísticas poblacionales presentan una amplia capacidad de búsqueda en paralelo y una fuerte robustez. Sin embargo, para mejorar la intensificación de la búsqueda, estos algoritmos suelen combinarse con otras heurísticas de búsqueda local. Esta hibridación consigue explotar la diversificación en la búsqueda poblacional con la intensificación de la búsqueda local. Luo y Zhang (2011) comprobaron que el algoritmo híbrido presenta una convergencia más rápida, una mayor precisión y es más efectivo en la optimización de problemas ingenieriles. Blum et al. (2011) estudiaron las ventajas de la hibridación de las metaheurísticas en el caso de la optimización combinatoria.

El recocido simulado (Simulated Annealing, SA), propuesto por Kirkpatrick et al. (1983), constituye uno de los algoritmos utilizados en la optimización estructural. Este algoritmo se basa en el fenómeno físico del proceso de recocido de los metales. La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. SA presenta la ventaja de admitir soluciones de peor calidad al principio de la búsqueda, lo cual permite eludir óptimos locales de baja calidad. La aceptación por umbrales (Threshold Accepting, TA), propuesto por Dueck y Scheuer (1990), tolera también opciones de peor calidad para eludir los óptimos locales. La diferencia entre SA y TA es que el criterio de aceptación de una solución peor es probabilista en el primer caso y determinista en el segundo. Los algoritmos genéticos se han hibridado con el recocido simulado en el diseño óptimo de puentes prefabricados de hormigón pretensado (Martí et al., 2013; Martí et al., 2016) y vigas en I de hormigón armado (RC) (Yepes et al., 2015a). Otras estrategias de hibridación también han demostrado su eficiencia con PSO (Shieh et al., 2011, Valdez et al., 2011, Wang et al., 2013) y ACO (Behnamian et al, 2009, Chen et al., 2012).

Qu et al. (2011) señalaron la lentitud en la convergencia de los algoritmos GSO; del mismo modo Zhang et al. (2010) apuntaron ciertas deficiencias de estos algoritmos en la búsqueda del óptimo global. Es por ello que se ha hibridado SA con GSO (García-Segura et al., 2014c, Yepes et al., 2015b) para combinar la diversificación de la búsqueda de GSO con la intensificación de la búsqueda de SA para encontrar de forma efectiva un óptimo de elevada calidad. García-Segura et al. (2014c) mostraron cómo un algoritmo híbrido de optimización de enjambre de luciérnagas (SAGSO) obtuvo resultados considerablemente mejores en cuanto a calidad y tiempo de cálculo. SAGSO superó al GSO en términos de eficiencia, precisión y convergencia. Sin embargo, se requiere una buena calibración para garantizar soluciones de alta calidad con un tiempo de cómputo corto.

La búsqueda de la armonía (Harmony Search, HS) constituye una heurística propuesta por Geem et al. (2001) inspirada en el jazz, donde se trata de armonizar u construir sucesiones de acordes razonables. Las notas, los instrumentos y la mejor armonía representan los valores, las variables y el óptimo global. Alberdi y Khandelwal (2015) compararon ACO, GA, HS, PSO, SA y TS en la optimización del diseño de marcos de acero, comprobando que los mejores resultados se obtenían con HS. La búsqueda de la armonía se ha utilizado para optimizar columnas rectangulares de hormigón armado (de Medeiros y Kripka, 2014), forjados compuestos (Kaveh y Shakouri Mahmud Abadi, 2010) y pórticos planos de hormigón armado (Akin y Saka, 2015). Alia y Mandava (2011) recogieron en su trabajo las variantes utilizadas para hibridar con HS. García-Segura et al. (2015) emplearon un algoritmo de búsqueda de la armonía hibridada con la aceptación por umbrales para encontrar diseños óptimos sostenibles de puentes peatonales de hormigón postesado.

La optimización de los puentes atrajo la atención de los ingenieros a partir de la década de los años 70, incluyendo los puentes viga de acero, (Wills, 1973), el refuerzo de los puentes losa (Barr et al., 1989), los puentes viga de hormigón pretensado (Aguilar et al., 1973, Lounis y Cohn, 1993), y los puentes en cajón postesados construidos “in situ” (Bond, 1975; Yu et al., 1986). Desde la aparición de la inteligencia artificial, se ha puesto mayor énfasis en el uso de técnicas de optimización heurística para optimizar las estructuras. Srinivas y Ramanjaneyulu (2007) usaron redes neuronales artificiales y algoritmos genéticos para optimizar el coste de un puente de vigas en T. Rana et al. (2013) propusieron una optimización evolutiva para minimizar el coste de una estructura de puente continuo de hormigón pretensado de dos tramos. Martí et al. (2013) implementaron un algoritmo de recocido simulado híbrido para encontrar las soluciones más económicas de puentes prefabricados de hormigón pretensado de vigas artes. El uso de refuerzos de fibra de acero en ese tipo de puente se estudió posteriormente con algoritmos meméticos (Martí et al., 2015). Se propusieron algoritmos genéticos para optimizar las cubiertas poliméricas reforzadas con fibras híbridas y los puentes atirantados (Cai y Aref, 2015).

También se han optimizado otro tipo de estructuras con algoritmos heurísticos, como los forjados prefabricados (de Albuquerque et al., 2012), columnas de hormigón armado (Park et al., 2013; Nigdeli et al., 2015), columnas de acero (Kripka y Chamberlain Pravia, 2013), marcos espaciales de acero (Degertekin et al., 2008), marcos de hormigón armado (Camp y Huq, 2013), pórticos de hormigón armado (Payá-Zaforteza et al., 2010), vigas en I de hormigón armado (García-Segura et al., 2014c; Yepes et al., 2015a), pórticos de carreteras (Perea et al., 2008), pilas altas de viaductos (Martínez et al., 2011; 2013), muros de contención (Gandomi et al., 2015; Pei y Xia, 2012; Yepes et al., 2008, 2012; Molina-Moreno et al., 2017a), zapatas de hormigón armado (Camp y Assadollahi, 2013; Camp y Huq, 2013), bóvedas de pasos inferiores en carreteras (Carbonell et al., 2011) y estribos de puentes (Luz et al., 2015).

Referencias:

  • Aguilar, R.J.; Movassaghi, K.; Brewer, J.A.; Porter, J.C. (1973). Computerized optimization of bridge structures. Computers & Structures, 3(3), 429–442.
  • Akin, A.; Saka, M.P. (2015). Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79–95.
  • Alberdi, R.; Khandelwal, K. (2015). Comparison of robustness of metaheuristic algorithms for steel frame optimization. Engineering Structures, 102, 40–60.
  • Alia, O.M.; Mandava, R. (2011). The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1), 49–68.
  • Barr, A.S.; Sarin, S.C.; Bishara, A.G. (1989). Procedure for structural optimization. ACI Structural Journal, 86(5), 524–531.
  • Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644.
  • Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135–4151.
  • Bond, D. (1975). An examination of the automated design of prestressed concrete bridge decks by computer. Proceedings of the Institution of Civil Engineers, 59(4), 669–697.
  • Cai, H.; Aref, A.J. (2015). A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), 583–594.
  • Camp, C.V.; Assadollahi, A. (2013). CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm. Structural and Multidisciplinary Optimization, 48(2), 411–426.
  • Camp, C.V.; Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363–372.
  • Carbonell, A.; González-Vidosa, F.; Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159.
  • Chen, S.M.; Sarosh, A.; Dong, Y.F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575–3589.
  • Coello, C. (1994). Uso de Algoritmos Genéticos para el Diseño Óptimo de Armaduras. In Congreso Nacional de Informática “Herramientas Estratégicas para los Mercados Globales”, pp. 290–305. Fundación Arturo Rosenblueth, México, D.F.
  • Cohn, M.Z.; Dinovitzer, A.S. (1994). Application of Structural Optimization. Journal of Structural Engineering, 120(2), 617–650.
  • Colorni, A.; Dorigo, M.; Maniezzo, V. (1991). Distributed optimization by ant colonies. In Proceeding of ECALEuropean Conference on Artificial Life, pp. 134–142. Paris: Elsevier.
  • de Albuquerque, A.T.; El Debs, M.K.; Melo, A.M.C. (2012). A cost optimization-based design of precast concrete floors using genetic algorithms. Automation in Construction, 22, 348–356.
  • de Medeiros, G.F. Kripka, M. (2014). Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, 185–194.
  • Degertekin, S.O.; Saka, M.P.; Hayalioglu, M.S. (2008). Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), 197–205.
  • Dueck, G.; Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175.
  • Dutta, R.; Ganguli, R.; Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018.
  • Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. (2015). Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, 72–84.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014b). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014c). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.
  • Hare, W.; Nutini, J.; Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19–28.
  • Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA.
  • Karaboga, D.; Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.
  • Kaveh, A.; Shakouri Mahmud Abadi, A. (2010). Cost optimization of a composite floor system using an improved harmony search algorithm. Journal of Constructional Steel Research, 66(5), 664–669.
  • Kennedy, J.; Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE.
  • Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.
  • Kripka, M.; Chamberlain Pravia, Z.M. (2013). Cold-formed steel channel columns optimization with simulated annealing method. Structural Engineering and Mechanics, 48(3), 383–394.
  • Krishnanand, K.N.; Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119.
  • Lagaros, N.D.; Fragiadakis, M.; Papadrakakis; M.; Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering Structures, 28(12), 1623–1633.
  • Lounis, Z.; Cohn, M.Z. (1993). Optimization of precast prestressed concrete bridge girder systems. PCI Journal, 38(4), 60–78.
  • Luo, Q.F.; Zhang, J.L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823–827.
  • Luz, A.; Yepes, V.; González-Vidosa, F.; Martí, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Martínez-Martín, F. J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723–740.
  • Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.
  • Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017a). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134, 205-216.
  • Molina-Moreno, F.; Martí, J.V.; Yepes, V. (2017b). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884.
  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826). Caltech, Pasadena, California, USA.
  • Nigdeli, S.M.; Bekdas, G.; Kim, S.; Geem, Z. W. (2015). A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), 1097–1109.
  • Park, H.; Kwon, B.; Shin, Y.; Kim, Y.; Hong, T.; Choi, S. (2013). Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings. Energies, 6(11), 5609–5624.
  • Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.
  • Payá-Zaforteza, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693–704.
  • Payá-Zaforteza, I.; Yepes, V.; Hospitaler, A.; González-Vidosa, F. (2009). CO2-optimization of reinforced concrete frames by simulated annealing. Engineering Structures, 31(7), 1501–1508.
  • Pei, Y.; Xia, Y. (2012). Design of Reinforced Cantilever Retaining Walls using Heuristic Optimization Algorithms. Procedia Earth and Planetary Science, 5, 32–36.
  • Qu, L.; He, D.; Wu, J. (2011). Hybrid Coevolutionary Glowworm Swarm Optimization Algorithm with Simplex Search Method for System of Nonlinear Equations. Journal of Information & Computational Science, 8(13), 2693– 2701.
  • Rana, S.; Islam, N.; Ahsan, R.; Ghani, S.N. (2013). Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure. Engineering Structures, 46, 38–48.
  • Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.
  • Shieh, H.L.; Kuo, C.C.; Chiang, C.M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365–4383.
  • Srinivas, V.; Ramanjaneyulu, K. (2007). An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks. Advances in Engineering Software, 38(7), 475–487.
  • Valdez, F.; Melin, P.; Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625–2632.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • Wills, J. (1973). A mathematical optimization procedure and its application to the design of bridge structures. Wokingham, Berkshire, United Kingdom.
  • Yepes, V.; Alcalá, J.; Perea, C.; González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821–830.
  • Yepes, V.; Díaz, J.; González-Vidosa, F.; Alcalá, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Revista de la Construcción, 8(2), 95-109.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yu, C.H.; Gupta, N.C. Das; Paul, H. (1986). Optimization of prestressed concrete bridge girders. Engineering Optimization, 10(1), 13–24.
  • Zhang, J.; Zhou, G.; Zhou, Y. (2010). A New Artificial Glowworm Swarm Optimization Algorithm Based on Chaos Method. In B. Cao, G. Wang, S. Chen, & S. Guo (Eds.), Quantitative Logic and Soft Computing 2010, Vol. 82, pp. 683–693. Berlin, Heidelberg: Springer Berlin Heidelberg.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.