
Life-Cycle Analysis and Assessment in Civil Engineering: Towards an
Integrated Vision – Caspeele, Taerwe & Frangopol (Eds)

© 2019 Taylor & Francis Group, London, ISBN 978-1-138-62633-1

Kriging-based heuristic optimization of a continuous concrete
box-girder pedestrian bridge

V. Penadés-Plà
Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, Valencia, Spain

T. García-Segura
Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València,
Valencia, Spain

V. Yepes & J.V. Martí
Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, Valencia, Spain

ABSTRACT The structural optimization aims to determine the best solutions for the project objectives while
guaranteeing the structural constraints. The heuristic algorithms follow an intelligent process in which the
design variables are modified for the purpose of optimizing the objective function and verify the constraints.
Methodologies like metamodel-based design optimization or surrogate-based optimization carry out a pseudo-
optimization applicable to structures. The kriging method provides a response surface from the sample that can
be optimized. In this paper, conventional heuristic optimization and kriging-based heuristic optimization are
applied to the same case study. This case involves a continuous box-girder pedestrian bridge. The comparison
of the methodologies shows the advantages and disadvantages of both methodologies. Furthermore, a major
compression of both processes gain a better understanding of the methods and the most suitable cases.

1 INTRODUCTION

Bridges are one of the most significant structures
in civil engineering. Box-girder bridges can be con-
structed using many methods as cast in situ or precast
in segments and then erected and prestressed (Sennah
& Kennedy 2002). Besides, this type of bridge has
been found in beam, portal frame, arc, cable-stayed,
and suspensions bridges. Its strength against positive
and negative bending moments and also to torsional
stresses combined with a low dead load have led this
type of bridge to be one of the most widespread used
nowadays. Therefore, much research has been done to
promote understanding and achieve a proper design.

The main objective of structural engineering is
to achieve the maximum safety with the minimum
investment. This goal is not easy as long as the
structural problem is characterized by a wide variety
of variables with multiple combinations. In conven-
tional design, the bridge designer decides the over-all
structural design according to the topographical and
traffic conditions, and the cross section geometry is
defined based on design criteria and professional expe-
rience. This decision conditions the other variables
that are adjusted to guarantee structural safety. The
post-tensioned steel and reinforced steel are designed
according to the restriction established by the codes.

Therefore, only the designers with a large experience
obtain an economical, safe, and simple design.

Heuristic optimization process is presented as an
alternative to achieve a solution inside the design space
that reaches the objective according to the constraints
imposed by the codes. This technique has been used
to optimize many types of structures, such as pre-
cast concrete floors (de Albuquerque et al. 2012), steel
reinforced concrete columns (Park et al. 2013), rein-
forced concrete columns (Nigdeli et al. 2015; Park et
al. 2013), reinforced concrete frames (Camp & Huq
2013), reinforced concrete I-beams (García-Segura et
al. 2014), prestressed concrete precast road bridges
(Martí et al. 2016), and post-tensioned concrete box-
girder bridges (García-Segura et al. 2015, 2017). Due
to the high complexity of the structural optimization
problems, heuristic or metaheuristic algorithms have
the best behavior, obtaining a solution with a lower
computational cost. However, the structural optimiza-
tion problems depend on a large number of design
variable with various constrains. This causes that the
computational cost remains excessive (Simpson et al.
2004). One effective solution to reduce the computa-
tional cost of the optimization is the use of approximate
response surfaces obtained by surrogate models or
metamodels. One of the most encouraging metamod-
els used in the structural optimization is the kriging
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model (Cressie 1990). This model provides an opti-
mal interpolation based on regression against observed
values of surrounding data points, weighted according
to spatial covariance values.

In this study, a three-span continuous box-girder
pedestrian bridge will be cost-optimized in two dif-
ferent ways: first using a conventional heuristic opti-
mization, and then using a metamodel-based heuristic
optimization based on kriging. Finally, a comparison
between both methodologies will be shown and the
convenience of kriging model for the robust design
will be discussed.

2 OPTIMIZATION

Optimization is a process that tries to find the best
possible solution. This problem is defined by one
or several objective functions, f (mono-objective or
multi-objective) that satisfy some constraints, gj.

where x1, x2, x3, . . . ,xn are the design variables chosen
for the formulation.

Optimization problem is carried out by means of
algorithms that establish a set of rules to be followed
in solving operational problems. Optimization algo-
rithms can be divided in exact algorithms and heuristic
algorithms. On the one hand, exact algorithms reach
the global optimum. On the other hand, heuristic algo-
rithms achieve good solutions without guaranteeing
the global optimum, but with a lower computational
cost. Complex optimization problems like structural
optimization are defined for a large number of design
variables, and thus, the heuristic algorithms have the
best behavior to solve this kind of problems.

Heuristic algorithms try to simulate simple events
observed in the nature. In general, the traditional
heuristic algorithms look for a local optimum, while
the metaheuristic algorithms have tools to avoid local
optimums to find a better solution. Metaheuristic
algorithms follow an iterative process in which a
solution of the problem is defined to after evaluate
aptitude by objective function (Figure 1). Last years,
some metaheurisitc algorithms have been applied to
structural optimization such as variable neighbor-
hood search (Molina-Moreno et al. 2017), ant colony
optimization (Martinez-Martin et al. 2013), threshold
function (Kutylowski & Rasiak 2014), memetic algo-
rithm (Martí et al. 2015), glowworm swarm algorithm
(García-Segura et al. 2014;Yepes et al. 2015) and simu-
lated annealing (García-Segura & Yepes 2016) among
others.

However, despite the advances in technology, the
computational cost of the structural optimization is
still very high. This high computational cost can be
reduced by means of the so called surrogate models

Figure 1. General flow chart of conventional heuristic
optimization process.

Figure 2. General flow chart of metamodel-based heuristic
optimization.

or metamodels (Simpson et al. 2004). These mod-
els obtain a response surface from a set of points of
the design space to predict more quickly the objec-
tive function of the optimization problem. The most
used models are: polynomial-based response surface
model, the neural networks based surrogate model, and
the kriging model. The polynominal-based response
surface model is likely awkward in complex engineer-
ing problems, and the neural network-based model
requires many sample points and much computational
time for the training (Forrester & Keane 2009). The
kriging model is one promising metamodel as it is
more flexible than polynominal-based models and it
is not as complicated and time consuming as neural
network-based techniques (Li et al. 2010). Figure 2
shows the general flow chart of the metamodel-based
heuristic optimization.
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Figure 3. Box-grider cross section.

Figure 4. Pedestrian bridge and duct layout.

3 CASE OF STUDY

3.1 Pedestrian bridge description

The structure of the study is a concrete box-girder
pedestrian bridge deck with three spans of 40-50-
40 meters length (following the relation in which the
external span is 80% of the central span). The width
of the pedestrian bridge is 3.5 meters. The other geo-
metrical conditions of the cross section are defined by
seven variables (Figure 3): the depth (h), the width of
the bottom slab (b), the width of the web inclination
(d), the thickness of the top slab (es), the thickness
of the external cantilever section (ev), the thickness
of the bottom slab (ei), and the thickness of the webs
(ea).This study proposes 15 cm as the minimum thick-
ness. The haunch (t), is calculated from the values
of other variables (equation 3) according to Schlaich
and Scheff’s (1982) recommendation. In addition, the
haunch must provide the space to contain the ducts in
the high and low points.

The strength of the concrete is defined by de vari-
able fck , that can take a value inside a range between
35 MPa and 100 MPa.

The post-tensioned steel formed by 0.6 inch strands
is prestressed to 195.52 kN. The ducts are symmet-
rically distributed through the webs by a parabolic
layout. The maximum eccentricity is presented where
the bending moment is the maximum or the minimum
(Figure 4). At these points, the distance between the
duct and the reinforcing bars is 1.5 times the duct
diameter. The distance from the piers to the point of
inflection is defined by the 10% of the length of each
span.

Traditional scaffolding is used in the construction.
Table 1 defines other conditions followed in this study
such as the materials, the loads actions on the structure,
the exposure class and the codes used.

Table 1. Main parameters of the analysis.

Material parameters

Maximum aggregate size 20 mm
Reinforcing steel B-500-S
Post-tensioned steel Y1860-S7
Strand diameter �s = 0.6”
Tensioning time 7 days

Geometrical parameters

Pedestrian bridge width B = 3.5 m
Number of spans 3
Central span length L1 = 50 m
External span length L2 = 40 m
Clearance 5 m
Diaphragm thickness 1.2 m

Exposure related parameters

External ambient conditions IIb

Code related parameters

Code regulation EHE-08/IAP-11
Service working life 100 years

Loading related parameters

Reinforced concrete self-weight 25 kN/m3

Asphalt layer self-weight 24 kN/m3

Mean asphalt thickness 47.5 mm
Bridge railing self-weight 1 kN/m
Live load 4 kN/m2

Differential settling 5 mm

3.2 Problem description

In this study, the problem of the concrete box-girder
pedestrian bridge deck optimization involves a single-
objective optimization of the cost of the structure.
Hence, this optimization aims to minimize the cost
(equation 4) and satisfy the constraints (equation 5).

where x1, x2, x3, . . . , xn are the design variables.
The objective function evaluates the cost for the

total number of construction units considering mate-
rial and placement cost listed in equation 6. Unit
prices (pi), shown in Table 2 were obtained from the
BEDEC ITEC database (Catalonia Institute of Con-
structionTechnology 2016).This database was created
by the Institute of Construction Technology of Cat-
alonia (Spain). The data is related to building, urban-
ism and civil engineering. It contains 750,000 items
and provides the commercial costs for 83 Spanish
companies.

Concrete unit prices were determined for each com-
pressive strength grade according to the mix design,
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Table 2. Unit prices.

Unit measurements Cost (€)

m3 of scaffolding 10.02
m2 of formwork 33.81
m3 of lighting 104.57
kg of steel (B-500-S) 1.16
kg of post-tensioned steel (Y1860-S7) 3.40
m3 of concrete HP-35 104.57
m3 of concrete HP-40 109.33
m3 of concrete HP-45 114.10
m3 of concrete HP-50 118.87
m3 of concrete HP-55 123.64
m3 of concrete HP-60 128.41
m3 of concrete HP-70 137.95
m3 of concrete HP-80 147.49
m3 of concrete HP-90 157.02
m3 of concrete HP-100 166.56

including the cost of raw materials extraction, man-
ufacture and transportation. The measurements (mi)
concerning the construction units depend on the design
variables.

The structural constraints represented by equation
5 check the serviceability and ultimate limit states
(SLS and ULS) and the geometrical and constructabil-
ity requirements, following the Spanish codes for
this type of structure (Ministerio de Fomento 2008,
2011) and the Eurocodes (European Committee for
Standardisation 2005, 2003).

3.3 Simulated annealing algorithm

The heuristic algorithm used in this paper to carry
out the optimization problem is the simulated anneal-
ing (SA) algorithm. SA was originally proposed by
Kirkpatrick (1983) based on the analogy of crystal
formation. SA algorithm generates an optimization
process in which there is not a severe acceptance cri-
terion, this is due the fact that the algorithm accepts
worse solutions as long as a random number of uni-
form probability between 0 and 1 is lower than the
probability expressed in the equation 7:

where E is the difference between the objective func-
tion value of the current solution and the new solution,
and T is the temperature that represent the cooling of
the process. Therefore, new solutions that improve the
objective function value are always accepted, while
worse solutions have a probability of being accepted
according to their aptitude and the temperature.

The temperature is the parameter that it is in charge
of adjusting the number of acceptances. The initial
temperature is calibrated following Medina’s (2001)

method, which proposes that initial temperature is
halved when the percentage of acceptances is greater
than 40%, and doubled when it is less than 20%. After
that, the temperature decreases according to a coef-
ficient of cooling k following the equation T = k*T,
when a Markov chain ends. The algorithm finishes
after three Markov chains without improvement.

3.4 Optimization process

As described above, in this study, a comparison
between two optimization processes will be carried
out. Depending on the type of optimization the pro-
cess and the design variables will be different. On the
one hand, in the conventional heuristic optimization
the bridge design is totally defined by the variables
and the constraints that verify the limit states. On the
other hand, the kriging-based heuristic optimization
is more similar to standard method. That implies that
only the cross section and concrete strength are vari-
ables from which the amount of the steel is calculated
according to the constraints.

3.4.1 Conventional heuristic optimization
In the conventional optimization, in addition to the
seven geometrical variables and concrete strength,
the reinforced steel and the prestressed steel are also
variables.

Reinforcing steel is defined by 23 variables, 15 for
the longitudinal reinforcement and eight for the trans-
verse reinforcement (Figure 5). Longitudinal rein-
forcement is defined by the number of bars per meter
and the diameter, placed at the top slab (LRn1, LRØ1),
the flange (LRn2, LRØ2,LRn3, LRØ3), the web (LRn4,
LRØ4), the bottom slab (LRn5, LRØ5) and the core
(LRn6, LRØ6). Besides, extra bending reinforcement
is divided into two systems. One covers the top slab
at the support zone (L/5 on both sides of the piers),
with a diameter defined by LRØ7 and the same num-
ber of bars per meter as LRn1. The other is placed at
the bottom slab throughout the rest of the external
span (LRØ8) and central span (LRØ9). The number
of bars per meter is, for both locations, equal to LRn5.
The diameter can change among 0, 10, 12, 16, 20, 25
and 32 mm. Regarding transverse reinforcement, the
diameter of the standard reinforcement (TRØ1, TRØ2,
TRØ3, TRØ4, TRØ5, TRØ6, TRØ7) is set with the same
spacing (TRS).

Once the first pedestrian box-girder bridge is com-
pletely defined, SA algorithm makes movements of
the design variables in each step, and a comparison
between the objective function is carry out to finally
obtain the cost-optimized pedestrian box-girder bridge
according the process defined in the point 3.3. Each
movement requires the complete verification of the
SLS and ULS entailing a high computational cost.

3.4.2 Kriging-based heuristic optimization
Kriging is a metamodel that has its origins in geo-
static applications involving spatially and temporally
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Figure 5. Reinforcing steel.

correlated data. The kriging approach treats the objec-
tive function of interest as a realization of a random
function (stochastic process) y(x). For this reason the
mathematical model of kriging has been presented as a
linear combination of a global model plus departures:

where y(x) is the unknown response surface, f (x) is the
known (usually polynominal) function of x, and Z(x)
is a realization of a stochastic process with mean zero,
variance σ2, and non-zero covariance. The mathemat-
ical development of kriging are explained in Cressie
(1990) and Simpson et al. (2004).

In contrast to the conventional heuristic optimiza-
tion, in which the bridge is defined completely at
the beginning of each iteration to later verify all the
constraint defined by the codes, the kriging-based
heuristic optimization only defines the design vari-
ables that the engineers would take into account in their
design (geometrical variables and concrete strength)
to later calculate the post-tensioned steel and the
reinforced steel according to the codes.

First of all, a specific number of sample size (N ) of
data points belonging to the design space are obtained
according to latin hypercube sampling, and afterword,
the cost is obtained for each combination. Some of
these points can be no-feasible due to geometric con-
straints. In these cases, the next condition is imposed:
if the cost is higher than the minimum cost of the set
of feasible solutions the cost considered is the real
cost, otherwise, the cost is penalized. In this way, the
response surface optimization will trend to feasible
solutions.

Once obtained the response surface of kriging, a
validation process that compares the real cost and the
predicted cost of nine random data points is carried out
in order to know the accuracy of the model. Finally,
the heuristic optimization by means of SA algorithm is
carried out to reach the best cost-optimized box-girder
pedestrian bridge through the metamodel represented
in Figure 2.

Figure 6. Comparison of the mean cost-optimized bridges.

4 RESULTS

The comparison between conventional heuristic opti-
mization and kriging-based heuristic optimization is
shown in Figures 6–8. For this purpose, nine cost-
optimized solutions have been obtained for each sam-
ple size (N). After that, the mean cost of these nine
solutions has been obtained and a sensitivity analysis
has been carried out for each sample size. Different
N has been considered including 10, 20, 50, 100, 200,
and 500.

For each case different characteristics of the two
procedures followed to optimize the box-girder pedes-
trian bridge, have been compared. Figure 6 shows
the mean cost of the nine cost-optimized solutions
obtained by the different types of procedures. The hor-
izontal dashed line represents the mean cost obtained
by conventional heuristic optimization, while the solid
line represents the mean cost obtained by the kriging-
based heuristic optimization according to the different
number of initial population.The mean cost of the con-
ventional heuristic optimization is 160048.42 €. This
cost is 3.84% lower than the best mean cost of the
kriging-based heuristic optimization that correspond
to N = 500. In addition, from N = 100 to N = 500 the
ratio of improvement is 0.82%.

The computational cost is probably the main advan-
tage of the use of metamodels-based heuristic opti-
mization. Figure 7 shows the time spent by the different
types of optimization. It should be indicated that the
time considered by the kriging-based heuristic opti-
mization take into account both generation of the initial
population and heuristic optimization. As above, the
horizontal dashed line represents the mean time spent
by conventional heuristic optimization to achieve one
cost-optimized solution, while the solid line represents
the mean time spent by the kriging-based heuristic
optimization according to the different number of
sample size. The kriging-based heuristic optimization
spends at most 1788.22 seconds when the response sur-
face is generated by an initial population of 500. This
time is 91.58% lower than the conventional heuristic
optimization. Furthermore, if we accept an initial pop-
ulation of 100 (Figure 6), the time saving is the 97.9%
respect to the heuristic conventional optimization.
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Figure 7. Comparison of the mean time spent.

Figure 8. Accuracy of kriging model.

In addition, a comparison between the real cost and
the cost predicted by the response surface of nine ran-
dom solutions of the design space have been calculated
to obtain the accuracy of the kriging model. Figure 8
shows that the precision of the kriging model increases
with the initial sample size according to an horizon-
tal convergence from the 5.35% of N = 10 to 1.85%
of N = 500. That implies that a kriging model with
a lower number of N achieves practically the same
accuracy and reduces the computational cost.

5 CONCLUSIONS

Due to the high complexity of the structural optimiza-
tion problems, heuristic or metaheuristic algorithms
provide the greater efficiency in the conventional
optimization. However, the computational cost of con-
ventional optimization remains high. To solve this
problem, surrogate models or metamodels can be used
to reduce the computation cost of the optimization.
One of the most encouraging metamodels used in the
structural optimization is the kriging model. This is
achieved generating a response surface based on a
sample of data points in which the objective response
is known. Latin hypercube is used to obtain the sample.

In this work, a comparison between conventional
heuristic optimization and kriging-based heuristic
optimization considering different sampling size is
carried out for a concrete box-girder pedestrian bridge.

The objective function is the cost. The results show
that kriging-based heuristic optimization increases the
mean cost of the conventional heuristic optimization
of 3.84%. Besides, the results are stabilized by a sam-
pling size of 100. Therefore, this sample is enough to
obtain satisfying results.

This paper shows that the results obtained using
metamodels are very close to the conventional heuris-
tic optimization, with a significant saving of compu-
tational cost. This reduction in computational cost not
only involves a faster optimum structural design, but
can also provide an opportunity to perform processes
that would be complicated by the conventional heuris-
tic optimization due to the high computational cost,
such as the optimum robust structure design.

6 FUTURE RESEARCH

It should be noted that, in order to evaluate the robust-
ness of optimized structural designs, a faster process
should be implemented to minimize the computational
cost. The present paper serves as an illustration of
the proposed way to achieve this reduction in com-
putational cost. Kriging model can be applied to
study the sensitivity of the optimum solution accord-
ing to the variability of the objective function and
the constraints. In this way, robust solutions could be
obtained and minor variations of the optimum solution
will not affect the integrity of the structure. Further
development in this direction is undergoing.
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