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ABSTRACT: The complexity of bridge optimization is due to the fact that the design of this type of struc-
tures evolve a large number of variables. These, generate a space of solutions with too many possibilities to
be evaluated in their totality. Because of this, in this work, the optimization of a steel-concrete composite box
girder bridge has been performed considering cost as objective function by using heuristic methods. To achieve
this objective, a Threshold Accepting with a Mutation Operator (TAMO) has been chosen for the structural
optimization of a steel concrete composite bridge. It is observed that the addition of cells on the connections be-
tween webs and flanges improves the cross section structural behaviour. The proposed double composite-action
design allows to reduce the number of stiffeners for this study case. This method automatize the optimization
process of an initial design of a composite bridge, allowing to reach optimum designs without a great expertise
in bridge structural design.

1 INTRODUCTION

Any resolution of a problem translates into the search
for a solution that allows satisfying the needs posed
with the minimum possible investment of resources.
In addition, the proposed solution must contemplate
and comply with all the restrictions imposed, both
by the nature of the problem itself and by any other
type of external conditioning factors. In the case of
structural problems, the needs of the problem are di-
verse and the restrictions imposed are related to the
resistance of the sections and the compatibility of
the deformations with the use to be given to the el-
ement to be designed. The proposed solution is re-
quired to use as few resources as possible, generally
in terms of cost. Therefore, a structural problem is ba-
sically an optimization problem, in which a solution
is sought that meets certain constraints while min-
imizing, in this case, the costs of the solution. To
arrive at this optimal solution, technicians carry out
an iterative process in which solutions are proposed,
checked for compliance with the constraints and the
costs of each are compared. New solutions are gener-
ated by slightly modifying the structural element vari-
ables. As expected, the greater the experience of the
technician, the faster the optimal solution is reached,
since these problems usually have a large number of
variables making them stand out for their complexity
(Payá-Zaforteza, Yepes, González-Vidosa, & Hospi-
taler 2010).

The current trend in the field of structural opti-

mization research tries to break this dependence be-
tween the quality of the solution and the experience
of the technician by taking advantage of the com-
putational capacity of computer equipment. Due to
the complexity of structural optimization problems,
the exploration of the entire solution space is im-
possible and, therefore, recourse is made to heuris-
tic and metaheuristic techniques which, although they
do not ensure finding the best solution, have been
shown to obtain good results (Sarma & Adeli 1998,
Hare, Nutini, & Tesfamariam 2013). These methods
have been applied to various types of concrete struc-
tures such as buttress walls (Martı́nez-Muñoz, Martı́,
Garcı́a, & Yepes 2021, Molina-Moreno, Garcı́a-
Segura, Martı́, & Yepes 2017, Molina-Moreno, Martı́,
& Yepes 2017), building beams (Payá-Zaforteza,
Yepes, González-Vidosa, & Hospitaler 2010), bridges
(Garcı́a-Segura, Yepes, & Frangopol 2017, Penadés-
Plà, Garcı́a-Segura, & Yepes 2019, Penadés-Plà,
Garcı́a-Segura, Martı́, & Yepes 2018) or even to trans-
fer length prediction in prestressing strands (Martı́-
Vargas, Ferri, & Yepes 2013). However, the applica-
tion of these methods to composite structures has not
been performed as extensively as indicated in a recent
review (Martı́nez-Muñoz, Martı́, & Yepes 2020). In
this study, moreover, the lack of study on topics such
as life cycle analysis of composite bridges (Martı́nez-
Muñoz, Martı́, & Yepes 2021) is emphasized, as
has been done extensively for concrete bridges (Pe-
nadés-Plà, Martı́nez-Muñoz, Garcı́a-Segura, Navarro,
& Yepes 2020). This highlights the field of composite



structures as a field with potential for exploitation.
The complexity of composite structures, especially

composite bridges, can exceed that of concrete struc-
tures due to the large number of variables that define
their geometry. In addition, the arrangement of the
cross-section elements is more sensitive to the pre-
dominant stresses of the deck, giving rise to three ba-
sic cross-section geometries: box girder, I-beam and
composite slab (Vayas & Iliopoulos 2017). This ad-
ditional condition opens a wide range of possibili-
ties for the application of heuristic techniques to this
type of structures, whose behavior and results to op-
timization problems are not trivial. Current research
in this field has applied techniques such as the Excel
solver (Musa & Diaz 2007) or the Matlab® fmincom
function (Lv & Fan 2014) to solve simplified prob-
lems. There are isolated studies applying metaheuris-
tic techniques on pedestrian bridges (Yepes, Dasi-
Gil, Martı́nez-Muñoz, López-Desfilis, & Martı́ 2019).
For more complex problems, most of the algorithms
applied to this type of problems have been swarm
algorithms (Kaveh, Bakhshpoori, & Barkhori 2014,
Kaveh & Zarandi 2019), noting a lack of study of the
behavior of trajectory-based algorithms applied to this
type of structures.

In this paper, the optimization problem of the deck
of a box girder bridge with cost as the objective func-
tion is presented. A hybrid Threshold Accepting (TA)
modified with a mutation operator algorithm is used
to solve this problem. This metaheuristic is framed
within the algorithms based on trajectories that per-
form the search for the optimum by varying the ini-
tial solution to solutions close to it, the description of
the heuristic is made in section 2.3. The objective of
this work is to obtain an optimal design in order to
compare it with other research works and traditional
designs and to add knowledge to the field of the opti-
mization of composite structures, focusing the study
both in the design aspects and in the behavior of the
algorithm in this type of problems.

2 OPTIMIZATION PROBLEM DEFINITION

Optimization consist in varying the problem variables
in order to maximize or minimize a objective func-
tion. In this case, the optimization objectives is the
structure cost. In equation 1, the cost objective func-
tion is defined by multiplying the unit cost of every
material in the bridge by its measurement. The data
of prices that are shown in Table 1 have been obtained
from the Construction Technology Institute from Cat-
alonia by the BEDEC database (BEDEC 2021). The
optimization expressions need to complain the con-
straints imposed by the regulations or recommenda-
tions represented by equation 2.

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (1)

Table 1: Cost values
Unit Cost (e)
m3 of concrete C25/30 88.86
m3 of concrete C30/37 97.80
m3 of concrete C35/45 101.03
m3 of concrete C40/50 104.08
m2 of precast pre-slab 27.10
kg of steel B400S 1.40
kg of steel B500S 1.42
kg of rolled steel S275 1.72
kg of rolled steel S355 1.85
kg of rolled steel S460 2.01
kg of shear-connector steel 1.70

G(x⃗) ≤ 0 (2)

2.1 Parameters and variables definition

2.1.1 Variables
A steel-concrete composite box-girder 60-100-60 me-
ters three-span bridge is proposed for optimization.
The problem variables correspond to geometry, rein-
forcement, and concrete and steel grades from each
bridge element. To reach a buildable solution, all of
these variables have been discretized, which config-
ures a discrete optimization problem. The variables
discretization has been defined in Table 2. Consider-
ing this variable discretization, the number of combi-
nations for the optimization problem corresponds to
1.38·1046. Due to this large number of possible com-
binations, the use of metaheuristic techniques is justi-
fied to obtain the optimum. In total, 34 variables are
considered for the global definition of this bridge op-
timization problem. These bridge variables have been
represented in Figure 1. According to the nature of the
variables, they can be grouped into six categories. The
first correspond to transverse section geometric vari-
ables, which are: upper distance between wings (b),
wings and cells angle (αw), top slab thickness (hs),
beam depth (hb), floor beam minimum high (hfb), top
flange thickness (tf1), top flange width (bf1), top cells
high (hc1) and thickness (tc1), wing thickness (tw),
bottom cells high (hc2), thickness (tc2), and width (bc2)
and bottom slab thickness (hs2). Beam depth bounds
correspond to L/40 and L/25, being L, the largest
span length.

SCCB can take advantage of materials to a greater
extent because each material that makes it up is sub-
jected to the stresses that best resist. This would be
true in an SCCB working as an isostatic girder. In this
case, the upper concrete slab would be compressed
along the entire length of the bridge. This upper slab
is connected to the top flanges by shear connectors.
This would also stiffen the flanges plate, which avoids
buckling. Moreover, in the isostatics case, the lower
flanges would be subjected to tensile stress, which
also avoids buckling instability phenomena. However,
in the present case and with the usual loads to which
the bridges are subjected (which are mostly gravita-
tional in nature), negative bending stresses will occur
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Figure 1: Transverse section variables for SCC bridge

in supported areas. This will result in a reversal of the
forces, and therefore tensile stresses in the upper con-
crete slab and the compression in the lower flange.
In this case, to improve the behavior of the bridge
transverse section, it has been decided to materialize
a concrete bottom slab in these areas in addition to the
usual increasing of the top slab reinforcement. To op-
timize the top slab reinforcement, it has been divided
into a base reinforcement that is the minimum re-
quired by regulations (CEN 2013a, CEN 2013b, CEN
2013c) and two more areas, in negative bending sec-
tions, where the reinforcement is increased. The bot-
tom slab and reinforcement increasing area lengths
have been described in section 2.1.2. Accordingly, the
second group of variables corresponds to base rein-
forcement, first reinforcement and second reinforce-
ment bar diameters (ϕbase, ϕr1 , ϕr2), and the corre-
sponding bar number of the reinforcement areas (nr1 ,
nr2).

The next variable group correspond to stiffeners.
The elements considered in these work as stiffen-
ers are half IPE profiles for wings (sw), bottom
flange(sf2) and the transverse ones (st). For bottom
flange stiffeners, the number of stiffeners (nsf2

) has
also been considered as a variable. As can been seen
in Figure 1, there are two more variables that define
the distance between diaphragms (dsd) and transverse
stiffeners (dst).

The last categories correspond to floor beam vari-
ables geometry, the shear connector’s characteristics
and the materials’ grades. Floor beam variables are
defined by the floor beam width (bfb), and the flanges
(tffb) and wing (twfb

) thicknesses. The shear connec-
tors have been defined by their height(hsc) and diam-
eter (ϕsc). Finally, the yield stress from rolled steel
(fyk), concrete strength (fck) and reinforcement steel
bars yield stress (fsk) complete the variable defini-
tion. The variables are the same for all the spans of
the bridge.

Table 2: Design variables and boundaries
Variables Unit Lower Bound Increment Upper Bound Values number

b m 7 0.01 10 301
αw deg 45 1 90 46
hs mm 200 10 400 21
hb cm 250 (L/40) 1 400 (L/25) 151
hfb mm 400 100 700 31
tf1 mm 25 1 80 56
bf1 mm 300 10 1000 71
hc1 mm 0 1 1000 101
tc1 mm 16 1 25 10
tw mm 16 1 25 10
hc2 mm 0 10 1000 101
tc2 mm 16 1 25 10
bc2 mm 300 10 1000 71
tf2 mm 25 1 80 56
hs2 mm 150 10 400 26
nsf2

u 0 1 10 11
dst m 1 0.1 5 41
dsd m 4 0.1 10 61
bfb mm 200 100 1000 9
tffb mm 25 1 35 11
twfb

mm 25 1 35 11
nr1 u 200 1 500 301
nr2 u 200 1 500 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
sf2 mm From IPE 200 to IPE 600* 12
sw mm From IPE 200 to IPE 600* 12
st mm From IPE 200 to IPE 600* 12
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

*Following the standard series of IPE profiles (CEN 2017).

2.1.2 Parameters
In every optimization problem, some variables or
properties need to be fixed to narrow down the prob-
lem. These fixed variables are named parameters and
they remain invariant during the whole optimization
process. In this case, these parameters correspond
to boundaries that are defined to some bridge ele-
ments, including dimension, thicknesses, reinforce-
ment distributions, external ambient conditions, or
density (among others). The values of these param-
eters are summarized in Table 3.

Table 3: Optimization problem main parameters
Geometrical parameters
Bridge deck width (W ) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (twmin

) 15 mm
Minimum flange thickness (tf2min) 25 mm
Reinforcement cover 45 mm

Material parameters
Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (Ecm) 22 · ((fck + 8)/10)3 MPa
Concrete transverse strain modulus (Gcm) Ecm/(2 · (1 + 0.2)) MPa
Steel longitudinal strain modulus (Es) 210000 MPa
Steel transverse strain modulus (Gs) 80769 MPa

Regulation requirement parameters
Regulations Eurocodes, IAP-11
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters
Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m
Traffic, thermal and wind load According to Eurocode 1 (CEN 2019)

As mentioned earlier, this optimization problem
corresponds to a 60-100-60 meters three-span box-
girder steel-concrete composite bridge with a deck



width (B) of 16 meters without depth variation. In the
transverse section, it has been defined by four cells:
two on the upper side of the wings and two more on
the bottom; as can be seen in Figure 1. These cells
allow these parts of the wing to be stiffened, creat-
ing a sheet of class one to three that does not need
to be reduced according to Eurocodes (CEN 2013a,
CEN 2013c). To allow the optimization process to
define if these cells improve the structural behavior
of the transverse section (and consequently are rel-
evant to obtain a minimum of the objective func-
tion), the minimum height of these cells is fixed to
zero. The boundaries of all of the variables, includ-
ing the cells heights (hc1 , hc2), can be seen in Table
2. The variable’s boundaries have been defined fol-
lowing Monleón bridge design publication (Monleón
2017). The cell height(hc1 , hc2) defines the floor beam
depth in the zone of contact with the wings. If the
cell height is smaller than the floor beam minimum
depth (hfb), then it takes that minimum value for
beam depth in that zone. Profiles placed to materialize
the diaphragm sections are 2L 150x15. Furthermore,
precast pre-slabs have been considered for use as a
formwork. It should be noted that this element is de-
signed to be part of the resistant section. Therefore,
the measurement module of the software subtracts it
from the total amount of concrete.

Base reinforcement for both the upper and the
lower concrete slabs is obtained according to the min-
imum need for reinforcement defined in Eurocode 2
(CEN 2013c). The connection between the steel beam
and concrete slab is dimensioned to resist the hole
tension of the concrete slab considering the effective
width that is given by Eurocode 4 (CEN 2013a) due
to shear lag. Because the only width considered as
resistant (both in the concrete slab and in the lower
flange) is effective, the defined steel bar reinforce-
ment is placed only in that width.

To optimize some material in SCCB, it is usual to
modify the thicknesses of webs and flanges to reduce
its amount. In this work, the variation of thicknesses
has been programmed by considering a theoretical
bending and shear law for a distributed load over the
entire surface of the bridge. In Figure 1, the lower
flange thickness is modified along the bridge, varying
from a minimum value tf2min to the one defined as tf2 .
This variation corresponds to the bending theoretical
law. In contrast, the wing’s thickness varies accord-
ing to the shear law from twmin

to tw. The minimum
value of these thicknesses is been defined according
to recommendations in Monleón (Monleón 2017).

Finally, steel bar reinforcements and lower slab ar-
eas are defined. The lower slab is placed in negative
bending sections to mobilize the composite dual ac-
tion in these sections. To define lengths where neg-
ative bending can be produced, we have considered
the distance defined by Eurocode 4 (CEN 2013a)
for shear lag stresses that correspond with one-third
of the span length. As stated earlier, it is neces-
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Figure 2: Longitudinal distribution of thicknesses and steel bar
reinforcements

sary to increase the upper slab reinforcement to resist
the tension stresses produced. In this case study, we
have considered two reinforcement areas. The first is
placed in zones where the section can be subjected to
negative bending and base reinforcement cannot re-
sist the stresses. The second is placed on top of sup-
ports, corresponding to one-third of the distance be-
tween the support and the point of change of sign of
the bending of the theoretical law. This decision is re-
lated to the position of the center of gravity of the
parabola, which is at one-third of its total length. Fig-
ure 2 shows the top slab’s reinforcement distributions.

2.2 Structural Analysis

As mentioned in section 2, optimization procedures
must complain about the constraints imposed on the
problem. In bridge optimization, these constraints are
imposed by the regulations (CEN 2013a, CEN 2013b,
CEN 2013c) and recommendations (Vayas & Iliopou-
los 2017, Monleón 2017).

Constraints imposed by regulations can be divided
into two main groups: the Ultimate Limit States
(ULS) and Serviceability Limit States (SLS). The first
group is related to the structural resistance of bridge
elements subjected to the stresses caused by the act-
ing loads. Moreover, SLS is related to restrictions that
ensure the serviceability of the structure during its ser-



vice life. All of the loads applied and their combina-
tion are defined in regulations (CEN 2019). Table 3
summarizes the load cases that we have considered.

To check ULS for all bridge elements, we have con-
sidered both global and local analysis. The checks
considered for global analysis include flexure, shear,
torsion, and flexure-shear interaction. A linear elas-
tic analysis has been used considering the complete
section to obtain the dead weights and stresses. To
get section resistance, the effective section has been
considered by applying both reductions due to shear
lag (CEN 2013a) and section reduction of the steel
plates classified as class 4 (CEN 2013b). To attain
this, a precision of 10-6 meters has been imposed for
the iterative process. To obtain the value of the me-
chanical characteristics of the homogenized section,
the relationship (n) between the modulus of longi-
tudinal deformation of concrete (Ecm) and steel (Es)
has been obtained according to equation 3. Concrete
creep and shrinkage has been considered according to
regulations (CEN 2013c, CEN 2013a). Furthermore,
a local model has been considered to check ULS in-
floor beams, stiffeners, and diaphragms by consider-
ing flexure, shear, buckling, and minimum mechani-
cal characteristics checks.

n =
Es

Ecm

(3)

The SLS considered for the analysis is the tension
limit for materials, fatigue, and deflection. There is no
clear limit for deflection in Eurocodes but the IAP-11
Spanish regulation (MFOM 2011) gives a maximum
of L/1000 for the frequent combination of live loads
deflection value, with L representing the span length.
This has been considered as the maximum value of
the deflection. In addition, we have considered geo-
metrical and constructibility requirements.

A numerical model has been implemented in the
Python (Van Rossum & Drake 2009) programming
language to get the stresses and carry out all ULS,
SLS, and geometrical and constructibility checks de-
fined in regulations (CEN 2019, CEN 2013c, CEN
2013b, CEN 2013a) and recommendations (Monleón
2017, Vayas & Iliopoulos 2017). To get the deflec-
tions and stresses, this software applies the perfect
embedding forces method considering the vertical
displacements (Uz) and the rotations between y and
x (θy, θx) axes, taking as input data the 34 bridge vari-
ables defined in section 2.1.1 and the loads defined in
regulations. To obtain the effects due to the moving
loads, each bridge span has been loaded separately
and all possible combinations between them have
been carried out to obtain their envelope. This soft-
ware divides every bridge span into a defined num-
ber of bars. In this case, the total number of bars is
44, distributed in 12-20-12 corresponding to the three
spans of the bridge; thus, discretizing the bridge into
5-meter length bars. Once the stresses have been ob-
tained, the program performs structural checks and

returns the results of measurements, cost, CO2 emis-
sions, and checking coefficients. This checking coef-
ficients correspond to the quotient between the design
values of the effects of actions (Ed) and its corre-
sponding resistance value (Rd), as shown in equation
4. If these coefficient values are greater or equal than
one, then the section complies with the imposed re-
striction.

Rd

Ed

≥ 1 (4)

2.3 Threshold Accepting with a Mutation Operator
(TAMO2)

Threshold Accepting (TA) was developed by Duec
and Scheuer (Dueck & Scheuer 1990) as an alterna-
tive to Kirpatricks’ Simulated Annealing (SA) (Kirk-
patrick, Gelatt, & Vecchi 1983). both metaheuristics
are within the group of trajectory based. These algo-
rithms vary the problem variables and compare the
objective functions obtained, the reject or acceptance
of the new solution depend in the criteria chosen. SA
applies an acceptation criteria formula that gives the
new solution a probability to be chosen even wors-
ening the objective function value. TA applies a sim-
pler criterion applying directly a threshold where the
solution is directly accepted if its objective function
value is inside. This acceptance of bad solutions adds
exploration to the optimization process and allow to
avoid local optimums. While the optimization process
is being performed the threshold is reduced in order
to exploit the optimum neighborhood. In this study it
have been applied Threshold Accepting with a Muta-
ton Operator (TAMO) (Luz, Yepes, González-Vidosa,
& Martı́ 2015). This algorithm, as the original TA,
starts with a random solution and an initial threshold.
The difference lies in the fact that in each iteration the
solution new solution have a possibility to be mod-
ified simulating the mutations of genetic algorithms.
This modification allow to add exploration to the op-
timization process.

TAMO algorithm has certain parameters that al-
low to adjust it to the problem being solved. This
parameters are: Variables Number (V N ), Chain
Length (CL), Standard Deviation for mutation op-
erator (SD), Cooling Coefficient (CC) and Unim-
proved Chains (UC). V N limit the number of vari-
ables changed in each iteration. CL define the num-
ber of iterations run for each threshold. SD is related
with the probability of mutation of the solution by the
mutation operator. CC define the threshold reduction
when the CL is reached. Finally, the UC define the
number of chains without improvement allowed be-
fore the optimization process is ended. In addition to
UC, if the threshold arrives to 0.05% of the initial,
then the optimization process is also finished. The pa-
rameters chosen for this optimization problem have
been those described in table 4



CL SD VN CC UC
1000 0.3 1 0.95 1

Table 4: Parameters chosen for the optimization with TAMO al-
gorithm

3 RESULTS

Results obtained for the optimization will be shown
in this section. To get this results, TAMO algorithm
have been run 9 times in order to study the differ-
ences between the solutions reached. In average, one
solution obtaining have a computational cost of 23958
seconds. The TA algorithm parameters chosen for the
optimization have been described in section 2.3.

Variable results will be divided in three main cat-
egories, in line with the three types of defined vari-
ables. This three groups will those related with geo-
metrical, reinforcement and materials resistance vari-
ables.

In figure 3 the main geometrical parameters ob-
tained for cross section have been shown. It can be
seen that an optimal design for this case study takes
depth values for the steel beam (hb) between 2.9 and
3.4 m with a web angle (αw) range between 63 and
73 decimal degrees. regarding the distance between
transverse stiffeners and diaphragms the values ob-
tained form the optimization process range between
2.6 and 4.2 for transverse stiffeners and 6.3 and 8.7
m for diaphragms. The following parameters define
the webs and flanges thicknesses. The algorithm gives
clear results of these element thicknesses being 25
mm for upper (tf1) and lower (tf2) flanges and 16 for
the web. This values correspond with the lower bound
given to the algorithm. The same occurs with the up-
per flange width bf1 that takes the a value of 300 mm
also corresponding with the lower bound.
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hb (m)

55 60 65 70 75 80

w (deg)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dst (m)

5 6 7 8 9

dsd (m)

Figure 3: Cross section geometrical variables for cost TAMO
optimization

The following geometrical variables are those that
define the upper and lower cells geometry. This cells
have been added in order to reduce the distance of
web plates to improve its bending behavior. The dis-
tance between stiffened parts is reduced with this ele-
ments and as a consequence increases the area which
can be considered according the section reduction
method of Eurocode 2 (CEN 2013c). As it can be seen
in figure 4, both cells heights (hc1 , hc2) values are dif-
ferent to zero which means that the optimization pro-

cess has taken as a result an improvement in adding
the cells. Regarding these elements thicknesses the
upper cell thickness (tc1) takes the lower bound value
of 16 mm in all cases, while the lower cell (tc2) ranges
between 20 to 23 mm. Regarding bottom flange stiff-
eners the algorithm removes them by adding the con-
crete slab on supports.

0.3 0.4 0.5 0.6 0.7 0.8

hc1 (m)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

hc2 (m)

15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8

tc1 (mm)

16 18 20 22 24

tc2 (mm)

Figure 4: Cell variables results for cost TAMO optimization

The last results related with sections geometry are
related with floor beams that controls the transversal
bending behaviour. In this case study, the optimum
geometry for these elements considers heights from
0.45 to 0.56 m with thicknesses of its elements round-
ing 30 mm.

0.45 0.50 0.55 0.60 0.65

hfb (m)

0.3 0.4 0.5 0.6 0.7 0.8

bfb (m)

27 28 29 30 31 32 33

tffb (mm)

26 28 30 32 34

twfb (mm)

Figure 5: Floor beam variables results for cost TAMO optimiza-
tion

Following variables are related with reinforcement
of the upper slab. The areas where the lower slab
has been placed to mobilize the double composite ac-
tion contains the base reinforcement needed accord-
ing regulations (CEN 2013b), since are basically go-
ing to be compressed. Regarding the reinforcement
the optimization procedure takes as a result low diam-
eter bars with a higher amount in order to reduce the
reinforcement to the minimum. As a consequence the
software add a third layer of reinforcement in the upp-
per slab. The resistance of materials given by the op-
timization procedure takes 25 MPa for concrete, 275
MPa for rolled steel and 500 MPa for reinforcement
bar steel.

4 CONCLUSIONS

In bridge design, there is a clear trend to consider new
techniques to obtain new structural design alterna-
tives. Consequently, optimization of concrete bridges
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Figure 6: Reinforcement bars and structural steel amounts for
cost TAMO optimization

using algorithms has been developed to a large ex-
tent. In contrast, optimization studies of composite
steel-concrete bridges are few and the performance
of these techniques for this type of structure is not
known. Threshold Accepting (TA), which belongs to
the trajectory-based algorithms, has been proposed as
an algorithm to carry out the optimization of the struc-
ture.

This study shows the optimization of a steel-
concrete composite box-girder bridge by using
heuristic techniques. In conclusion, it has been ob-
served that the algorithm eliminates the stiffeners of
the lower wings due to the double composite action of
the concrete slabs on the supports. In addition, the use
of interior cells in the bridge section has been consid-
ered. As a result for these elements variables the opti-
mization process gives positive values confirming that
these cells allow improving the stress resistances of
the section and reducing the distance between unstiff-
ened zones in the web steel plates. This work allows
the structural researcher to broaden his knowledge on
the optimization of composite bridges by consider-
ing new techniques to obtain an optimal design, and
opens a door to the use of these elements to obtain
new design criteria to obtain more sustainable and ef-
ficient composite bridge alternatives.
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