Publicada By  Víctor Yepes Piqueras - algoritmo, costes, economía, estructuras, hormigón, investigación, modelo matemático, optimización, ordenadores, Puentes, toma de decisiones    

¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática.  Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.

En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].

Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.

Referencias:

[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.

[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.

[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).

[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.

[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.

[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.

[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.

[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.

[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.

[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.

[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.

[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.

[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá,  Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.

[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.

[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.

[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).

[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.

[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.

[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction 49 (2015) 123-134.

[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.

[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.

[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.

[23] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.

 

14 julio, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |