La «ripabilidad» de una roca representa una medida del grado de dificultad de la misma para ser excavada con equipos de convencionales; mediante la rotura del terreno con un tractor o buldócer que permite su excavación o carga directa. Si bien hay numerosos factores que afectan la ripabilidad, como por ejemplo la resistencia fracturación, dirección del buzamiento de la roca, etc., en términos de producción, los factores dominantes son: la resistencia a la compresión simple de la roca, el grado de meteorización, la velocidad sísmica, la resistencia y rugosidad de las juntas, su separación, y sobre todo la masa del tractor. Las empresas constructoras de maquinaria suelen ofrecer gráficos como el que os dejo aquí abajo, donde se establecen los valores (en función de la velocidad sísmica) para los cuales un terreno es ripable.
Ripabilidad (D9) vs. Velocidad de Onda Sísmica (Caterpillar, Handbook of Ripping 8th Edition)
Ahora hablaremos del escarificador. Es un equipo que un tractor oruga pesado lleva en su parte posterior un bastidor, accionado hidráulicamente, provisto de uno o varios dientes rompedores. Con el avance del tractor y accionado mediante cilindros hidraúlicos, el diente escarificador o «ripper», provisto en su extremo de una uña dirigida hacia abajo, penetra y desgarra el terreno cuando éste es excesivamente duro o cohesivo para ser removido con la hoja frontal. Actualmente los tractores más utilizados en los trabajos de escarificación son los de peso igual o superior a las 35 t. y potencia igual o superior a los 300 CV. La pregunta es: ¿qué podemos hacer para conseguir una mayor producción, un menor coste y una mayor seguridad al trabajar ripando? A continuación os dejo un Polimedia y varios vídeos para recordar los conceptos básicos sobre el tema. Espero que os gusten.
Referencias:
YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
Una de las unidades de obra que más vidas se cobra es la excavación de zanjas. Se entiende por zanja una excavación larga y angosta realizada en el terreno. En los trabajos realizados en zanjas se producen con frecuencia accidentes graves o mortales por desprendimiento de tierras. Por ello, es necesario adoptar las medidas que garanticen la seguridad de los trabajadores que deben realizar tareas en su interior. En general, se considerará peligrosa toda excavación que, en terrenos corrientes, alcance una profundidad de entre 0,80 y 1,30 metros, y de entre 0,80 y 1,50 metros en terrenos consistentes. Un buen monográfico al respecto es el elaborado por el Instituto Vasco de Seguridad y Salud Laborales. Por su interés, os recomiendo que os lo estudiéis atentamente.
Evidentemente, con una buena entibación y el buen juicio y la prudencia de las personas se pueden evitar muchos problemas. Aunque, en ocasiones, basta con bermas y taludes adecuados. El desmoronamiento de una zanja afecta gravemente a la seguridad de los trabajadores. Para evitar accidentes, es importante conocer el empuje de tierras al que se somete una entibación para evitar su colapso. Con el objetivo de ayudar a nuestros alumnos a entender de forma cualitativa el comportamiento de la presión a la que está sometida una entibación en función del peso específico, el ángulo de rozamiento interno del terreno y la profundidad a la que se encuentra dicha entibación, en la Universitat Politècnica de València se han desarrollado unos objetos de aprendizaje que permiten visualizar dicho comportamiento. No obstante, existen causas más importantes que provocan el desmoronamiento de una zanja, como la heterogeneidad del terreno, la presencia de elementos intermedios (canalizaciones, etc.), las acciones de agentes externos (tráfico rodado, acopios) y las inclemencias del tiempo y condiciones climáticas. Por tanto, el modelo que os pasamos es, evidentemente, demasiado sencillo, pero permite llamar la atención sobre este grave problema. Como siempre, la experiencia y el buen juicio del responsable de la obra y de los operarios están por encima de cualquier otra consideración. A continuación, os paso este pequeño objeto de aprendizaje.
La forma de trabajar con ellos es muy sencilla. Se debe seleccionar: la profundidad de la zanja (valores entre 1 y 15 m), peso específico aparente del terreno (hasta 30 kN/m3) y ángulo de rozamiento interno del terreno (en grados sexagesimales, hasta un valor de 60º). No se admiten valores negativos. Espero que os guste. El enlace es: https://laboratoriosvirtuales.upv.es/eslabon/Entibacion/
Además, os paso varios vídeos al respecto. Espero que os sean de utilidad.
Este es el paradigma de las obras: siempre existen personas mayores, normalmente jubilados, que desde la valla se pasan todo el día, día tras día, hasta acabar la obra, observando y criticando lo que ven y se hace. Si nuestros alumnos tuviesen el tiempo suficiente de ver una obra completa y se les comentara día a día los errores y las bondades de lo que allí ocurre, la experiencia conseguida sería magnífica.
Por ello, para asignaturas como «Procedimientos de Construcción», muchas veces las explicaciones en clase serían insuficientes sin la experiencia de la visualización de las obras. Para ello nuestros alumnos tienen un trabajo de curso sobre la observación de una obra en concreto y su informe final. Aunque con la crisis actual, el tema se complica cada vez más.
Para hablar de este tema de las «vallas», os dejo una charla de Juan José Rosas, ingeniero de caminos experto en geotecnica, que a través de su blog «Geojuanjo» nos deja periódicamente información y curiosidades sobre su especialidad. Os recomiendo que veáis este vídeo donde habla de la «observación» de las obras. Si no tenenos una «valla» cerca, lo mejor es Youtube, que es la «valla universal».
Figura 1. Secciones de pilotes prefabricados pretensados. http://www.ingeniero-de-caminos.com/
Los pilotes prefabricados pretensados se emplean en cimentaciones profundas y como anclajes en obras terrestres y en obras marítimas. Estos pilotes presentan una mayor resistencia a flexión y a tracción que los pilotes de hormigón armado, por lo que se usan en obras en las que es necesario resistir esfuerzos horizontales grandes (muelles, pantalanes, zonas sísmicas) o de tracción (macizos de anclaje, muros, etc.).
La resistencia a tracción es igual a la fuerza del pretensado. Por su menor presencia de fisuras, también están recomendados en suelos agresivos o contaminados, además de no verse afectados por el nivel freático. Otro caso de utilización se da en terrenos muy blandos, en los que durante el proceso de hinca se pueden generar en el pilote esfuerzos importantes a tracción que son absorbidos por la precompresión inicial debida al pretensado.
Figura 2. Planta de prefabricados de pilotes de hormigón pretensado. Fuente: http://www.sciaust.com.au/
Los pilotes prefabricados de hormigón pretensado pueden tener secciones huecas o macizas, siendo estos últimos, en general, de menor sección que los tubulares. Los pilotes de sección tubular suelen ser cilíndricos, aunque también se suministran con sección octogonal y cuadrada aligeradas mediante hueco circular para disminuir el peso. El hueco central suele ser utilizado para introducir los sistemas de instrumentación. Los diámetros usuales oscilan entre los 0,60 y 1,60 m, con espesores mínimos de pared de 10 cm, siendo, en general, más largos y de mayor sección que los pilotes de hormigón armado prefabricados.
Los pilotes pretensados de sección maciza suelen ser cuadrados u octogonales y en general de dimensiones similares a los prefabricados de hormigón armado. Su configuración es similar a la de los pilotes prefabricados de hormigón armado, solo que sustituyendo la armadura longitudinal por cables o alambres de pretensar. La armadura longitudinal es en general armadura de mínimos, normalmente del 2% de la sección de hormigón.
Tipos de pilotes pretensados
Pilotes prefabricados pretensados con alambres adherentes. Los pretensados (pre-tensión) se ejecutan de una sola pieza en las bancadas de las plantas de prefabricación. Las secciones más típicas son la cuadrada y la hexagonal. Estos pilotes están provistos de un azuche metálico en la punta para protegerla en el proceso de hinca. Para grandes longitudes de pilote se dispone una junta de empalme que permite unir diferentes tramos hasta alcanzar la profundidad deseada. Las juntas deben estar diseñadas para resistir mayores solicitaciones que el propio pilote. Los elementos de conexión se ajustan y se protegen de la corrosión. Una vez conectados se consigue una pretensión que asegura la transmisión de esfuerzos.
Pilotes prefabricados con armadura postesa. Los postesados se ejecutan en tramos que son ensamblados hasta obtener la longitud deseada y postesados mediante gatos en una planta o en la propia obra. La más común es la sección anular (pilote tipo Raymond). Estos pilotes se construyen mediante centrifugado y permiten un fácil acceso para su inspección. La sección anular presenta un menor peso propio, con un gran momento de inercia y radio de giro. La longitud de estos pilotes puede llegar a 60 m, con una sección de hasta 1,50 metros.
Figura 3. Pilotes pretensados. Fuente: http://www.pilingcontractors.com.au/
La armadura transversal está formada por armadura pasiva colocada en espiral con mucha mayor densidad en la cabeza y en la punta debida a las necesidades de zunchado del hormigón durante el proceso de hinca.
Figura 4. Empalme de pilote prefabricado pretensado (Terratest). Fuente: http://www.fontdarquitectura.com/productos/cimentaciones/pilotes/588
Los pilotes pueden fabricarse de una pieza o en tramos empalmables según las necesidades de la obra. Las uniones entre tramos de pilotes pretensados son en general más complejas que las de hormigón armado. También es posible empalmar un mismo pilote tramos pretensados con armados, en función de las solicitaciones. El corte de los pilotes pretensados por pre-tensión tubulares es sencillo y se realiza mediante sierras circulares para hormigón armado.
Los importantes esfuerzos que se generan en la punta del pilote durante el proceso de hinca hacen necesario el refuerzo en la misma. La punta puede haber sido hormigonada con forma plana, cónica o piramidal o añadir azuches metálicos específicos para determinado tipo de terrenos.
La fabricación de los pilotes pretensados tubulares se ejecuta en planta de prefabricación mediante centrifugado. Utilizando el curado al vapor en cámaras, se pueden hincar pilotes a las 72 horas de su fabricación.
Los pilotes de hormigón pretensado poseen una mayor durabilidad que los de hormigón armado gracias a la limitación de aberturas de fisuras por el pretensado. No obstante, en ambientes muy agresivos (marinos, suelos orgánicos, zonas industriales, etc.) en los que se favorece la corrosión de las armaduras, el hormigón suele ser tratado con cementos especiales o incluso revestimientos protectores en general de origen bituminoso.(p. ej. brea-epoxi). Estos revestimientos se pueden aplicar a todo el fuste o solo en el tramo del pilote en el que se prevea ambiente agresivo.
Para completar la información sobre este tema, os dejo a continuación un enlace de Carlos Fernández Tadeo que indica cómo realizar un control de calidad completo de su construcción, http://fernandeztadeo.com/WordPress/?p=2647
A continuación podéis ver un vídeo Polimedia donde se explica este tipo de pilote.
También os dejo un vídeo donde se explica la fabricación de pilotes de sección circular.
[politube2]65098:450:358[/politube2]
Aquí podemos ver el proceso de fabricación.
Os dejo un vídeo interesante sobre el procedimiento constructivo, en este caso, en el nuevo aeropuerto de México.
A continuación os dejo el catálogo de pilotes prefabricados y pretensados TERRA de Terratest.
Figura 1. http://www.tectonica-online.com/productos/2683/artificial_congelacion/#
Al excavar y estabilizar el suelo, aunque sea de forma provisional, una posibilidad consiste en congelar artificialmente el suelo, en especial, cuando estos son blandos y están saturados. Ello permite disponer de una pared provisional que impide el desmoronamiento del terreno.
El estudio de la congelación artificial del suelo precisa conocimientos en relación con las técnicas de congelación existentes, así como de las propiedades térmicas y geotécnicas del terreno. Este procedimiento constructivo precisa la participación de empresas especializadas. Aquí podéis descargar un documento donde se explica una aplicación práctica de la técnica.
Fundamento teórico
La estabilización temporal del terreno por congelación es una técnica empleada en minería desde mediados del siglo pasado. Se basa en la transformación del agua intersticial en hielo, que en ese estado actúa como elemento aglutinante de las partículas que componen el suelo.
Se consiguen así dos efectos, por una parte, un aumento de la resistencia del terreno y por otra una completa impermeabilidad que facilita durante un tiempo las condiciones de excavación. Pero al mismo tiempo, también se alteran otras condiciones geotécnicas que pueden afectar a estructuras contiguas a la obra, que en el proyecto previo han de ser estudiadas cuidadosamente.
Figura 2. Sistema de congelación de terrenos
Aplicabilidad
La congelación es adecuada en una gran variedad de suelos, incluso en casos donde las inyecciones y otros métodos no pueden ser utilizados. El requisito que plantea es la necesidad de que los suelos estén saturados de agua, ya que de lo contrario la técnica no mejora las características del terreno. Así, se podría congelar un terreno con un grado de saturación del 20%, pero en terrenos cohesivos la congelación no llega a ser del 100%, por lo que el tratamiento deja de ser eficiente.
Figura 3. http://teoriadeconstruccion.files.wordpress.com
Sistemas de congelación
El procedimiento pasa por instalar un conjunto de tubos o sondas de congelación por las que habrá de circular la sustancia refrigerante, con la disposición y separación entre sondas que aconsejen las condiciones de obra (profundidad de excavación, planta, etc.) y el terreno.
Figura 4. Esquema de congelación del terreno
Como sustancias refrigerantes pueden emplearse salmueras (con frecuencia, cloruro cálcico, aunque también se han utilizado cloruros de sodio, magnesio o litio), anhídrido carbónico (nieve carbónica), o nitrógeno líquido. Todas ellas presentan el mismo fundamento físico: la capacidad de absorción de calor de estas sustancias, al pasar de líquido a gas.
El método de instalación varía en función de si se recupera el elemento refrigerante (circuito cerrado) o no (circuito abierto). En el primer caso, ha de establecerse un circuito cerrado como el que se muestra en la figura. El fluido, en forma líquida, pasa por los tubos refrigerantes y al evaporarse a través de ellos absorbe calorías del terreno. Conseguido este efecto, la sustancia en forma de gas se hace pasar por un compresor que en combinación con un sistema refrigerador lo licua a baja temperatura, y después es conducida a un depósito, en el que es almacenada en forma líquida a alta presión. Desde este tanque el caudal se bombea a las sondas refrigerantes para ser reutilizado en un nuevo recorrido a través del circuito cerrado de congelación. La salmuera suele estar al menos a 5 °C por debajo de la mínima temperatura que debe alcanzarse, con puntos de congelación habituales entre -20 °C y -40 °C.
Cuando la congelación se aplica sin recuperar la sustancia refrigerante, esta (a menudo nitrógeno líquido), es transportada a pie de obra en camiones cisterna y desde ellos es bombeada a baja temperatura (» -196 °C), hacia las sondas o tubos congeladores de la instalación: el fluido, después de pasar a través de las sondas, ya evaporado se dirige hasta el final del circuito, en este caso abierto, del cual sale a la atmósfera en forma de gas a unos -60 °C de temperatura.
Figura 5. Congelación artificial del suelo usando nitrógeno líquido. Adaptado de Cashman y Preene (2012)
Este sistema resulta más caro que el anterior por no recuperarse la sustancia refrigerante, pero los efectos de congelación que se consiguen en la práctica son más rápidos.
Existe la opción de utilizar un procedimiento mixto. Consiste en combinar la capacidad frigorífica del nitrógeno líquido, para efectuar la congelación del terreno de forma rápida, y la economía de la salmuera, para el mantenimiento durante los trabajos de excavación y ejecución de la estructura. Para ello, los circuitos de sondas deben estar separados de forma que se puedan emplear ambos procedimientos.
Condiciones de ejecución
La elección del procedimiento y medios de congelación más efectivos, requiere el estudio del terreno y de la obra en tres etapas:
Estudio de viabilidad
Elección del sistema
Ejecución y control
El estudio de viabilidad decide la factibilidad de la congelación y definir qué tipo de acciones se deben adoptar si se necesitan medidas correctoras del terreno. Obviamente, se debe comenzar con el conocimiento hidrogeológico del terreno y del entorno afectado por la congelación. En este estudio, los parámetros térmicos y geotécnicos del suelo durante todo el proceso son los que presentan un mayor interés.
Es conveniente conocer el volumen y las condiciones del agua que entre en contacto con el material congelado debido al calor proporcionado y a los efectos de la velocidad de circulación. A partir de velocidades de 1,5 – 2 m/día, la congelación no es posible con nitrógeno líquido. Con esas velocidades altas se puede inyectar el terreno para mejorar la eficiencia del tratamiento. La congelación suele ser factible en suelos saturados, aunque también se podría emplear en suelos con grados muy bajos de saturación (10%).
El estudio de viabilidad decide el sistema de congelación y la mejor disposición de los tubos para adaptarse a las condiciones del terreno. Se recurre a superficies cilíndricas, de sección circular o elíptica, para que los esfuerzos generados en el material congelado sean de compresión. El análisis térmico permite seleccionar la disposición más favorable de las sondas, la potencia del equipo de congelación y el tiempo de trabajo necesario para lograr la congelación.
Las sondas termométricas permiten el control de la temperatura en el interior del suelo congelado. De esta forma se controla la evolución de la congelación durante la excavación y determinar la potencia frigorífica necesaria. Por tanto, la congelación se realiza en dos etapas, la etapa activa, que congela el terreno para formar la pantalla, y la etapa pasiva, donde se mantiene estable el espesor congelado.
La resistencia de un suelo congelado la determina la cohesión y el ángulo de rozamiento. Pero estos parámetros varían según la temperatura y el tiempo, con leyes diferentes en función de la composición del suelo y de la duración de la carga aplicada.
Ventajas y limitaciones
La congelación del terreno permite acortar plazos cuando es importante la cantidad de agua en una excavación, siendo un método aplicable a una gran variedad de suelos. Sin embargo, su ejecución precisa empresas especializadas que, junto a su coste, han limitado su uso en España. Asimismo, en el caso de gravas con un flujo de agua considerable, se requiere una inyección previa. Por último, el asiento producido tras la descongelación del terreno puede ser significativo.
Os dejo aquí un caso real en Varsovia de aplicación de la congelación del terreno.
Os dejo a continuación un vídeo que os he preparado para explicar este procedimiento constructivo. Espero que os guste.
En el siguiente vídeo se muestra un proyecto de congelación, para la posterior construcción de un túnel.
Referencias:
CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.
MUZÁS, F. (1980). El frío, la helada, congelación de terrenos. Capítulo 16 de Geotecnia y Cimientos III, de J.A. Jiménez Salas, Ed. Rueda.
MUZÁS, F. (1980). Congelación artificial del terreno.IV Curso sobre Técnicas de Mejora del Terreno. Valencia, 16 de octubre. (link)
Consiste en aplicar una carga sobre una placa (generalmente rígida) colocada sobre la superficie del terreno y medir los asientos producidos. Esta técnica se utiliza ampliamente para comprobar el módulo de deformación de capas de terraplenes y firmes.
El método que se utiliza habitualmente es el estático, en el que se aplica una carga a una placa circular mediante un gato hidráulico y se utiliza un camión cargado o una máquina pesada como reacción para el gato. La norma NLT-357/98 describe la realización de este ensayo. El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras, especifica valores mínimos del módulo E2 para diferentes materiales y situaciones (link).
Os dejo varios vídeos sobre cómo se realiza el ensayo. Espero que os gusten:
Figura 1. Compactación dinámica. https://civildigital.com/ground-improvement-techniques-complete-list-of-methods-classifications/
La compactación dinámica (“dynamic compaction”, DC) es una técnica que mejora la capacidad portante de los suelos mediante al dejar caer una masa desde cierta altura. El nombre de compactación dinámica no refleja con exactitud los procesos reales de carga y transmisión de energía, por lo que también suele llamarse compactación dinámica profunda (“deep dynamic compaction”). Uno de los mitos de la compactación dinámica es que se trata de un tratamiento superficial del suelo, ya que las cargas se aplican en la superficie. Sin embargo, a diferencia de la compactación superficial, es un proceso de densificación que llega a profundidades de entre 3 y 4 metros. Tras el impacto, se crean cráteres de hasta dos metros de profundidad, que deben rellenarse y compactarse. La densificación en profundidad se produce como resultado de la energía de las ondas dinámicas que se transmite a través del suelo. Este tratamiento se aplica en edificios industriales, plataformas portuarias y aeroportuarias, terraplenes viarios y ferroviarios, etc. Además, es idóneo para obras extensas, con rendimientos de más de 10000 m2 por mes.
La técnica de dejar caer grandes masas sobre la superficie del suelo para mejorarla en profundidad se viene empleando desde hace tiempo. Menard y Broise (1976) hacen referencia a dibujos muy antiguos que sugieren que esta técnica se utilizaba en China desde hacía siglos. Los romanos también la utilizaron en sus construcciones antes del año 100 a. C. En Estados Unidos se empleó un antiguo cañón para compactar ya en 1871 (Lundwall, 1968). En la antigua Unión Soviética también se compactaron loess con buenos resultados, si bien con pesos y alturas de caída mucho menores que en la actualidad (Faraco, 1980). En los años cuarenta, este procedimiento constructivo se empleó en la construcción de un aeropuerto en China y un área portuaria en Dublín. Sin embargo, la técnica actual se puede fechar en 1970, cuando Louis Menard patentó este método en Francia, favorecido sin duda por la aparición de las gigantescas grúas montadas sobre orugas. En Gran Bretaña y en Estados Unidos se empezó a utilizar en los años 1973 y 1975, respectivamente.
Hoy en día, es habitual el uso de pesos que oscilan entre 1 y 30 t, con alturas de caída de entre 10 y 30 m, a veces más. Los pesos son de acero para soportar las fuerzas dinámicas repetitivas. Normalmente, se utiliza una grúa para dejar caer el peso, aunque también existen equipos especiales. Las grúas deben permanecer en buenas condiciones, ya que no están diseñadas para cargas dinámicas repetitivas.
Figura 2. Esquema de la ejecución de la compactación dinámica. Cortesía de Menard
Este tipo de tratamiento depende de las características del suelo y de la energía utilizada. En principio, se puede utilizar en suelos granulares, tanto saturados como no saturados. También ofrece buenos resultados en rellenos artificiales heterogéneos, que difícilmente se mejorarían con otros procedimientos. La mejora se traduce en un aumento de la capacidad portante y una reducción de los asientos, incluidos los diferenciales. Es un método muy adaptado y empleado para prevenir la licuefacción de suelos. La compactación dinámica permite incluso cimentar con zapatas convencionales, ya que proporciona una capacidad portante al suelo de entre 100 y 150 kPa. Además, es una solución económica en comparación con la excavación y sustitución del suelo, la precarga o las inyecciones. Los costes son aproximadamente de 2/3 respecto a las columnas de grava, con un ahorro de hasta el 50 % en comparación con la compactación profunda. Se pueden conseguir rendimientos de 300 a 600 m2/día (García Valcarce et al., 2003).
La compactación dinámica se utiliza para densificar suelos flojos, saturados y sin cohesión, y así se reduce el riesgo de licuefacción del terreno. En este sentido, el proceso de densificación es similar al de la vibrocompactación. Es una de las mejores alternativas para densificar rellenos heterogéneos y escombros, que podrían causar problemas a otras técnicas como las columnas de grava o las inclusiones rígidas. También se podría emplear en suelos finos cohesivos, pero el éxito en este caso es más dudoso y es necesario prestar atención a la generación y disipación de las presiones intersticiales. En ocasiones, esta técnica se emplea conjuntamente con las columnas de grava para facilitar la disipación de las presiones intersticiales (Bayuk y Walker, 1994).
Los patrones de caída suelen consistir en cuadrículas primarias y secundarias (y ocasionalmente terciarias), como las que se muestran en la Figura 3. El espaciamiento entre puntos de impacto oscila entre 2 y 3 m en el caso de las mazas pequeñas y supera los 10 m en el de las mazas pesadas. Una vez que la profundidad del cráter alcanza aproximadamente 1 m, se rellena con material granular antes de proceder a nuevas caídas en ese lugar.
Figura 3. Fases en la compactación dinámica. Cortesía de Menard
El tratamiento se da en varias pasadas y la profundidad alcanzada por la densificación se puede relacionar con la energía del golpe mediante la siguiente fórmula empírica (Mayne et al., 1984):
donde:
M = masa de la maza (toneladas)
H = altura de caída (metros)
D = profundidad efectiva de la compactación (metros)
k = factor empírico que depende del tipo de suelo y de las características del tratamiento, que varía entre 0,35 (arenas limosas y limos con IP=10%) y 0,6 (gravas y arenas limpias), aunque un valor usual puede ser 0,5.
Teniendo en cuenta lo anterior, y conociendo las capacidades máximas de las grúas normalmente disponibles (H=30 m, M=20 t), la profundidad efectiva máxima varía entre 7 y 12 m, aproximadamente (Armijo y Blanco, 2017). No obstante, se pueden alcanzar profundidades de tratamiento de hasta 30 m (García Valcarce et al., 2003).
Durante la compactación existe un efecto instantáneo al reducirse el índice de huecos tras el impacto, y un efecto diferido en el caso de suelos saturados al disiparse la sobrepresión intersticial y reestructurarse el material a un estado más denso.
Con todo, la compactación dinámica presenta algunos inconvenientes. En efecto, se necesita una superficie mínima de 15000 m2 para garantizar cierta rentabilidad económica y, además, se debe dejar una distancia mínima de 20 a 30 m a las estructuras próximas para evitar daños (García Valcarce et al., 2003).
El procedimiento de cómo se realiza la compactación dinámica está ampliamente descrito en el trabajo de Liausu (1984).
He grabado un pequeño vídeo explicativo de esta técnica de mejora de terrenos.
A continuación tenéis un folleto explicativo de Menard.
Bayuk, A.A.; Walker, A.D. (1994). «Dynamic Compaction. Two Case Histories Utilizing Innovative Techniques.» In-Situ Deep Soil Improvement, ASCE, Geotechnical Special Publication No.45.
Faraco, C. (1980). “Mejora del terreno de cimentación”, en Jiménez Salas (coord.) Geotecnia y Cimientos III, primera parte, pp. 489-531.
Findlay, J.D.; Sherwood, D.E. (1986).”Improvement of a hydraulic fill site in Bahrain using modified heavy tamping methods” Building on Marginal & Derelict Land., May 7-9.
García Valcarce, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
Liausu, P. (1984) Renforcement de Couches de Sol Compressibles par Substitution Dynamique, In-Situ Soil and Rock Reinforcement Conference, Paris.
Lundwall, N.B. (1968). The Saint George Temple, in “Temples of the Most High, Bookcraft, Salt Lake City, Chapter 3, p. 78.
Mayne, P.W.; Jones, J.S.; Dumas, J.C. (1984). Ground response to dynamic compaction. Journal of Geotechnical Engineering, ASCE, Vol. 110(6), pp. 757-774.
Ministerio de Fomento (2002). Guía de Cimentaciones. Dirección General de Carreteras.
Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
Skempton, A.W. (1986). Standard Penetration Test Procedures and the Effects in Sand of Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation. Geotechnique, 36, pp. 425-437.
Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
Varaksin, S. (1981). “Recent development in soil improvement techniques and their practical applications”. Sol. Soils, N.º 38/39.
El sondeoa rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos «in situ» por el interior de la sonda.
Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger.
Hélice cortaHélice continua
Os dejo un vídeo explicativo de estas técnicas. Espero que os guste.
Referencia:
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías suponen a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella es crucial. Desgraciadamente, en numerosas ocasiones se trata la compactación como una unidad de obra complementaria o auxiliar. Las variables que más influyen en la compactación son la naturaleza del terreno, su grado de humedad y la energía aplicada. Estas variables se estudian a continuación.
Figura 1. Curva de compactación
La densidad, humedad y huecos están relacionados entre sí. Se trata de comprobar empíricamente lo que ocurre al someter a un suelo a un proceso de compactación. Dicho experimento consiste en golpear capas dentro de un cilindro, mediante un procedimiento normalizado, y medir la densidad seca y la humedad en cada caso. Se realizará el estudio sometiéndolo a diversas energías de compactación y humedades.
Este experimento permite la obtención de las curvas de compactación, que relacionan el peso específico seco y la humedad de las muestras de suelo compactadas con una energía determinada, y que presentan un máximo, más o menos acusado, según su naturaleza. Los valores típicos de los pesos unitarios máximos secos oscilan entre 16 y 20 kN/m³, con los valores máximos en el intervalo de 13 a 24 kN/m³. Cifras superiores a 23 kN/m³ son raras, ya que este valor es cercano al hormigón húmedo. Los contenidos típicos de humedad óptima oscilan entre el 10% y el 20% con un intervalo máximo del 5% al 30%. Generalmente, se requieren cinco puntos con el objeto de obtener una curva fiable, con una humedad entre puntos que no se diferencien en más del 3%.
Se puede definir como índice de compactación (IC) la relación entre el peso específico seco del terreno compactado y el peso específico seco óptimo.
Antes de llegar a la humedad óptima, el agua favorece la densificación al actuar con cierto efecto lubricante, pero al pasar de la óptima, la densidad seca decrece, ya que el aire no sale tan fácil por los huecos, y el agua desplaza aparte de las partículas sólidas. La rama descendente de la curva tiende a aproximarse asintóticamente a la de saturación del suelo. Hogentogler (1936) considera que la forma de la curva de compactación se debe a dichos procesos de hidratación, lubricación, hinchamiento y saturación reflejados en la Figura 2.
Figura 2. Efectos del contenido de humedad en la compactación
Si se aplican diferentes energías de compactación, ocurre lo que se indica en la Figura 3: el peso específico seco máximo aumenta, pero con una humedad menor y las ramas descendentes se acercan de forma progresiva con humedades altas, ya que el aumento de energía lo absorbe el exceso de agua. Los máximos suelen situarse sobre la misma línea de huecos de aire, en general, alrededor de na = 5 %.
Figura 3. Variación de la energía de compactación
La composición granulométrica del suelo y su sensibilidad al agua de su fracción fina son muy significativas al compactar. Los terrenos granulares sin finos presentan curvas de compactación aplanadas, sin un máximo muy definido, teniendo escasa influencia su humedad. Los suelos finos (más del 35% en peso) presentan pesos específicos secos más bajos que si no tuviesen tantos finos, y por consiguiente precisan de mayor humedad. Lo idóneo es una mezcla de tamaños más o menos continua, con un máximo del 10 al 12% de finos.
Figura 4. Curvas de compactación para diversos materiales (Johnson y Sallberg, 1960)
En obra suele ser difícil mantener contenidos de agua próximos al óptimo, lo cual implica que si las curvas de compactación tienen ramas con fuertes pendientes, estos materiales van a ser más difíciles de compactar, ya que pequeños cambios de humedad causan fuertes bajas en la densidad. Son preferibles curvas con cuyas ramas tengan pendientes más suaves.
Veamos, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.
HOGENTOGLER, C.A. (1936). Essentials of soil compaction. Proceedings Highway Research Board, National Research Council, Washington D. C., 309-316.
JOHNSON, A.W.; SALLBERG, J.R. (1960). Factors that Influence Field Compaction of Soils. Bulletin 272. HRB, National Research Council, Washington, D. C., 206 pp.
También llamados rodillos autopropulsados de impactos o de zapatas, son la réplica moderna a las de pata de cabra. En artículos anteriores ya comentamos aspectos relacionados con la curva de compactación, los tramos de prueba o las recomendaciones de trabajo en la compactación. En este nos centraremos en los compactadores estáticos de patas apisonadoras.
Compactador autopropulsado de patas apisonadoras. Fotografía de Víctor Yepes
Están formados por cuatro rodillos con patas de forma truncada y acabada en doble bisel, lo que permite no sacar el material al salir de la penetración en el terreno. La longitud no supera los 20 cm y el número de patas por rodillo varía entre 50 y 65. Se les suele acoplar una hoja empujadora para facilitar el extendido del material. La potencia oscila entre 50 y 300 kW.
Su chasis está articulado y puede girar hasta 45°. El ancho de la máquina puede alcanzar los 3,50 m. El peso total oscila entre 8 y 40 toneladas. Son apisonadoras que pueden trabajar con velocidades máximas de 20-25 km/h, por lo que se las llama compactadoras de alta velocidad. Las velocidades de trabajo son más lentas en las primeras pasadas y más rápidas en las últimas.
Combinan el esfuerzo estático con el amasado del terreno, debido a la forma de los salientes, el efecto dinámico producido por la presión a gran velocidad y cierto efecto de semivibración originado por el gran número de impactos próximos en un área tan reducida. Compactan casi todos los suelos con buenos rendimientos, salvo los muy arcillosos o los con un gran porcentaje de rocas grandes. También pueden utilizarse complementándose con pasadas de neumáticos en el caso de grava-cemento cuya curva tenga un alto contenido de finos.
A continuación os paso un Polimedia para describir brevemente este tipo de máquinas. Espero que os guste.
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.