Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Características de la construcción mixta de hormigón y acero

El Puente Juan Bravo en Madrid. http://www.dobooku.com/2017/10/el-puente-juan-bravo-en-madrid/

Una pieza mixta esencialmente consta de tres elementos principales:

        • Sección de hormigón: puede contener o no armadura pasiva y/o activa.
        • Sección metálica.
        • Elementos de conexión, también conocidos como conectores.

Gracias a la colaboración entre el hormigón y el acero, la sección mixta experimenta una deformación conjunta, controlando así cualquier deslizamiento relativo entre ambos materiales mediante los conectores.

Todas aquellas acciones diferenciales entre hormigón y acero generan esfuerzos internos y de corte en la interfase que pueden ser significativos y que hay que considerar en proyecto. Algunos de los factores a considerar son la retracción del hormigón, la fluencia, los efectos térmicos, la acción del pretensado, entre otros. Es fundamental analizar y comprobar la estructura frente a los estados límites de servicio.

Desde un punto de vista estructural, la construcción mixta presenta las siguientes características principales:

  • Reducción del espesor en dinteles, especialmente notable en luces más amplias. Esto se debe a la mayor rigidez y resistencia última proporcionada por la sección parcial de hormigón en comparación con una solución completamente metálica. Además, la zona traccionada también es más rígida en comparación con soluciones de hormigón armado y pretensado. En el caso de edificios, esto implica una menor altura de los pisos, lo que se traduce en ahorro de materiales y de instalaciones.
  • Mayor esbeltez de los soportes, lo que incrementa el espacio libre y mejora las condiciones estéticas de la estructura.
  • El aumento de rigidez mejora la capacidad de deformación y respuesta de la estructura frente a cargas dinámicas.

Desde el punto de vista constructivo, las estructuras mixtas ofrece una amplia variedad de tipologías, basadas en los materiales que la componen. Estos tipos constructivos pueden adaptarse según las necesidades prácticas de la ejecución. Algunas opciones a considerar son las siguientes:

  • Secciones de hormigón: se pueden utilizar secciones de hormigón in situ o prefabricadas, que pueden ser de hormigón en masa, armado o pretensado. También es posible emplear hormigón ligero.
  • Secciones metálicas: se pueden emplear perfiles, chapas o tubos metálicos. Estas secciones pueden ser atornilladas o soldadas, y pueden presentarse en formas de alma llena, en celosía o aligeradas. También es posible el uso de secciones metálicas pretensadas. Dichas secciones metálicas pueden estar completamente expuestas o parcial o totalmente empotradas en el hormigón.
  • Conexiones: las conexiones entre los elementos pueden ser parciales o totales. Además, pueden realizarse antes o después del endurecimiento del hormigón, así como antes o después del pretensado del hormigón o del acero.

En la construcción mixta, el proceso constructivo adquiere una importancia destacada, tanto desde el punto de vista analítico-estructural como desde la perspectiva económica. Esto se debe a la existencia de una amplia variedad de cargas previas a las sobrecargas de uso, lo que implica consideraciones adicionales tanto en el análisis estructural como en el aspecto económico.

En las referencias os podéis descargar, gratuitamente, un estado del arte reciente sobre este tipo de estructuras mixtas aplicadas a puentes. Creo que os puede resultar de utilidad. También os dejo un par de vídeos introductorios a las estructuras mixtas que espero os sean de interés.

Referencias:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aplicación de la clase inversa a la evaluación del ciclo de vida de una pasarela mixta

Variables de la sección transversal del puente mixto

A continuación os paso una comunicación que hicimos en el congreso INTED en nuestra búsqueda constante de estrategias pedagógicas innovadoras. Este estudio describe cómo se ha introducido la evaluación del ciclo de vida en un curso de postgrado a través de la clase inversa. El análisis se realizó en la asignatura «Modelos predictivos y de optimización de estructuras de hormigón» enmarcada dentro de los estudios del Máster Universitario en Ingeniería del Hormigón. En esta asignatura introduce los métodos de optimización mediante la aplicación de algoritmos y otros conceptos, como la toma de decisiones multicriterio, el diseño de experimentos y los métodos predictivos y de regresión. En este caso, se llevó a cabo la evaluación del ciclo de vida de una pasarela mixta de 28 m de longitud. La sección consiste en una viga de acero con una losa de hormigón. Se modelaron distintos escenarios con ayudados con software específico. Se empleó la base de datos Ecoinvent, y el software openLCA, desarrollado por Greendelta. Esta metodología permite al estudiante adquirir ciertas competencias transversales, como la responsabilidad ética y medioambiental, el conocimiento de los problemas contemporáneos, el pensamiento crítico y el uso de instrumentos específicos, todo ello enmarcado en el proyecto institucional de la Universitat Politècnica de València. El trabajo también presenta futuros estudios relacionados con la evaluación del ciclo de vida de las pasarelas, no sólo desde el punto de vista energético y medioambiental, sino también teniendo en cuenta factores económicos y sociales.

ABSTRACT:

This study describes the introduction of the life cycle assessment methodology to a postgraduate course through a flipped classroom. The analysis was carried out in the subject predictive models and optimization of concrete structures framed within the Master’s Degree in Concrete Engineering studies. In this course, students are introduced to optimization methods through the application of algorithms and other concepts, such as multi-criteria decision-making, the design of experiments, and predictive and regression methods. In this case, the life cycle assessment of a 28 m span length steel-concrete composite pedestrian bridge was carried out. The section consists of a steel beam topped by a concrete slab. Computer tools were used in different implementation scenarios to model the different possibilities. The database used was Ecoinvent, and the software employed to assess the structure’s life cycle was openLCA, developed by Greendelta. This methodology allows the student to acquire transversal competencies, such as ethical and environmental responsibility, knowledge of contemporary problems, critical thinking, and the use of specific instruments, all of them framed within the institutional project of the Universitat Politècnica de València. This work also presents future studies related to the life cycle assessment of footbridges, not only from energy and environmental points of view but also accounting for economic and social factors. This learning process was achieved with a reverse teaching methodology that allows students to acquire knowledge more efficiently.

Keywords:

Technological resources; tools; active methodology; flipped teaching; life cycle assessment; transversal competencies.

Reference:

MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V.; YEPES, V. (2019). Application of flipped learning to the life cycle assessment of a composite pedestrian bridge. 12th annual International Conference of Education, Research and Innovation ICERI 2019, 11-13 nov 2019, Sevilla, Spain, pp. 900-907. ISBN: 978-84-09-14755-7

Os dejo a continuación la comunicación completa.

Pincha aquí para descargar

Construcción de estructura mixta: Torre BBVA Bancomer

Torre durante su construcción. https://es.wikipedia.org/wiki/Torre_BBVA_(M%C3%A9xico)#/media/Archivo:TorreBancomer_21-03-2014.JPG

La Torre BBVA Bancomer se ubica en un área de 6.600 m2 en la esquina que forman Paseo de la Reforma y la calle de Lieja, en la Colonia Juárez de la Ciudad de México. Su altura es de 235 metros hasta el helipuerto y 250 m hasta la punta de las antenas, sin embargo, la altura oficial llega a 235 m debido a que las antenas son decorativas. Cuenta con 60 pisos de 4,30 metros de altura cada uno en los pisos de oficinas y 3,7 m en los niveles de estacionamiento. La Torre aloja a 4.500 empleados, aproximadamente. El inmueble cuenta con certificación LEED ORO, amigable con el ambiente, ahorra un 40% de agua y 25% de energía.

El diseño del proyecto es de Legorreta + Legorreta y Rogers Stirk Harbour + Partners, la cimentación la realiza Cimesa y la gerencia de construcción corre a cargo de Turner y Marhnos. La construcción comenzó a principios del año 2008,  y se inauguró en el año 2016. Esta torre es la sede central en México del BBVA Bancomer, donde se ubican las oficinas principales.

Torre terminada, en 2016. https://es.wikipedia.org/wiki/Torre_BBVA_(M%C3%A9xico)#/media/Archivo:Torre_Bancomer_2016_3.jpg

Aquí os paso un par de vídeos de la construcción de esta torre, diseñada en estructura mixta. Espero que os guste.

Técnicas heurísticas para el diseño de pasarelas mixtas

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este trabajo ha sido aplicar técnicas de optimización heurística a un puente peatonal compuesto de hormigón y acero, modelado como una viga biapoyada. Se ha desarrollado un programa específico en Fortran, capaz de generar puentes peatonales, comprobar todos sus estados límite y evaluar su coste. Se han utilizado en este trabajo los siguientes algoritmos: búsqueda local de descenso (DLS), un recocido simulado híbrido con un operador de mutación (SAMO2) y una optimización de enjambres de luciérnagas (GSO) en dos variantes. Los resultados se compararon según el coste más bajo. Los algoritmos GSO y DLS combinados obtuvieron los mejores resultados en términos de coste. Además, se ha estudiado la comparación entre las emisiones de CO2 asociadas a la cantidad de materiales obtenidos por cada técnica heurística y la solución de diseño original. Finalmente, se realizó un estudio paramétrico en función de la longitud de vano del puente peatonal.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/9/16/3253

ABSTRACT:

The objective of this work was to apply heuristic optimization techniques to a steel-concrete composite pedestrian bridge, modeled like a beam on two supports. A program has been developed in Fortran programming language, capable of generating pedestrian bridges, checking them, and evaluating their cost. The following algorithms were implemented: descent local search (DLS), a hybrid simulated annealing with a mutation operator (SAMO2), and a glow-worms swarm optimization (GSO) in two variants. The first one only considers the GSO and the second combines GSO and DLS, applying the DSL heuristic to the best solutions obtained by the GSO. The results were compared according to the lowest cost. The GSO and DLS algorithms combined obtained the best results in terms of cost. Furthermore, a comparison between the CO2 emissions associated with the amount of materials obtained by every heuristic technique and the original design solution were studied. Finally, a parametric study was carried out according to the span length of the pedestrian bridge.

Keywords: pedestrian bridgecomposite structuresoptimizationmetaheuristicsstructural design

REFERENCIA:

Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López-Desfilis, V.J.; Martí, J.V. Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Appl. Sci. 20199, 3253.

Pincha aquí para descargar

 

 

Puente colgante sobre el Vinalopó (Elche)

Fuente: https://twitter.com/e_goberna/status/947089123231268864

El puente colgante sobre el Vinalopó, en Elche, es una estructura diseñada por FHECOR (Hugo Corres y José Romo) y construida por FCC Construcción. Se trata de un tablero metálico asimétrico, con un canto transversal variable de 0,75 a 0,52 m, de 164,50 m de longitud y 23 m de ancho que se cuelga con 54 péndolas cogidas de dos catenarias de ocho cables cada una. Los cables parten de una estructura contrapeso anclada a tierra, que se eleva hasta una silla desviadora metálica situada en un mástil de hormigón de 43 m de altura, bajando en catenaria hasta el contrapeso de estribo opuesto y salvando una distancia de 244 m entre contrapesos.

Los cables principales se montaron con un sistema de cable guía. Las péndolas y sus conexiones con el cable principal han sido montadas con un sistema especialmente diseñado que circulaba sobre los cables principales previamente instalados. El tablero metálico se montó con grúas, dejando articuladas las uniones de los paños entre sí. El hormigonado de la losa se realizó de una vez, utilizando un hormigón con retardador de fraguado para que tuviera lugar cuando el tablero estuviera totalmente hormigonado. La conexión entre acero y hormigón se realizó mediante pernos conectadores tipo Nelson.

 

Esta estructura se inauguró en julio de 2000, siendo el promotor la Generalitat Valenciana. Os dejo un enlace donde se describe este puente por sus autores: http://e-ache.com/modules/ache/ficheros/Realizaciones/Obra20.pdf

Asimismo, os dejo un par de vídeos donde podéis ver la construcción del puente. Espero que os gusten.