¿Qué resistencia tiene que tener el hormigón para poder descimbrar?

Figura 1. Desencofrado. Fuente: https://www.alsina.com/es-es/encofrados-para-losas-y-forjados-cimbrado-descimbrado-parcial-y-descimbrado-total/

En una entrada anterior, se destacó la importancia de definir adecuadamente el plazo de descimbrado, un asunto de considerable relevancia debido a sus implicaciones tanto en la economía como en la seguridad del proceso constructivo. La determinación de este plazo está intrínsecamente ligada al momento en el cual el hormigón puede resistir los esfuerzos durante la construcción. En consecuencia, la edad mínima para llevar a cabo el descimbrado se ve influenciada por diversos factores, tales como la evolución de la resistencia y el módulo de deformación del hormigón, el proceso de curado, la deformabilidad y la proporción de la carga permanente que actúa en el momento del descimbrado.

Para establecer este plazo mínimo, se pueden considerar dos métodos: el primero se basa en la resistencia a tracción del hormigón, mientras que el segundo se adhiere a los métodos propuestos por la EHE-08 en su artículo 74. No obstante, es crucial señalar que los plazos indicados por la EHE-08 no son compatibles con desencofrados rápidos.

Para agilizar el proceso de descimbrado, es esencial determinar el desarrollo de las resistencias mecánicas del hormigón a corto plazo, factor que depende en gran medida de la composición de la mezcla y la temperatura. La resistencia directamente vinculada con los fenómenos de anclaje y corte es la resistencia a tracción. Aunque esta resistencia no se incorpora directamente en los cálculos para estructuras de hormigón armado, reviste una importancia crucial en la estimación de los plazos de descimbrado. En algunos casos, la adherencia puede ser el aspecto crítico, pero, a efectos prácticos, se puede considerar la resistencia a tracción como determinante para el descimbrado.

Así, si tenemos una estructura con una acción característica de proyecto y en el momento de descimbrar está sometida a una fracción de esta acción, podremos realizar el descimbrado si se cumple la siguiente condición:

Por simplificar, se llama:

donde fckt,j  es la resistencia a tracción del hormigón a los j días, fckt,28 es la resistencia a tracción del hormigón en curado estándar a los 28 días, γ’fg es el coeficiente de mayoración de acciones aplicable a la situación correspondiente al descimbrado (por tratarse de una situación temporal puede ser menor de la del proyecto, sin ser inferior a 1,25), γfg es el coeficiente de mayoración de acciones de proyecto (1,50 para situación persistente o transitoria de efecto desfavorable para una acción permanente de valor no constante, por ejemplo) y α es la relación entre la carga característica de construcción y la característica de la estructura. Conviene fijarse que γ’fg depende del nivel de control; así, Calavera (2002) propone que sea de 1,30 para obras de control de ejecución intenso, de 1,35 para obras de control de ejecución normal y de 1,40 para obras de control reducido.

Aunque la fórmula previa es precisa, la complejidad radica en la precisa determinación de los valores asociados. En este sentido, un método práctico de aplicación en laboratorio implica la obtención de la resistencia a tracción indirecta del hormigón a través del ensayo brasileño. Para llevar a cabo este procedimiento, es necesario curar las probetas en condiciones semejantes a las de la estructura en cuestión. Mediante la realización de ensayos a distintas edades, podemos identificar el momento en el cual se alcanza el valor mínimo necesario para proceder al descimbrado.

Una alternativa para calcular el plazo de descimbrado implica el uso de curvas de referencia, las cuales ofrecen la evolución de la resistencia a tracción en relación con la temperatura y el tipo de cemento utilizado. En la Figura 2, se presentan las curvas elaboradas por Alvarado et al. (2005) para un hormigón con resistencia característica a compresión de 25 MPa y endurecimiento normal. Para ajustar la evolución de la temperatura del hormigón en obra, se emplea el método de madurez, una herramienta que evalúa la resistencia del hormigón recién colocado al relacionar el tiempo y las mediciones de temperatura con los valores de resistencia reales. El Anexo A de la norma UNE 83160-1 IN proporciona un ejemplo práctico de aplicación de los métodos de madurez.

Figura 1. Curvas para determinar el plazo de descimbrado para un hormigón de 25 MPa y cemento de endurecimiento normal (Alvarado et al., 2005)

Por último, podríamos utilizar la relación que existe entre la resistencia a tracción directa y la resistencia a compresión. Así, la EHE-08 propone la siguiente relación, cuyo mayor inconveniente es que solo es válida para edades superiores a 7 días y para hormigones de resistencia característica menor o igual a 50 MPa:

sustituyendo las expresiones que relacionan la resistencia a tracción con la resistencia a compresión a edades jóvenes, se obtiene la siguiente condición de la EHE-08 (solo válida para edades superiores a 7 días):

Por otra parte, sabiendo que la resistencia a tracción pura (fckt) está relacionada con la resistencia a tracción indirecta obtenida en el ensayo brasileño (f ‘ckt) mediante la siguiente relación aproximada:

se puede concluir que la condición de descimbrado, en función de la resistencia a tracción el ensayo brasileño, sería la siguiente (solo válido para edades superiores a 7 días):

Sin embargo, esta expresión de la EHE-08, donde se requiere una resistencia característica mínima a compresión en el momento de descimbrar, puede resultar poco restrictiva para determinados tipos de cementos. Para un cemento CEM II/A-V 42.5, Alvarado et al (2005) proponen la siguiente ecuación, más ajustada que la anterior, para determinar la resistencia a compresión necesaria para el momento del descimbrado:

Finalmente, como medida de precaución y a pesar de lo expuesto anteriormente, se recomienda un plazo que no sea inferior a 3 días, considerando la incertidumbre inherente al cálculo de la evolución de las resistencias del hormigón en edades tempranas. Además, se desaconseja el descimbrado en casos donde las resistencias sean inferiores a los 10 N/mm2 por razones estéticas, como cambios en el color, desconchones, textura, entre otros, especialmente si la superficie de hormigón tiene un propósito específico.

Referencias:

  • ALVARADO, Y.A.; CALDERÓN, P.A.; ADAM, J.M.; PAYÁ, I.J.; PELLICER, T.; PALLARÉS, F.J.; MORAGUES, J.J. (2009). An experimental study into the evolution of loads on shores and slabs during construction of multistory buildings using partial striking. Engineering Structures, 31(9):2132-2140.
  • ALVARADO, Y.A.; CALDERÓN, P.A.; PALLARÉS, F.J.; PELLICER, T. (2005). Estimation of shore removal times in bidirectional in situ concrete floor slabs applying the maturity method. Bangkok, Thailand.
  • CALAVERA, J. (2002). Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas-hormigón metálicos y mixtos. Intemac Ediciones, Madrid.
  • CALAVERA, J., FERNÁNDEZ, J. (1991). Cuaderno Nº 3: Criterios para el descimbrado de estructuras de hormigón. INTEMAC, Madrid.
  • CALDERÓN, P.A.; ALVARADO, Y.A.; ADAM, J.M. (2011). “A new simplified procedure to estimate loads on slabs and shoring during the construction of multistorey buildings”, Engineering Structures (2011),
  • FERNÁNDEZ, J. (1986). Estudio experimental de la evolución de las características mecánicas del hormigón curado en diversas condiciones y su aplicación al cálculo de los procesos de descimbrado. Tesis Doctoral, Universidad Politécnica de Madrid, Madrid.
  • MINISTERIO DE FOMENTO (2008). Instrucción de hormigón estructural. EHE-08. Comisión Permanente del Hormigón, Madrid.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

 

Resistencia a fricción contra deslizamiento del apoyo de una cimbra

Figura 1. Resistencia de fricción contra deslizamiento. Fuente: EN 12812

Los pequeños detalles son los que, en ocasiones, provocan accidentes o problemas importantes en una obra. En este post vamos a comentar brevemente cómo evitar en el cálculo estructural de una cimbra el deslizamiento local del apoyo. Se trata de una comprobación sencilla que vamos a describir siguiendo las indicaciones de la norma UNE-EN 12812 «Cimbras. Requisitos de comportamiento y diseño general».

La forma de evitar el deslizamiento local de la cimbra se puede realizar confiando en la fricción, mediante un dispositivo mecánico, o por la combinación de ambos. Para este último caso, se debería garantizar que actúan tanto la resistencia a fricción como el dispositivo mecánico de forma conjunta. Téngase en cuenta que la rigidez del dispositivo mecánico y cualquier tolerancia u holgura pueden retrasar el trabajo conjunto.

Para que la resistencia a fricción Rf,d sea suficiente, debe superar al valor de cálculo de la fuerza paralela al plano de apoyo que conduce al deslizamiento, Fd (véase la Figura 1).

 

 

 

Rf,d se calcula de la siguiente forma:

donde:

Los coeficientes de rozamiento dependen de la combinación de materiales. En la siguiente tabla aportada por la norma UNE-EN 12812 se sugieren algunos valores que pueden modificarse si se disponen de datos más reales realizados por experimentación para un caso particular.

Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”

El mes pasado se desarrolló en la Universitat Politècnica de València el IV Congreso Nacional de Innovación Educativa y Docencia en Red. A parte de pertenecer al Comité Científico de dicho congreso. En este congreso, la mayor parte de las comunicaciones se presentan en formato póster y solo una pocas se presentan en comunicación oral. Ese ha sido el caso de la presentación oral que hice de una comunicación que presenté una propuesta jerárquica sobre las competencias y los resultados de aprendizaje. Esa comunicación es la que os dejo a continuación.

 

Para los que queráis tener acceso directo a todas las comunicaciones del congreso, podéis acceder a través del siguiente enlace: http://ocs.editorial.upv.es/index.php/INRED/INRED2018/schedConf/presentations

Resumen

El objetivo del artículo es establecer una estructuración de correspondencias jerárquicas entre las competencias y los resultados de aprendizaje de una asignatura. Para ello, tras comprobar las distintas interpretaciones que existen entre ambos conceptos, se opta por considerar que los resultados del aprendizaje son concreciones de las competencias para un determinado nivel y que son el resultado del proceso de enseñanza-aprendizaje. Además, el necesario alineamiento entre los programas de una asignatura, la adquisición de competencias y resultados de aprendizaje y la evaluación del estudiante, aconseja jerarquizar los resultados de aprendizaje en dos niveles. Como resultado de lo anterior, se muestra la aplicabilidad de esta correspondencia jerárquica a dos asignaturas del Grado de Ingeniería Civil de la Universitat Politècnica de València: “Procedimientos de Construcción I y II”.

Palabras clave

Competencias, resultados de aprendizaje, correspondencia jerárquica, procedimientos de construcción, ingeniería civil.

Referencia

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes atirantados con tirantes fabricados «in situ»

Figura 1. Puente de Morandi (Génova). https://commons.wikimedia.org/wiki/File:Genova_ponte_Morandi.jpg#/media/File:Genova_ponte_Morandi.jpg

La tragedia del colapso de un tramo del puente de Morandi en Génova (Italia), el 14 de agosto de 2018, me sugiere escribir esta entrada. Se trata de explicar cómo se construyen los puentes atirantados cuando los tirantes se fabrican «in situ». Como se puede ver, la técnica usada en los puentes atirantados de Morandi, si bien fue novedosa en su tiempo, en este momento es una técnica que no se utiliza en la construcción de este tipo de estructuras.

Un puente atirantado consiste en un tablero soportado por cables rectos e inclinados, llamados tirantes, que se fijan en los mástiles. Existen multitud de tipos de tirantes, unos formados por barras, otros por hilos paralelos, otros por torones y por último el cable cerrado. Sin embargo, el sistema de tirante de torones es el que se está imponiendo debido a sus ventajas en cuanto a anclaje y protección contra la corrosión. Solo el tirante de cable cerrado, el más antiguo de los sistemas, aún convive con el sistema de torones, si bien están en desuso debido a su menor capacidad de carga y mayor precio.

Los tirantes pueden dividirse en dos grandes grupos atendiendo a su montaje, los fabricados “in situ” y los prefabricados.

Aunque ya no se recurre al sistema de montaje de tirantes «in situ», vamos a describir aquí las distintas formas de fabricar en obra tirantes compuestos. Así, en el puente japonés de Toyosato-Ohashi los tirantes se montan hilo a hilo, de forma parecida a los cables de los puentes colgantes. También se pueden hacer los tirantes con hormigón pretensado, como los utilizados por Morandi en sus puentes. Otro procedimiento sería enfilar los tirantes torón a torón dentro de una vaina de polietileno para inyectar posteriormente lechada de cemento. El principal problema de este procedimiento es el hormigón, puesto que los cables se montan fácilmente.

Figura 2.Puente de Toyosato-Ohashi (Japón). By Nkns (Nkns took a photograph.) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.1 jp (https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en)], via Wikimedia Commons

Sin embargo, la forma actual de construir tirantes en obra es con vaina inyectada, pues no sólo es más fácil de montar, sino que puede utilizarse cualquier tipo y tamaño de tirante, siendo un procedimiento económico. Las vainas más usadas hoy en día son de polietileno, por su facilidad de montaje, si bien las metálicas permiten la inyección de una sola vez al admitir mayores presiones.

Figura 3. Puente General Urdaneta, sobre el lago Maracaibo (Venezuela). By The Photographer – Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=29236260

Se pueden utilizar dos procedimientos diferentes en el caso de la construcción de tirantes “in situ” con vaina inyectada. Se pueden anclar los cables a la torre y al tablero, o bien se pueden hacer pasar los cables por una silla en la torre. En el primer caso, es fácil enfilar los cables, pero se complica el diseño de la torre por el cruce de vainas y el alojamiento de los anclajes.

Tras situar la vaina, se enfilan los cables en su interior subiendo la bobina del cable por encima del anclaje superior. Mediante una enfiladora se lleva el cable hasta el anclaje inferior. Después se corta el cable a la salida de la bobina y se fija al anclaje superior. Se le da una tensión mínima para garantizar que todos los cables lleven la misma tensión. Tras el enfilado, se tensa el tirante del conjunto de cables o tirando hilo a hilo, siendo más cómodo tesar desde lo alto de la torre. Por último, se inyectan los anclajes mediante resina y a continuación se inyecta la vaina mediante lechada de cemento. En el puente de Sama de Langreo se retesaron los tirantes desde la torre, mientras que en el de Barrios de Luna, se hizo desde el tablero.

Si se pasan los cables por una silla en la torre, formada por un tubo curvo, los cables se empujan desde un anclaje hasta llegar al otro, o bien mediante un cable piloto que tire de uno o varios cables.

Como resumen de lo anterior, se puede comprobar cómo el sistema utilizado por Morandi en la construcción del puente de Génova no se utiliza en la actualidad. Con todo, la tragedia de este puente nos debe hacer reflexionar sobre la necesidad de destinar recursos suficientes al mantenimiento y monitorización de las infraestructuras críticas (puentes, carreteras, presas, edificios, etc.).

Creo que este vídeo os va a interesar:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem

Figura 1. Agua en excavación. http://www.saboredo.com/el-agua-en-la-obra-civil/

Cuando se quiere construir bajo el nivel freático, es necesario desecar el subsuelo antes de realizar la excavación para permitir que los trabajos se efectúan en condiciones relativamente secas (Figura 1). La ausencia de agua (sin llegar a un estado completamente seco) en la excavación estabiliza el fondo y los taludes, reduce las cargas laterales en los taludes, hace que el material de excavación sea más ligero y fácil de manejar y evita un fondo movedizo y lodoso, muy inconveniente para las actividades posteriores.

Para conservar una excavación libre de agua, en casi todos los tipos de suelos, el nivel freático se debe mantener a una profundidad, por lo menos de 60 cm o, preferentemente, a 150 cm por debajo del fondo de la excavación.

Aunque son los contratistas especializados en este tipo de trabajos los que determinan con mayor detalle las necesidades y los posibles rendimientos de la operación, siempre es necesario un análisis simplificado que definir «a priori» qué equipos serían necesarios y la viabilidad de la operación.

En la Figura 2 se muestra un esquema simplificado de la operación del abatimiento del nivel freático. En él se puede ver cómo varía la depresión en el nivel freático con la distancia al punto de bombeo. Se pueden utilizar pozos de observación o piezómetros a ciertas distancias (como r1 y r2) para controlar la depresión realizada.

Figura 2. Esquema del abatimiento del nivel freático mediante un pozo

El proceso de bombeo es un fenómeno de régimen variable, que evoluciona con el tiempo, hasta llegar a estabilizarse en un régimen permanente. A efectos prácticos, las fórmulas referentes al régimen estable son útiles para estudiar el rebajamiento provisional del nivel freático. El estudio del pozo aislado se realiza planteando el problema con simetría radial. Se supone que a suficiente distancia, las líneas de corriente son horizontales y las equipotenciales son verticales, supuesto que se conoce como hipótesis de Dupuit. Según la fórmula empírica de Sichardt, se puede calcular la distancia R a la cual se supone que termina la influencia del pozo con la siguiente expresión dimensional, donde R se expresa en m, k en m/s y sw es el descenso del nivel freático en el pozo, en m :

Un análisis simplificado del fenómeno implica, tal y como indica Dupuit (Harr, 1962) asumir que (a) para una pequeña inclinación de la línea de filtración, las líneas de flujo son horizontales y (b), que el gradiente hidráulico es igual a la inclinación de la superficie libre y es independiente de la profundidad.

La ecuación que rige el caudal en este caso es la siguiente:

En este caso, se asume que el régimen es permanente en un acuífero libre, siendo toda la capa de terreno homogénea con un coeficiente de permeabilidad hidráulica «k«.

Si se cumple que «q» es constante a lo largo del flujo, la ecuación anterior se puede integrar entre las distancias r1 y r2, obteniéndose la siguiente expresión (fórmula de Dupuit-Thiem):

Por tanto, una vez se ha determinado la extensión de la excavación, usando los parámetros r1, r2, h1 y h2, se puede utilizar la expresión anterior para determinar la capacidad requerida por la bomba. Asimismo, se podría utilizar la expresión anterior para determinar el coeficiente medio de permeabilidad del terreno sabiendo el caudal bombeado.

Es evidente que, en un caso real, existen muchas capas de terreno, con diferentes propiedades, por lo que la ecuación anterior debe particularizarse. Remitimos al lector al trabajo de Cedergreen (1989) para situaciones diferentes a las descritas. También podéis ver algunos problemas resueltos que pusimos en su momento en una entrada anterior.

Referencias

Cedergreen, H.R., 1989, Seepage, Drainage and Flow Nets, John Wiley, New York.

Harr, M., 1962, Groundwater and Seepage, McGraw-Hill, New York.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio Docencia en Red 2017/2018

El viernes pasado recogí en el Paraninfo de la Universitat Politècnica de València, uno de los premios de Docencia en Red correspondientes a la convocatoria 2017/2018. Pero, ¿qué es la Docencia en Red? Para trabajar en la mejora del rendimiento académico de los estudiantes, la UPV ha definido una línea de acción de intensificación del uso de las nuevas tecnologías de la información y las comunicaciones en la docencia. En este contexto, el Plan DOCENCIA EN RED, tiene como objetivo es incentivar en el profesorado la elaboración de materiales educativos reutilizables en formato digital.

Los materiales educativos se elaboran en formato digital, de forma que puedan ser almacenados en bases de datos, distribuidos a través de la red y accesibles desde cualquier navegador estándar. Los objetos de aprendizaje elaborados se incluyen en el repositorio institucional de la UPV (RiuNet).

En particular, este año hice una serie de vídeos educativos relacionados con las cimbras autolanzables. Este material ha formado parte del curso MOOC sobre cimbras y encofrados, que ha tenido más de 1000 alumnos inscritos y que en septiembre volverá a repetirse su edición.

Pavimentación con hormigón

http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

Se define como pavimento de hormigón en masa al constituido por un conjunto de losas de hormigón en masa separadas por juntas transversales, eventualmente dotado de juntas longitudinales; en el que el hormigón se pone en obra con una consistencia tal que requiere el empleo de vibradores internos para su compactación y maquinaria específica para su extensión y acabado superficial.

La ejecución del pavimento de hormigón incluye las siguientes operaciones:

  • Estudio y obtención de la fórmula de trabajo.
  • Preparación de la superficie de asiento.
  • Fabricación del hormigón.
  • Transporte del hormigón.
  • Colocación  de  elementos  de  guía  y  acondicionamiento  de  los  caminos  de rodadura para la pavimentadora y los equipos de acabado superficial.
  • Colocación de los elementos de las juntas.
  • Ejecución de juntas en fresco.
  • Terminación.
  • En su caso numeración y marcado de las losas.
  • Protección y curado del hormigón fresco.
  • Ejecución de juntas serradas.
  • Sellado de las juntas.
https://www.gomaco.com/

Para ampliar la información os remito al Pliego de Prescripciones Técnicas para Pavimentos de Hormigón, de IECA y al siguiente enlace para visualizar vídeos.

Curso gratuito online masivo: Introducción a los encofrados y las cimbras en obra civil y edificación

Cimbra porticada. Imagen V. Yepes (1991)

Acerca de este curso MOOC de la UPV

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se índice especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

El inicio del curso es el 12 de junio de 2018, y la finalización, el 9 de julio de 2018. La inscripción la puedes realizar en el siguiente enlace: https://www.upvx.es/courses/course-v1:IngenieriaDeLaConstruccion+encofrados+2018-01/about

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las estructuras auxiliares (encofrados y cimbras) en la construcción de obras civiles y de edificación
  2. Evaluar y seleccionar el mejor tipo de encofrado y cimbra necesario para una construcción en unas condiciones determinadas, considerando la economía y la seguridad

 

By Sensenschmied – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=18911631

Programa del curso

  1. ¿Qué hacer antes de empezar a construir una estructura de hormigón?
  2. Oficios perdidos en la historia actual de España: el encofrador
  3. ¿Qué son y para qué sirven los encofrados?
  4. Elementos auxiliares y funcionalidad de los encofrados
  5. Clasificación de los sistemas de encofrado
  6. Medidas de seguridad durante el desencofrado
  7. Empuje del hormigón fresco sobre un encofrado
  8. Métodos de cálculo del empuje del hormigón fresco
  9. Encofrado prefabricado para pilares
  10. Construcción de un forjado reticular
  11. Mesas encofrantes o sistemas pre-montados
  12. Construcción mediante encofrados túnel
  13. Moldes para hormigón prefabricado
  14. Mesas basculantes para la fabricación de paneles prefabricados
  15. Encofrados trepantes
  16. Encofrados deslizantes
  17. Carros de encofrado para túnel
  18. Carros de encofrado para construcción de puentes por avance sucesivo
  19. Clases de diseño de cimbras según la norma UNE-EN 12812
  20. Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas
  21. Precauciones específicas relativas al montaje y desmontaje de cimbras y encofrados
  22. Cimbras y encofrados hinchables
  23. Componentes de una cimbra montada con elementos prefabricados
  24. Precauciones para el montaje de la cimbra de un puente
  25. Cimentación de la cimbra de un puente losa
  26. Cimbras cuajadas en la construcción de puentes
  27. Cimbras porticadas en la construcción de puentes
  28. Definición de cimbra autolanzable
  29. Clasificación de las cimbras autolanzables
  30. Cimbra autolanzable frente a otros procedimientos constructivos
  31. Parámetros para seleccionar una cimbra autolanzable
  32. Elementos de una cimbra autolanzable
  33. Construcción de puentes mediante autocimbra bajo tablero
  34. Construcción de puentes mediante cimbra autolanzable sobre tablero
  35. Construcción de puentes mediante lanzador de vigas
  36. Construcción de puentes por dovelas mediante cimbras autoportantes
  37. Construcción de puentes arco con armaduras rígidas (autocimbras)

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Consejero del Sector Docencia e Investigación del Colegio de Ingenieros de Caminos, Canales y Puertos. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social de la UPV. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Carros de encofrado para la construcción de puentes por avance en voladizo

Figura 1. Construcción por voladizos sucesivos. By Störfix [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], from Wikimedia Commons

La construcción en avance en voladizo con dovelas hormigonadas “in situ” ha ido desplazando a los puentes-viga metálicos en luces entre 60 y 200 m. No obstante, estos límites van superándose. Así, el puente Gateway en Brisbane, Australia, presenta 260 m de luz. El récord mundial de esta tipología lo ostenta el puente Stolma, en Noruega, con un vano central de 301 m de luz.

La dovela en curso de hormigonado suele apoyarse sobre un carro de avance soportado por el tablero terminado. Sin embargo, existen otros sistemas como el uso de andamiaje apoyado sobre el terreno, vigas metálicas auxiliares apoyadas sobre las pilas del puente en construcción e incluso mediante atirantamiento provisional.

En el caso que nos ocupa, el carro móvil de hormigonado soportado por el propio tablero, debe garantizar la posición geométrica de las dovelas y soportar su peso antes del fraguado del hormigón y de su unión mediante pretensado a la dovela precedente. Se distinguen los carros móviles tradicionales y los autoportantes. En los primeros, el peso de la dovela se transmite al tablero por medio de vigas longitudinales fijadas sólidamente en voladizo en el extremo de la ménsula.

  • Carros móviles con vigas principales superiores: Constan de vigas longitudinales situadas en la vertical de las almas, arriostradas por vigas transversales de donde cuelga el encofrado, la plataforma de trabajo y las pasarelas de inspección. Los encofrados interiores y de almas se apoyan sobre vigas o carretón móvil, desplazándose colgados tanto por el tablero como por el carro. El carro se ancla a la penúltima dovela, equilibrándose con contrapesos traseros (Figura 2) o bien con un anclaje móvil a la vía de rodadura (Figuras 1 y 3). El problema fundamental con este carro es la aparición de fisuras en la cara superior de la losa inferior al deformarse las vigas principales durante el hormigonado. Para reducir este efecto se hormigona el voladizo hacia atrás. También se podrían utilizar carros más rígidos y pesados, que pesan el doble que los ligeros, pero ello origina un aumento en el pretensado y en los dispositivos anclaje o contrapesos.
Figura 2. Carros antiguos con contrapesos para equilibrar. Fuente: Dragados Obras y Proyectos

 

Figura 3. Carro de avance moderno, anclado al tablero. http://www.sten.es/encofrados/viaductos/

 

  • Carros móviles con vigas principales inferiores: Para despejar la superficie de trabajo y permitir el acceso de la parte superior de la dovela en construcción se recurre a carros con vigas situadas bajo las almas exteriores de las dovelas. Ello facilita la prefabricación de las armaduras y vainas con cables de pretensado, lo que agiliza la ejecución.
  • Carros móviles autoportantes: Se trata carros donde el encofrado forma parte de la función resistente, reduciendo las deformaciones que aparecen durante el hormigonado de la dovela. Esta disposición mejora el control y la corrección geométrica del tablero, reduce las fisuras que aparecen entre las juntas de las dovelas y evita la obstrucción de las superficies de trabajo. Los carros se anclan por pretensado al tablero construido, posicionándose mediante usillos. El carro se traslada sobre perfiles situados en voladizo sobre la vertical de las almas. Pueden construirse secciones variables e incluso secciones en cajón con varias almas. El encofrado interior del cajón se apoya en la viga maestra anterior y se cuelga por la parte trasera de la dovela precedente.

 

Una explicación del proceso constructivo la tenéis en el siguiente vídeo:

A continuación os dejo un vídeo donde podéis ver un carro de avance modelo CVS de la empresa ULMA Construction. Espero que os sea de interés.

Otro vídeo, también del ULMA, es el siguiente:

También es de interés el procedimiento constructivo del viaducto de Contreras. Aquí os paso un vídeo de voxelstudios.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cimbra porticada en la construcción de puentes

Cimbra porticada. Imagen V. Yepes (1991)

La cimbra diáfana o porticada, se usa cuando se hace necesario ejecutar una cimbra de un paso superior sobre un obstáculo, no siendo posible el uso de una cimbra cuajada. Como su nombre indica, está formada por pórticos, que concentran y transmiten  las cargas al terreno. Las estructuras a cimbrar suelen ser arcos, acueductos y viaductos.

La cimbra porticada se utiliza en los siguientes casos:

  • Cuando la estructuras a cimbras se encuentra a una altura superior a 16 metros con respecto a la superficie de apoyo de la cimbra, con lo que se tendría demasiados elementos que montar, con el consiguiente coste de dinero y tiempo de montaje.
  • Cuando la superficie de apoyo no tiene la suficiente capacidad, y es necesario concentrar las cargas en zonas de apoyo predeterminadas que estén en buenas condiciones portantes.
  • Cuando existan servidumbres a respetar en la zona de instalación de la cimbra, y haya que sortearlas.
  • Cuando es necesario permitir el paso de tráfico preexistente, o también el tráfico propio de la obra.
  • Cuando existan accidentes orográficos (ríos, rías, vaguadas, arroyos, zonas escarpadas…)
  • Cuando la estructura tiene un número múltiple de vanos, que hacen posible la reutilización de los módulos de cimbra mediante cambio, ripado, etc…
Cimbra porticada. Imagen: V. Yepes (1992)

Estas cimbras permiten salvar luces de 6 a 16 m con unos soportes que trasladan la carga al terreno. Estos soportes permiten cargas de 120 a 450 kN, aunque en algunos casos especiales pueden llegar a soportar 2000 kN. Estas cimbras se componen de pilas y vigas articuladas, con sección triangular o cuadrangular. Se utilizan elementos de acero de alta resistencia desmontables. Los pilares se ensamblan con módulos planos formados por tubos de perfil circular. De esta forma, el pilar se forma con acoplamiento de elementos planos unitarios, formando módulos entre 0,75 y 2,50 m. Además, su altura se regula en sus extremos mediante husillos roscados. Las vigas se montan con módulos de perfiles tubulares ensamblados mediante bulones. Además de vigas articuladas, se pueden utilizar jácenas, donde se añade un atirantado a las vigas para aumentar el canto resistente.

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga, a su cimentación y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, al carecer de un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo, y que las deformaciones previstas se compensen con las contraflechas necesarias.

Os paso a continuación un vídeo donde podéis ver este tipo de cimbra utilizada en la construcción de puentes.

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.