La bomba en la estación de bombeo

Las estaciones de bombeo son estructuras destinadas a elevar un fluido desde un nivel energético inicial a un nivel energético mayor. Su uso es muy extendido en los varios campos de la ingeniería, así, se utilizan en:

  • Redes de abastecimiento de agua potable, donde su uso es casi obligatorio, salvo en situaciones de centros poblados próximos de cadenas montañosas, con manantiales situados a una cota mayor;
  • Red de alcantarillado, cuando los centros poblados se sitúan en zonas muy planas, para evitar que las alcantarillas estén a profundidades mayores a los 4 – 5 m;
  • Sistema de riego, en este caso son imprescindibles si el riego es con agua de pozos no artesianos;
  • Sistema de drenaje, cuando el terreno a drenar tiene una cota inferior al recipiente de las aguas drenadas;
  • En muchas plantas de tratamiento tanto de agua potable como de aguas servidas, cuando no puede disponerse de desniveles suficientes en el terreno;
  • Un gran número de plantas industriales.

Las estaciones de bombeo tienen por elemento principal a los grupos de bombas. El papel que juegan las mismas es el de proporcionar caudal y presión al conjunto del sistema y es muy importante conocer cómo van a comportarse en el mismo en base a sus curvas motrices. A continuación os dejo un Polimedia de la profesora Petra Amparo López Jimenez donde se describe cómo se llega a las curvas motrices de las bombas desde sus características geométricas y se introduce la teoría que explica el comportamiento de las mismas a partir del conocimiento de sus datos básicos de geometría y velocidad.

Las bombas hidráulicas tienen unas curvas motrices características que representan el caudal y presión que pueden proporcionar en una instalación. La instalación de dichas bombas en unas condiciones u otras, su asociación en serie o paralelo, su arranque o condiciones de cebado, determinarán el caudal, presión, potencia absorbida y posibles aplicaciones en las instalaciones concretas. En el siguiente vídeo se describen estos aspectos de las estaciones de bombeo.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Acoplamiento de máquinas de transporte y movimiento de tierras

Un caso habitual en la construcción consiste en la utilización de varias máquinas cuyos ciclos individuales de trabajo tienen un intervalo común. Por ejemplo, una cargadora con varios camiones, o bien un equipo de mototraíllas convencionales ayudadas en su carga por un tractor. En estos casos, los ciclos individuales de las máquinas se pueden agrupar formando un ciclo del equipo que se repite periódicamente.

Al recurso que limita la producción de un equipo se le denomina cuello de botella. Su identificación es esencial porque cualquier cambio introducido en el funcionamiento repercutirá en la capacidad de producción del equipo, y por ende, en su productividad.  El recurso que causa el estrangulamiento es el que determina la producción del equipo. Se define como factor de acoplamiento o “match factor” a la relación entre la máxima producción posible de los equipos auxiliares respecto a la máxima producción posible de los equipos principales. El coste más bajo de producción se obtiene para factores de acoplamiento próximos a la unidad, pero por debajo de ella.

Para aclarar estos conceptos tan importantes en el cálculo de producciones y costes en las máquinas de movimiento de tierras, os paso este Polimedia para divulgar los conceptos básicos. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

¿Qué es la sustitución dinámica?

La sustitución dinámica o “puits ballastés” constituye una variante diferenciada de la compactación dinámica en la cual la energía de compactación sirve para constituir inclusiones granulares de gran diámetro, como refuerzo de los terrenos compresibles, de los que se necesitan varios metros de espesor sobre un estrato de terreno con capacidad portante suficiente.

Se punzona en este caso el terreno con una maza pequeña y pesada que se deja caer desde cierta altura. Este procedimiento crea un cráter que se rellena con material granular, que se golpea nuevamente con el objeto de desplazar el terreno y hacer penetrar dicho material granular. Con este procedimiento se consigue rigidizar el terreno creando puntos de apoyo que presentan una mayor carga admisible. Además, la ventaja adicional es que constituyen drenes verticales, aunque no muy profundos, por lo que podrían combinarse con tratamientos de mejora de precarga, de forma que se reducirían los tiempos de consolidación del suelo.

Esta técnica combina, por tanto, las ventajas de la compactación dinámica y de las columnas de grava.

Aplicaciones:

– Terrenos cohesivos (arcillas y limos blandos o muy blandos), apoyados sobre un sustrato rocoso
– Necesidad de estabilización y reducción de los asientos de terraplenes viarios y ferroviarios
– Estructuras con distribución heterogénea de grandes cargas repartidas y puntuales

Principales características:
– Tasa de incorporación de material claramente superior a la obtenida por medio de columnas de grava (hasta 20 a 25%)
– Muy alta compacidad de las inclusiones constituidas
– Cada “columna” granular puede soportar cargas importantes de hasta 150 t
– Mejora de las características mecánicas de las capas superficiales del terreno entre las columnas en un 25% y entorno al 50% en los estratos más profundos
– Funcionamiento de las inclusiones como drenes verticales reduciendo así el tiempo de consolidación y acelerando los asientos antes de la construcción

Ventajas:

– Fuerte incremento del módulo de deformación, de la capacidad portante y de la capacidad drenante del terreno
– Técnica bien adaptada a grandes cargas
– Muy alta resistencia interna al corte del material granular que constituye la inclusión
– A diferencia de las columnas de grava, aplicación adaptada a suelos evolutivos (turbas, orgánicos…) debido a su reducida esbeltez.

La profundidad del terreno mejorado con esta técnica depende tanto de las características del terreno como de la energía de los impactos. A este respecto, Menard nos facilita la siguiente fórmula para calcular dicha profundidad (García Valcarce et al., 2003):

D2 ≤ 10·M·h

donde:

D: Espesor a compactar (m)

M: Peso de la maza (kN)

h: Altura de caída de la maza (m)

Aunque la máxima profundidad afectada quedaría limitada por la siguiente expresión:

D = 0,44·√10Mh

Os paso a continuación un Polimedia explicativo de esta técnica que espero que os guste:

Os dejo a continuación el folleto explicativo de Menard.

Descargar (PDF, 4.36MB)

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías conlleva a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella son cruciales. Desgraciadamente, en numerosas ocasiones se trata a la compactación como una unidad de obra complementaria o auxiliar. Las variables que más influyen en la compactación son la naturaleza del terreno, su grado de humedad y la energía aplicada. Estas variables se estudian a continuación.

Figura 1. Curva de compactación

La densidad, humedad y huecos están relacionados entre sí. Se trata de comprobar empíricamente lo que ocurre al someter a un suelo a un proceso de compactación. Dicho experimento consiste en golpear capas dentro de un cilindro, mediante un procedimiento normalizado, y medir la densidad seca y humedad en cada caso. Se realizará el estudio sometiéndolo a diversas energías de compactación y humedades.

Este experimento permite la obtención de las curvas de compactación, que relacionan el peso específico seco y la humedad de las muestras de suelo compactadas con una energía determinada, y que presentan un máximo, más o menos acusado, según su naturaleza. Los valores típicos de los pesos unitarios máximos secos oscilan entre 16 y 20 kN/m3, con los valores máximos en el intervalo de 13 a 24 kN/m3. Cifras superiores a 23 kN/m3 son raras, ya que este valor es cercano al hormigón húmedo. Los contenidos típicos de humedad óptima oscilan entre el 10 y 20% con un intervalo máximo del 5 al 30%. Generalmente se requieren cinco puntos con el objeto de obtener una curva fiable, con una humedad entre puntos que no se diferencien en más del 3%.

Se puede definir como índice de compactación (IC) a la relación entre el peso específico seco del terreno compactado y el peso específico seco óptimo.

Antes de llegar a la humedad óptima, el agua favorece la densificación al actuar con cierto efecto lubricante, pero al pasar de la óptima, la densidad seca decrece ya que el aire no sale tan fácil por los huecos, y el agua desplaza a parte de las partículas sólidas. La rama descendente de la curva tiende a aproximarse asintóticamente a la de saturación del suelo. Hogentogler (1936) considera que la forma de la curva de compactación se debe a dichos procesos de hidratación, lubricación, hinchamiento y saturación reflejados en la Figura 2.

Figura 2. Efectos del contenido de humedad en la compactación

Si se aplican diferentes energías de compactación, ocurre lo que se indica en la Figura 3: el peso específico seco máximo aumenta, pero con una humedad menor y las ramas descendentes se acercan de forma progresiva con humedades altas, ya que el aumento de energía lo absorbe el exceso de agua. Los máximos suelen situarse sobre la misma línea de huecos de aire, en general alrededor de na=5%.

Figura 3. Variación de la energía de compactación

La composición granulométrica del suelo y su sensibilidad al agua de su fracción fina son muy significativas al compactar. Los terrenos granulares sin finos presentan curvas de compactación aplanadas, sin un máximo muy definido, teniendo escasa influencia su humedad. Los suelos finos (más del 35% en peso) presentan pesos específicos secos más bajos que si no tuviesen tantos finos, y por consiguiente precisan de mayor humedad. Lo idóneo es una mezcla de tamaños más o menos continua, con un máximo del 10 al 12% de finos.

Figura 4. Curvas de compactación para diversos materiales (Johnson y Sallberg, 1960)

En obra suele ser difícil mantener contenidos de agua próximos al óptimo, lo cual implica que si las curvas de compactación tienen ramas con fuertes pendientes, éstos materiales van a ser más difíciles de compactar, ya que pequeños cambios de humedad causan fuertes bajas en la densidad. Son preferibles curvas con cuyas ramas tengan pendientes más suaves.

Veamos, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Referencias:

HOGENTOGLER, C.A. (1936). Essentials of soil compaction. Proceedings Highway Research Board, National Research Council, Washington, D.C., 309-316.

JOHNSON, A.W.; SALLBERG, J.R. (1960). Factors that Influence Field Compaction of Soils. Bulletin 272. HRB, National Research Council, Washington, D. C., 206 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los ventiladores en las instalaciones de ventilación

El ventilador es una turbomáquina que sirve para transportar gases, absorbiendo energía mecánica en el eje y devolviéndola al gas. En obra civil o en minería se emplean en la renovación del aire, funcionando en el medio de trabajo por impulsión o por extracción.

La ventilación cobra especial importancia en los trabajos subterráneos, tales como galerías, pozos y túneles. Esta consigue la disminución notable de enfermedades pulmonares profesionales, así como un aumento sustancial de la productividad de los equipos. Además, también se emplea la ventilación durante la gestión de los grandes túneles carreteros, de forma que se consiga una atmósfera saludable para el automovilista y un aire puro que permita a los motores térmicos una marcha eficiente.

Los ventiladores son máquinas destinadas a producir un incremento de presión total del aire pequeño, con una relación de compresión de 1,1. En este caso la variación del volumen específico del gas a través de la máquina se puede despreciar, por lo que el ventilador se comporta como una turbomáquina hidráulica. Se distingue del turbocompresor en que las variaciones de presión en el interior del ventilador son tan pequeñas, que el gas se puede considerar prácticamente incompresible. Esto significa que las leyes que relacionan el caudal, la presión y la potencia de un ventilador con su velocidad de rotación son las mismas que en las bombas axiales o centrífugas.

A continuación os paso un Polimedia presentado por la profesora Petra Amparo López Jiménez, de la Universitat Politècnica de València. Allí se presenta los tipos de ventiladores y se describe importancia de las curvas de selección de los mismos, así como la determinación de su punto de funcionamiento e idoneidad para una instalación.  Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

¿Qué errores se comenten con los buldóceres?

En la entrada de hoy vamos a dar recomendaciones para el trabajo con los tractores sobre cadenas, también llamados buldóceres (bulldozers, en inglés). En español también se conocen como explanadoras o topadoras. La operación de las máquinas es un tema de gran trascendencia tanto económica como de seguridad. Una mala operación acarrea no sólo pérdidas de producción y encarecimiento de las unidades de obra, sino que en muchas ocasiones representa un maltrato de las máquinas y un problema grave de seguridad para las personas.

Siguiendo el carácter divulgativo de estas entradas, os paso un Polimedia referido a las recomendaciones que deberían seguirse para operar con los buldóceres.  Espero que os guste.

 

También podéis calcular, a continuación, cuál sería la capacidad de  producción de un bulldozer excavando:  https://laboratoriosvirtuales.upv.es/eslabon/CapacidadBulldozer/ 

Bulldozer

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El compactador estático de patas apisonadoras

También llamados rodillos autopropulsados de impactos o de zapatas, son la réplica moderna a las de pata de cabra. En artículos anteriores ya comentamos aspectos relacionados con la curva de compactación, los tramos de prueba,  o las recomendaciones de trabajo en la compactación. En este nos centraremos en los compactadores estáticos de patas apisonadoras.

Compactador autopropulsado de patas apisonadoras. Fotografía de Víctor Yepes

Están formados por cuatro rodillos con patas de forma truncada y acabada en doble bisel, lo que permite no sacar el material al salir de la penetración en el terreno. La longitud no supera los 20 cm y su número varía entre 50 a 65 patas por rodillo. Se les suele acoplar una hoja empujadora para facilitar el extendido del material. La potencia oscila entre 50 y 300 kW.

Su chasis se encuentra articulado, pudiendo girar hasta 45º. El ancho de la máquina puede llegar a los 3,50 m. El peso total oscila entre las 8 y 40 toneladas. Son apisonadoras que pueden trabajar con velocidades máximas de 20-25 km/h, llamándose por ello compactadores de alta velocidad. Las velocidades de trabajo son más lentas en las primeras pasadas y más rápidas en las últimas.

Combinan el esfuerzo estático con el amasado del terreno, debido a la forma de los salientes, el efecto dinámico producido por la presión con gran velocidad, y cierto efecto de semivibración originado por el gran número de impactos próximos en un área tan reducida. Compactan casi todos los suelos con buenos rendimientos, salvo los muy arcillosos o con gran porcentaje de rocas grandes. También pueden utilizarse complementándose con pasadas de neumáticos en el caso de grava-cemento cuya curva tenga alto contenido de finos.

A continuación os paso un Polimedia para describir brevemente este tipo de máquinas. Espero que os guste.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Herramientas en la búsqueda de empleo: currículum y entrevista de trabajo

Hoy día hacer un buen currículum es básico para poder afrontar la búsqueda de empleo. Sin embargo, los hay para otros fines como los artísticos, deportivos, etc.

Para ello os paso un Polimedia de Margarita Cabrera donde podemos ver algunos consejos de interés.

Asimismo, una situación complicada es afrontar una entrevista de trabajo. Para ver qué es y cómo se puede afrontar, os dejo otro Polimedia que espero os sea útil.

La secuenciación de las tareas de un proyecto

Un cronograma no puede planificarse si antes no se han secuenciado las tareas de un proyecto. Se trata de establecer el orden en que cada tarea debe ser ejecutada y qué dependencia existe entre esta tarea y el resto.

Para aclarar este tema, os dejo un Polimedia del profesor Alberto Palomares donde se explica la secuenciación. Espero que os guste.

Escritura de artículos científicos

En un artículo anterior tuvimos la oportunidad de introducir algunos conceptos básicos sobre lo que es y cómo se estructura un artículo científico. En esta entrada, os dejo un par de Polimedias realizados por la profesora María Milagros del Saz Rubio, de la Universitat Politècnica de València sobre la escritura de artículos académicos en inglés. Creo que son muy interesantes y espero que os gusten.

El primero trata de dar una introducción a las características básicas de la escritura académica.

El segundo se centra en la estructura de los artículos científicos.