Hormigón proyectado por vía húmeda

Figura 1. Hormigón proyectado por vía húmeda. https://www.probacons.com/concreto-lanzado-de-mezcla-humeda/

El hormigón proyectado por vía húmeda (en inglés, wet spraying) es un tipo de hormigón de granulometría fina que se bombea y se mezcla con aire comprimido. Este aire comprimido impulsa el hormigón a una velocidad de salida aproximada de 12 m/s, lo que facilita su proyección. Las modernas máquinas de proyección de hormigón y los últimos avances en tecnología de aditivos han permitido alcanzar altos rendimientos en la proyección de hormigón por vía húmeda. Estos avances garantizan una formación mínima de polvo, reducen significativamente el rebote y no afectan a las resistencias a compresión requeridas. Sin embargo, en volúmenes pequeños de proyección, el método en vía húmeda puede incrementar el coste de la obra debido al precio de los equipos.

Existen dos sistemas de proyección por vía húmeda: el de flujo diluido (rotor) y el de flujo denso (pistón). En la actualidad, se prefiere el sistema de flujo denso. El sistema de flujo diluido es adecuado para rendimientos de entre 5 y 20 m³/h, mientras que el sistema de flujo denso es más apropiado para rendimientos de 5 a 25 m³/h. En el sistema de flujo denso, la mezcla de hormigón se transporta hidráulicamente mediante bombas de pistones, que utilizan movimientos rápidos de la válvula de salida o un movimiento compensado electrónicamente de los pistones para evitar discontinuidades en el chorro de salida del hormigón durante la proyección.

En la vía húmeda, si el hormigón se suministra desde la planta, es esencial utilizarlo en un plazo de menos de 45 minutos. Si no es posible cumplir con este plazo, se deben emplear retardadores compatibles con los acelerantes utilizados en la boquilla.

Figura 2. Esquema de gunitado por vía húmeda. https://es.scribd.com/document/362308363/Shotcrete

En el método de proyección en húmedo, el hormigón o mortero premezclado, con un asentamiento en cono de entre 4 y 8 cm, se carga en una tolva remezcladora de la máquina de proyección. La mezcla se transfiere luego a la boquilla, donde se le añade aire a presión para aumentar la velocidad de salida y convertirla en un aerosol. El operario regula el flujo de aire, mientras que la mezcladora controla el contenido de agua y la consistencia de la mezcla. Los tiempos de respuesta a las variaciones en los sistemas de control son más largos en comparación con el método en seco, lo que significa que el ajuste de la proyección no es tan instantáneo.

El volumen de aire necesario es relativamente bajo, de alrededor de 10 m³/min, para lograr un rendimiento de aproximadamente 12 m³/h. La incorporación de aire se realiza mediante una boquilla conectada a tres mangueras: una para el hormigón bombeado, otra para el aire comprimido y una tercera para el acelerante.

En el método de proyección en húmedo, las interrupciones en el suministro no afectan al contenido de agua de la mezcla y la dependencia del operario respecto a la bomba es menor. Sin embargo, el operario debe supervisar la humedad de la mezcla en la bomba para garantizar un suministro uniforme.

En el método de proyección en húmedo, el operario no puede ajustar el contenido de agua de la mezcla directamente en la boquilla. El asentamiento en cono de la mezcla debe estar entre 38 y 75 mm: valores inferiores a 38 mm pueden incrementar el rebote, mientras que valores superiores a 75 mm pueden causar descuelgues y desprendimientos.

En la vía húmeda, el contenido de agua de la mezcla viene determinado por el tipo de aplicación y las exigencias de trabajabilidad de la bomba.

Os dejo algunos vídeos explicativos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Salto cualitativo del proyecto de investigación RESILIFE respecto a resultados previos

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

El equipo de investigación presenta una trayectoria que respalda su capacidad para abordar este nuevo reto, con experiencia en proyectos previos. En efecto, el IP1 del proyecto RESILIFE también fue IP en los 4 proyectos anteriores y dirigió 17 tesis doctorales relacionadas. El IP2 participó en todos estos proyectos. Los resultados obtenidos han sido consistentemente significativos y progresivos. El proyecto HORSOST (BIA2011-23602) generó 15 artículos JCR, 5 Q1, y de ellos, 2 D1. BRIDLIFE (BIA2014-56574-R) produjo 20 artículos JCR, 15 de ellos en la categoría Q1 y, de estos, 7 en la categoría D1. DIMALIFE (BIA2017-85098-R) produjo 33 artículos JCR, 20 de ellos Q1 y, de estos, 12 D1. HYDELIFE (PID2020-117056RB-I00) ha producido hasta ahora 42 artículos JCR, 26 de ellos Q1 y 15 D1. En estos proyectos se concedieron cuatro contratos predoctorales, tres de los cuales culminaron con éxito y el último está en ejecución. También existe una patente (Alcalá y Navarro, 2020) sobre vigas en cajón mixtas de acero y hormigón.

Objetivos y resultados ya alcanzados en proyectos previos

Antes de resumir los resultados de proyectos previos, queremos destacar que nuestra línea de investigación va más allá de la simple optimización económica del hormigón estructural, un objetivo atractivo a corto plazo para las empresas constructoras o de prefabricados. En proyectos anteriores, se abordó el diseño eficiente de estructuras con hormigones no convencionales, utilizando criterios sostenibles multiobjetivo y técnicas de minería de datos. También se analizó la toma de decisiones en la gestión del ciclo de vida de puentes pretensados, priorizando la eficiencia social y medioambiental con presupuestos ajustados. Para ello, se emplearon metamodelos, diseño óptimo robusto y fiabilidad para generar diseños automáticos de puentes e infraestructuras, considerando hormigones con baja huella de carbono y abordando aspectos de durabilidad, consumo energético, huella de carbono y seguridad a lo largo del ciclo de vida. Se utilizaron técnicas de decisión multicriterio para elegir la mejor tipología constructiva de un puente y decidir entre las opciones resultantes de la frontera de Pareto. Se incorporaron técnicas emergentes de aprendizaje profundo (DL) en la hibridación de metaheurísticas y se exploró la construcción industrializada modular en edificación y obra civil. Además, se analizaron en detalle puentes mixtos y estructuras híbridas frente a soluciones de hormigón en un análisis de ciclo de vida completo que incluye la sostenibilidad social y medioambiental.

La producción científica de estos proyectos fue significativa (ver algunos artículos en las referencias aportadas). Se abordó la optimización multiobjetivo (coste, CO2 y energía) en puentes con vigas artesa y cajón, así como en el mantenimiento de puentes y redes de pavimento. También se exploró la sostenibilidad social de las infraestructuras y se aplicaron metodologías innovadoras, como la lógica neutrosófica y las redes bayesianas en la toma de decisiones. La optimización se respaldó en metamodelos de redes neuronales, modelos kriging y análisis de fiabilidad. Se propusieron indicadores para evaluar la sostenibilidad social y ambiental. Además, se aplicó diseño robusto a puentes, se analizó la resiliencia de las infraestructuras y se realizaron análisis del ciclo de vida para estructuras óptimas. Se obtuvo la patente «Viga en cajón mixta de acero y hormigón, P202030530».

Sin embargo, para avanzar es necesario abordar las limitaciones y el alcance de estos proyectos. El proyecto RESILIFE busca dar un salto cualitativo en nuestra línea de investigación y superar algunas de las limitaciones actuales en cuanto al alcance. Para respaldar la innovación propuesta y plantear este nuevo proyecto, nuestro grupo llevó a cabo seis estudios sobre el estado del arte en relación con BIM en estructuras (Fernández-Mora et al., 2022), la aplicación de la inteligencia artificial a la construcción (García et al., 2022), sobre estructuras modulares (Sánchez-Garrido et al., 2023), sobre estructuras prefabricadas frente a sismo (Guaygua et al., 2023), sobre estructuras híbridas de acero (Terreros-Bedoya et al., 2023) y sobre metamodelos (Negrín et al., 2023). Esto ha permitido detectar la oportunidad de optimizar el ciclo de vida de las estructuras incorporando, desde el diseño, la ocurrencia de eventos extremos, de forma que dichas estructuras pudieran recuperar su funcionalidad en el menor tiempo posible y con el menor coste social y ambiental. Tanto las estructuras híbridas de acero como las basadas en MMC tienen el potencial de mejorar la resiliencia estructural, siendo estos campos de investigación fecundos y de gran repercusión social. Además, el uso de la inteligencia artificial, la toma de decisiones multicriterio que consideran incertidumbres, el uso de metamodelos, la incorporación de la teoría de juegos en la optimización multiobjetivo y el empleo del BIM y la realidad virtual en la modelización suponen barreras que superar en la investigación de estas estructuras. A ello hay que añadir el uso de técnicas no destructivas para detectar daños en dichas estructuras (Hadizadeh-Bazaz et al., 2023), así como tecnologías de reparación eficiente de estructuras (Ortega et al., 2018).

Por tanto, RESILIFE pretende superar una serie de limitaciones en la investigación:

  • Análisis del ciclo de vida de estructuras híbridas de acero basadas en Modernos Métodos de Construcción (MMC) ante situaciones extremas (aumento de temperatura, explosiones, seísmos, etc.), de forma que aumente la resiliencia.
  • En el diseño óptimo, prever la reparación y el mantenimiento de las MMC ante eventos extremos, de forma que los elementos estructurales no se dañen o se puedan reparar de manera eficiente y rápida, centrándose en los problemas sociales y ambientales.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial, metamodelos y la teoría de juegos para mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generada en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo resiliente y basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundizar en el estudio de la distribución de los impactos sociales y ambientales en las estructuras MMC.
  • Analizar la sensibilidad de las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras.

Lo indicado hasta ahora se podría sintetizar en los siguientes aspectos:

  1. El tema de la investigación se ha ido profundizando en cada uno de los proyectos realizados, de acuerdo con los objetivos previstos.
  2. Los estudios anteriores se basaban en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida, el diseño robusto y basado en la fiabilidad y la incorporación del aprendizaje profundo. Ahora es el momento de ampliar la investigación a nuevas construcciones industrializadas modulares y estructuras híbridas optimizando su resiliencia ante eventos extremos.

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; BI, K.; CHEN, W.; PHAM, T.M.; LI, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Struct., 277:115477.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón proyectado: gunitado

https://www.pavireal.es/hormigon-gunitado/

La técnica del gunitado, también conocida como hormigón proyectado, es un sistema constructivo que consiste en proyectar hormigón o mortero con un «cañón» (o manguera a alta presión) sobre cualquier tipo de superficie, inclusive la tierra. Su objetivo es construir un muro continuo, con mayor resistencia y menor espesor, para soportar y contener la presión ejercida por el terreno, con cualquier tipo de pendiente, ofreciendo una impermeabilización óptima gracias a su baja porosidad. Una de las grandes ventajas respecto al hormigón tradicional es que no precisa compactación (tampoco el autocompactante), por lo que se puede adaptar a superficies de todo tipo y geometría. La velocidad de impacto es la que compacta inmediatamente el material. En la actualidad, el hormigón proyectado es un elemento indispensable en los procedimientos de sostenimiento y revestimiento estructural de túneles y taludes.

Este hormigón se llamó originalmente «gunite» o «gunita» cuando Carl Akeley diseñó un duplicado de pistola de cemento de cámaras en 1910. Su aparato neumático aplicaba una mezcla de cemento y arena a gran velocidad sobre la superficie prevista. El desarrollo de la gunita en Europa siguió a EE. UU. cuando un ingeniero de la empresa CEMENT-GUN CO. americana fundó la TORKRET GmbH en 1921, utilizándose entonces la gunita en reparaciones de muros defectuosos y, en mucho menor medida, en el revestimiento de túneles y galerías.

Podemos distinguir tres procesos distintos de gunitado: mezcla seca, mezcla húmeda y mezcla semihúmeda. En el proceso de mezcla seca, se introduce y se mezcla el agua necesaria en la boquilla de aplicación, y el material seco de cemento (cenizas, escorias, humo de sílice, etc.) y los agregados se entregan a través de la pistola. El proceso de mezcla húmeda emplea hormigón que ha sido entregado y está bien mezclado, con exclusión de los aceleradores necesarios. Los ingredientes suelen entregarse en camiones mezcladoras de hormigón, listos, como se hace con el hormigón normal. La dosificación de cemento oscila entre 300 y 375 kg/m³, con relaciones agua/cemento de alrededor de 0,40 y 0,56, con la limitación del tamaño máximo de árido, que generalmente es inferior a los 10 mm, en función del tamaño de la manguera y la boquilla empleadas.

Os dejo varios vídeos sobre cómo se aplica la técnica. Espero que os gusten.

También os dejo el siguiente artículo por si os resulta de interés.

Descargar (PDF, 1.39MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores ya presentamos el resumen, la justificación, las hipótesis de partida y los objetivos del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la metodología de este proyecto.

El análisis del estado de la técnica, desarrollado específicamente por el grupo para formular este proyecto, reveló la existencia de importantes lagunas de investigación. Por un lado, no se ha abordado de manera integral la optimización del diseño de estructuras híbridas y basadas en MMC que incorporan daños por eventos extremos, lo que dificulta una recuperación rápida y la minimización de impactos sociales y ambientales. Estas estructuras presentan un alto potencial (Terreros-Bedoya et al., 2023; Sánchez-Garrido et al., 2023), pero aún no se han explorado metaheurísticas híbridas con DL y teoría de juegos en la optimización de su resiliencia. Además, la lógica neutrosófica y las redes bayesianas abren puertas en el ámbito de la decisión multicriterio. Estas innovaciones se fusionan en nuestra metodología con técnicas, como el análisis del ciclo de vida, el análisis basado en la fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. La metodología propuesta busca priorizar el diseño de estructuras, su reparación o mantenimiento, considerando criterios de sostenibilidad social y ambiental dentro de restricciones presupuestarias, teniendo en cuenta la variabilidad inherente a los desafíos prácticos.

La Figura 2 muestra el esquema metodológico propuesto para RESILIFE, vinculando las fases con los objetivos específicos. Se adopta un enfoque mixto e interactivo en el que el decisor proporciona información sobre sus preferencias al analista. Posteriormente, mediante una optimización multiobjetivo basada en la fiabilidad y los metamodelos, el analista genera un conjunto de soluciones eficientes que el decisor evalúa antes de tomar una decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, en las que el decisor (grupos de interés) informa de las preferencias al analista, abarcando métodos constructivos, reparación, conservación, etc. La optimización multiobjetivo, apoyada en la variabilidad de parámetros, variables y restricciones, produce alternativas eficientes. La última fase implica un proceso de información a posteriori para que el decisor considere aspectos no contemplados en la optimización, que da como resultado la solución final completa.

Figura 2. Esquema metodológico diseñado para RESILIFE en relación con los objetivos

La metodología se aplicará, como mínimo, a los siguientes casos de estudio. En primer lugar, a la optimización de pórticos de edificios altos con estructura de acero híbrido y de hormigón armado sometida a un incremento fuerte de temperatura. De hecho, Keles et al. (2024) optimizan estructuras de acero tradicional, en las que la temperatura altera las propiedades mecánicas, y Negrín et al. (2023a) comparan las ventajas de las estructuras híbridas frente a las tradicionales. El segundo caso se aplica a pórticos de edificios, tanto de hormigón armado como de estructuras híbridas, donde se optimiza suponiendo el fallo completo de uno o varios de los soportes, de forma que el entramado siga manteniendo su funcionalidad. Esto permite, con ligeros cambios en el diseño, mantener cierta funcionalidad estructural capaz de evacuar a las personas con seguridad y, a su vez, realizar tareas de reparación o mantenimiento de los elementos dañados. El objetivo es mejorar no solo la optimización, sino también los aspectos de diseño que impidan el colapso progresivo. Un aspecto similar ha sido estudiado por Negrín et al. (2023c) para el caso de fuertes interacciones suelo-estructura. Otro caso de estudio es la optimización resiliente de viviendas sociales prefabricadas en zonas sísmicas, que deben resistir acciones extremas y, además, poder reparar rápidamente los daños (Guaygua et al., 2023). Otro caso previsto es la optimización resiliente del mantenimiento y la reparación de patologías resultantes de eventos extremos. Los casos anteriores, que se centran en gran medida en viviendas, también se extenderán en este proyecto a otras estructuras, como puentes híbridos o estructuras modulares, en consonancia con la experiencia previa del equipo de investigación. La optimización siempre es multiobjetivo y se apoya en técnicas de deep learning a lo largo del ciclo de vida, con la novedad del uso de la teoría de juegos.

Referencias

  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte del cemento mediante aerodeslizadores

Figura 1. Partes de un aerodeslizador.

También se le conoce como transportador activado por aire o transportador neumático por gravedad. Este sistema consta de un conducto rectangular dividido en dos secciones: una superior, denominada «cámara sucia», y una inferior, llamada «cámara limpia». El material se introduce por la parte superior del conducto a través de un medio poroso, mientras que el aire a presión se introduce por la parte inferior, en la cámara limpia. El aire atraviesa el medio poroso y fluidifica el material, lo que permite que este se deslice de manera continua desde la entrada hasta la salida. Su uso para el transporte del cemento está bastante limitado.

Se inyecta aire a baja presión (aproximadamente 30 kPa), que circula por el fondo inferior, fluidificando el cemento en el fondo superior y permitiendo su transporte por gravedad, similar al de un fluido. Para su funcionamiento, se requiere una pendiente mínima del 15 %, lo que en muchos casos supone un desafío significativo en el diseño de la instalación y limita su uso.

Figura 2. Sistema de transporte de cemento mediante aerodeslizadores https://ingemolsa.com/proyectos-terminados/sistema_transporte_cemento_mediante_aerodeslizadores_planta_holcim_nobsa/

Entre sus ventajas destacan la ausencia de fallos mecánicos, comunes en los tornillos sinfín, debido a la falta de mecanismos en este sistema. Además, se utiliza como cierre en tolvas de cemento, en lugar de otros tipos de compuertas. Para operar, se requieren caudales de aire de 1 a 1,5 m³/min por metro cuadrado de placa porosa, logrando velocidades de transporte de 4 a 6 m/s. Este sistema es capaz de transportar entre 50 y 150 toneladas por hora con conductos de ancho que varían entre 100 y 250 mm, respectivamente.

Os dejo algunos vídeos explicativos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y toma de decisión multicriterio

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y MCDM. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Estas son las principales contribuciones descritas en el artículo:

  • Marco integrado para la optimización: La investigación presenta un marco integral que integra algoritmos de optimización multiobjetivo (MOO) y técnicas de toma de decisiones multicriterio (MCDM). Este marco no solo es aplicable a las cerchas pretensadas, sino también a varios diseños estructurales, lo que mejora la toma de decisiones en ingeniería estructural.
  • Algoritmos de optimización avanzados: el estudio emplea tres algoritmos MOO avanzados (NSGA-III, CTAEA y SMS-EMAO) para optimizar el diseño estructural de las cerchas arqueadas pretensadas. Este enfoque permite evaluar de forma sólida los diferentes objetivos del diseño, como la minimización del peso, el rendimiento de carga y la capacidad de construcción.
  • Métricas de evaluación integrales: el documento incorpora una serie de visualizaciones analíticas y métricas de evaluación exhaustivas para comprender la variabilidad de las diferentes variables en el contexto de Pareto. Esto ayuda a ilustrar las ventajas y desventajas que conllevan las distintas estrategias de optimización y proporciona una visión más clara del proceso de diseño.
  • Evaluación del rendimiento de los algoritmos: la investigación evalúa el rendimiento de los algoritmos de optimización utilizando métricas de distancia generacional (GD) y distancia generacional invertida (IGD). Los resultados indican que el NSGA-III supera a los demás algoritmos en términos de convergencia con respecto a Pareto, lo que proporciona información valiosa sobre la eficacia de cada algoritmo.
  • Validación estadística de los resultados: el artículo emplea la prueba de Kruskal-Wallis para validar las diferencias de rendimiento entre los algoritmos. Esto añade credibilidad a los hallazgos y resalta las ventajas y limitaciones de cada enfoque de optimización, que es crucial para las futuras aplicaciones de optimización estructural.
  • Implicaciones prácticas para la construcción: Las innovaciones presentadas en el documento mejoran el rendimiento estructural, reducen el consumo de recursos y mejoran la capacidad de construcción y la seguridad. Estas contribuciones demuestran las implicaciones prácticas para unas prácticas de construcción más eficientes y sostenibles, y abordan la complejidad de los métodos de diseño tradicionales.

En resumen, este documento promueve significativamente la comprensión y la aplicación de las cerchas pretensadas al proporcionar un marco sólido para la optimización y la toma de decisiones, junto con información práctica para mejorar las prácticas de construcción.

Abstract:

The structural design of prestressed arched trusses presents a complex challenge due to the need to balance multiple conflicting objectives such as structural performance, weight, and constructability. This complexity is further compounded by the interdependent nature of the structural elements, which necessitates a comprehensive optimization approach. Addressing this challenge is crucial for advancing construction practices and improving the efficiency and safety of structural designs. The integration of advanced optimization algorithms and decision-making techniques offers a promising avenue for enhancing the design process of prestressed arched trusses. This study proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these algorithms was evaluated using Generational Distance and Inverted Generational Distance metrics. Additionally, the non-dominated optimal designs generated by these algorithms were assessed and ranked using multiple Multi-Criteria Decision-Making techniques, including SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and provided insights into their effectiveness in balancing the different design objectives. The results of the study indicate that NSGA-III exhibited superior performance with a GD value of 0.215, reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and structural weight, with an IGD value of 0.434. The statistical significance of these differences was confirmed by the Kruskal-Wallis test, with p-values of 2.50×10−15 for GD and 5.15×10−06 for IGD. These findings underscore the advantages and limitations of each algorithm, providing valuable insights for future applications in structural optimization.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA; SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

Descargar (PDF, 2.8MB)

Transporte del cemento mediante tornillos sinfín

Figura 1. Tornillo sinfín que transporta cemento desde un silo al dosificador. https://es.excteng.com/cement-screw-conveyor/

El cemento se transporta habitualmente desde la boca de descarga del silo hasta la báscula mediante un tornillo de Arquímedes, cuya longitud varía en función de la distancia a cubrir. El proceso de llenado empieza y termina activando y deteniendo la rotación de este mecanismo.

El tornillo transportador consta de una espiral helicoidal metálica que gira dentro de un tubo, el cual puede ser circular o tener forma de U, pero está cerrado en la parte superior por una chapa atornillada que permite la inspección en caso de atascos. Este tornillo se monta sobre un eje sostenido por cojinetes en ambos extremos y su rotación se acciona con un motorreductor en baño de aceite ubicado en uno de los extremos del eje. Además, debe contar con una tapa de registro en la parte inferior.

La pendiente de suministro puede alcanzar hasta 45°, lo que requiere mayor potencia del motor eléctrico en comparación con el funcionamiento en horizontal y reduce el rendimiento del sistema.

Cuando la distancia a cubrir supera los 10 m, se pueden utilizar dos tornillos en serie, de modo que uno descargue en el otro. En este caso, ambos tornillos deben tener las mismas características o, alternativamente, el segundo tornillo puede tener una mayor capacidad para evitar atascos.

Figura 2. Partes de un tornillo sinfín

En condiciones de alta humedad, los tornillos pueden obstruirse debido al fraguado del cemento durante los periodos de inactividad. Para evitarlo, es necesario calentar los tornillos, ya sea utilizando fibra de vidrio o, de manera más sencilla, envolviéndolos con sacos de papel atados.

Cuando los tornillos se instalan en pendientes pronunciadas, es importante considerar las condiciones de transporte y agregar fluidificadores de cemento en el silo. Se ha demostrado que, al activar los fluidificadores, el cemento puede ascender por los tornillos en pendientes de hasta 30°, incluso sin que estos estén en funcionamiento.

El tornillo también puede cumplir una función de dosificación volumétrica. En este caso, se utiliza un temporizador para programar un tiempo específico de funcionamiento en segundos. Como se conoce el número de revoluciones del tornillo por segundo y la cantidad de kilogramos de cemento que transporta en cada vuelta, el sistema se detiene automáticamente al final del tiempo determinado, descargando la cantidad precisa de cemento en la amasadora.

Normalmente, el cemento se dosifica por peso y, en este caso, el tornillo cumple únicamente una función de transporte, moviéndolo desde el silo hasta la báscula. Una vez alcanzado el peso requerido, el tornillo sinfín se detiene automáticamente y se reactiva en el siguiente ciclo de dosificación.

Os dejo algunos vídeos explicativos:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Objetivos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En artículos anteriores ya presentamos el resumen, la justificación y las hipótesis de partida del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo expondremos los objetivos generales y específicos de este proyecto.

El objetivo general perseguido consiste en afrontar el reto social y ambiental que supone el proyecto, el mantenimiento y la reparación de estructuras híbridas y MMC frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para alcanzar este objetivo, es necesario avanzar en la ciencia, integrando a diversos actores y grupos de expertos en la toma de decisiones, con el fin de tener en cuenta criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las estructuras, teniendo en cuenta la variabilidad inherente al mundo real. Para abordar las incertidumbres que afectan al sistema, se propone la aplicación de metamodelos y metaheurísticas híbridas basadas en fiabilidad. Estas se aplicarán no solo al diseño de nuevas estructuras, sino también al mantenimiento y la reparación de las existentes. Un análisis de sensibilidad de los escenarios presupuestarios y de las hipótesis de los inventarios del ciclo de vida proporcionará conocimientos significativos sobre las mejores prácticas. Cabe destacar que esta metodología podrá adaptarse a otros tipos de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales serán responsables los investigadores principales:

• OE-1: Análisis de las funciones de distribución de eventos extremos para el diseño óptimo basado en la fiabilidad que integre aspectos ambientales, sociales y económicos para la toma de decisiones multicriterio.
• OE-2: Cuantificación de la resiliencia de las estructuras ante múltiples amenazas con el fin de garantizar la integración de la sostenibilidad en el diseño, mantenimiento y reparación de estructuras híbridas de acero y modulares.
• OE-3: Identificación de estrategias de reparación y mantenimiento robusto óptimo de estructuras híbridas de acero y modulares resilientes.
• OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de estructuras híbridas de acero y modulares mediante metaheurísticas híbridas.
• OE-5: Comparación de las estructuras y los sistemas en términos de su resiliencia respecto a la optimización heurística, teniendo en cuenta incertidumbres presupuestarias en su ciclo de vida.
• OE-6: Difusión de resultados y redacción de informes.

Figura 2. Objetivos específicos del proyecto RESILIFE

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto de investigación RESILIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

En artículos anteriores ya presentamos un resumen y la justificación del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos las hipótesis de partida de este proyecto.

La hipótesis principal de partida de RESILIFE es que un diseño óptimo y una construcción con estructuras híbridas basadas en los modernos métodos de construcción (MMC) son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. La novedad radica en el empleo de la inteligencia artificial para optimizar la resiliencia y la sostenibilidad, con el fin de hacer frente a eventos extremos y evitar el colapso progresivo, protegiendo así la vida y la economía. De hecho, las estructuras híbridas de acero y las estructuras modulares son tipologías con elevadas posibilidades de generación de conocimiento (Sánchez-Garrido et al., 2023; Terreros-Bedoya et al., 2023). Además, existe un déficit de investigaciones que incorporen metaheurísticas híbridas emergentes y aprendizaje profundo (deep learning, DL) en la optimización multiobjetivo resiliente de este tipo de estructuras. Estas técnicas extraen información no trivial de las inmensas bases de datos procedentes de la optimización y mejoran la calidad y el tiempo de cálculo. Otra novedad en este proyecto es el uso de la teoría de juegos en la optimización multiobjetivo, empleada en la última tesis doctoral del grupo. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real, planteando la optimización resiliente basada en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a la toma de decisiones multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo, que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente con fuertes restricciones presupuestarias. La resolución del problema planteado presenta serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar el cálculo (Negrín et al., 2023).

Para alcanzar los objetivos del proyecto se basan en determinadas hipótesis:

  • Hipótesis 1: Es rentable diseñar estructuras innovadoras, resilientes y robustas frente a eventos extremos, que se puedan reparar cuando se optimizan a lo largo de su ciclo de vida.
  • Hipótesis 2: Las estructuras modulares permiten instaurar o restaurar infraestructuras rápidamente tras un evento extremo, y son eficientes desde el punto de vista social y ambiental.
  • Hipótesis 3: Las estructuras de acero híbridas mejoran las prestaciones de las estructuras de acero convencionales, mejorando la resiliencia ante eventos extremos, con niveles óptimos de sostenibilidad.
  • Hipótesis 4: Las metaheurísticas mejoran la calidad de las soluciones y reducen el tiempo de cálculo cuando se combinan con el aprendizaje profundo (DL).
  • Hipótesis 5: La optimización multiobjetivo de las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida, siendo la teoría de juegos una técnica efectiva.
  • Hipótesis 6: La optimización multiobjetivo puede dar lugar a soluciones inviables con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 7: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 8: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de estructuras híbridas y modulares.
  • Hipótesis 9: Las soluciones de mantenimiento óptimo de estructuras híbridas y modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones son preferibles por su menor coste social y ambiental a la reparación severa de las estructuras. La dimensión social incluye la integración del análisis de género en la investigación (IAGI).
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, la conservación, el mantenimiento y el desmantelamiento de estructuras híbridas y modulares que sean robustas ante cambios presupuestarios y resilientes ante eventos extremos.

Referencias

  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.