UPV



Febrero 2017


Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, maquinaria, medios auxiliares, procedimientos de construcción    

La Instrucción de Hormigón Estructural EHE-08 indica claramente la necesidad de planificar y prevenir aspectos relacionados con los procedimientos constructivos, con la seguridad, con los impactos ambientales, con la trazabilidad de los materiales, entre otros. Se trata de evitar imprevistos durante la ejecución de las estructuras de hormigón. Hay que tener presente que el propio procedimiento constructivo (descimbrado, pretensado, etc.) pueden inducir acciones que pueden superar incluso las solicitaciones que tendrá la estructura durante su vida de servicio. Os dejo un objeto de aprendizaje donde explicamos brevemente este tipo de cuestiones. Espero que os sea de interés.

 

28 Febrero, 2017
 

Publicada By  Víctor Yepes Piqueras - cimentaciones, medios auxiliares, Puentes    

ama011

Detalle de las torres sobre los durmientes de madera y de la zahorra compactada

Una cimbra no deja de ser una estructura que debe estar perfectamente apoyada sobre un terreno con suficiente capacidad portante que, además, minimice sus asientos diferenciales. Normalmente se suele exigir un mínimo de 0,10 MPa de tensión admisible al terreno que sirve de apoyo a una cimbra tubular. Para ello se compacta el suelo y se le suele mejorar con unos 30 cm de un material granular (grava-cemento o zahorras), para facilitar el drenaje en caso de lluvias. También se deben colocar durmientes de madera paralelos a la directriz del tablero para apoyar los pies de las torres. Este elemento sirve para repartir las cargas y reducir la tensión transmitida.

ama017

Cimentación provisional para soportar las torres de una cimbra diáfana

En el caso de terrenos flojos o cuando las cargas son elevadas, se puede sustituir el terreno o, incluso, hay que recurrir a cimentaciones auxiliares. La cimbra también se debe estabilizar también en la proximidad de los terraplenes laterales, próximos a los estribos. Para ello se escalona el terreno, ejecutando unos pequeños muros de hormigón para reforzar la seguridad de los apoyos.

ama009

Escalonamiento con pequeños muros de hormigón junto al estribo

Un aspecto importante es la disposición de cimbras sobre ríos o torrenteras. Una lluvia torrencial imprevista puede originar arrastres y avenidas que pueden erosionar el apoyo de las cimbras, ocasionando su desplome. Este incidente es especialmente grave cuando se ha vertido el hormigón y no se ha alcanzado la resistencia suficiente para pretensar el tablero de forma que soporte su propio peso. Para prevenir esta circunstancia una buena práctica consiste en cimentar la cimbra sobre una losa de hormigón protegida lateralmente mediante escollera. Otra buena práctica consiste en prever alguna zanja aguas arriba para dar salida al agua con una zanja lateral que atraviese la planta del tablero y vierta aguas abajo.

27 Febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - costes, Docencia, producción    

Labor productivity is one the least studied areas within the construction industry. Productivity improvements achieve high cost savings with minimal investment. Due to the fact that profit margins are small on construction projects, cost savings associated with productivity are crucial to becoming a successful contractor. The chief setback to improving labor productivity is measuring labor productivity.

However, labor productivity involves many aspects. The aim of this research is to focus in some of them such as construction trades and how different factors affect their labor productivity through benchmarking in both online and hard copy format. A list of 37 construction trades was selected based on the Construction Industry Council of Hong Kong (CIC) in order to see their construction cost, labor cost and labor shortage criticality and their automation level. A list of 40 factors affecting the labor productivity was selected based on experts at The Hong Kong University of Science and Technology, in order to see in which level they affect the critical construction trades labor productivity found previously. Both results were analyzed using the relative importance index (RII).

These results are used in an additional case study, based on the comparison of them with another study with the same objectives did by some colleagues from The Hong Kong University of Science and Technology. An additional improvement of the labor productivity can be done by the mixture of both studies.

Results found previously can be used in a future study to create a tool to help contractor’s grade productivity on their projects in the preplanning stage and plan improvements in the most beneficial areas.

Reference:

ZABALLOS, I. (2016). Study on Improving Labor Productivity in the Construction Industry. The Cases of Europe and Hong Kong. Trabajo Final de Grado. Universitat Politècnica de València.

Descargar (PDF, 3.98MB)

25 Febrero, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, ingeniería civil, investigación, modelo matemático    

Civil Engineers are involved with the creation, monitoring, and management of infrastructural resources, as well as the e›cient, economic utilization and management of renewable natural resources. Nowadays a rapid growth of computer performance enables and encourages new developments in civil engineering as well as related areas. For instance, the construction industry investigates new designs with minimum cost, minimum CO2 emissions, or embodied energy, among other objectives. Conventional optimization techniques are usually inadequate to nd best designs by taking into account all design variables, objectives, and constraints in the complex civil engineering problems. Applications of optimization techniques are most exciting, challenging, and of truly large scale when it comes to the problems of civil engineering in terms of both quality and quantity. In order to overcome the di›culties, researchers are interested in advanced optimization techniques. In the recent literature, researchers have applied the advanced optimization techniques to dišerent purposes.

The aim of this special issue is to collect the studies using optimization algorithms in civil engineering problems such as structural engineering, construction management, and environmental engineering. Potential topics include but are not limited to the following: Intelligent optimization Swarm and evolutionary optimization techniques Single and multiobjective optimization Predictive modeling and optimization Computational complexity and optimization Continuous or discrete optimization Structural optimization Size, shape, and topology optimization New design optimization applications in civil engineering New and novel approaches and techniques for solving optimization problems in civil engineering New research in any areas closely related to optimization and civil engineering designs Authors can submit their manuscripts through the Manuscript Tracking System at http://mts.hindawi.com/submit/journals/ace/otace/

Descargar (PDF, 118KB)

 

Publicada By  Víctor Yepes Piqueras - Docencia, energía, maquinaria, procedimientos de construcción    

image001A continuación te presentamos un problema resuelto de neumática, muy sencillo, que sirve de introducción a los conceptos básicos de los circuitos neumáticos aprovechando la capacidad de un pistón de simple efecto conectado a un motor con pérdidas mecánicas. Se trata de aprender cómo calcular la fuerza de avance y aplicar la Ley de Boyle al cálculo del volumen de aire en condiciones normales.

El enunciado del problema sería el siguiente: Un cilindro neumático de simple efecto, de 63 cm de diámetro y 10 cm de carrera trabaja a una presión de 6 bares. Sabiendo que la fuerza neta ejercida en el vástago del cilindro es el 90% de la fuerza teórica, se pide:

  1. Fuerza neta ejercida por el cilindro en su carrera de avance.
  2. Consumo de aire medido en condiciones normales en una hora, si ese cilindro completa 6 ciclos de trabajo cada minuto.

Para ello os dejo el siguiente vídeo de Javier Luque que espero os sea útil.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

22 Febrero, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, medios auxiliares, Puentes    

T-60-torres-carga-caract-3-AMP

Cimbra T-60, ULMA

Las cimbras cuajadas se utilizan cuando no existen obstáculos topográficos, de capacidad portante del terreno, paso de vehículos o corrientes de agua. A diferencia de las cimbras diáfanas, las cuajadas presentan la ventaja de distribuir las cargas de forma más uniforme sobre el terreno. Se emplean habitualmente en alturas de hasta 6 o 7 m, no siendo económicas cuando las alturas de rasante son excesivas, por encima de 20 – 30 m, en cuyo caso se recurren a torres y cuchillos metálicos.

El sistema más habitual de cimbra cuajada es la cimbra tubular, con torres de planta triangular o cuadrangular que cubren toda la planta del tablero. Los perfiles de las barras son tubos huecos, montándose cada torre a partir de módulos planos que se enganchan por las esquinas. Además, para garantizar la estabilidad de la cimbra, se hace necesario colocar barras de arriostramiento longitudinales y transversales para unir las distintas torres.

Cimbra

Para que las torres estén perfectamente aplomadas, se calzan los pies usando para ello tablones, tarugos y cuñas. Las placas de los pies de las torres llevan agujeros para clavarlas a los tablones que sirven de base o a las cuñas. También suelen llevar tornillos de nivelación para ajustar la altura del pie.

En la parte superior de la torre se disponen husillos, que son piezas en U que reciben los largueros de madera del encofrado. Los usillos se conectan a la torre mediante tornillos de nivelación para conseguir la geometría de cotas del tablero. Los husillos bajan para descimbrar la losa una vez se ha realizado el pretensado. No se suelen dar contraflechas debido a que las flechas de peso propio y del pretensado son muy parecidas.

Os dejo un vídeo explicativo que espero os sea útil.

21 Febrero, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - carreteras, estructuras, hormigón, procedimientos de construcción    

Pasadores en una junta de construcción de un pavimento rígido

Una junta de construcción es una superficie plana, intercalada entre dos elementos de hormigón, de forma que el segundo se ha colocado contra o sobre el primero una vez que éste último ha endurecido y surge cuando finaliza una zona de estructura que requiere una interrupción de hormigonado por razones constructivas. Estas juntas son prácticamente inevitables, salvo para las estructuras de muy pequeña dimensión. Pueden ser horizontales, como es el caso de los pilares, o verticales, como en las losas, y su situación debe venir indicada en los planos del proyecto. A diferencia de las juntas frías, que se trata de juntas no previstas en la planificación de la obra debido a interrupciones involuntarias, las juntas de construcción se realizan deliberadamente pero con una previa planificación, de acuerdo a la programación de vaciado que se tenga. Cuando se debe interrumpir el hormigonado al finalizar la jornada laboral, la junta de hormigonado se denomina junta de trabajo.

Los aspectos más importantes de las juntas de construcción tienen que ver con su posición, rugosidad, tratamiento de la junta y duración de la interrupción del hormigonado. A pesar de la importancia que tienen en el ritmo de construcción y en la resistencia de la estructura, no siempre se les presta la atención que merecen, especialmente en lo que respecta a su disposición y su técnica de ejecución.

Cuando por cualquier razón es necesario disponer una junta de construcción, ésta se debe situar en un plano normal a la dirección de la armadura y en la zona de esfuerzo cortante mínimo. En las losas o vigas simplemente apoyadas, el mínimo de los esfuerzos cortantes se encuentra en las proximidades del centro de vano. La armadura se dispone normalmente continua a través de las juntas de construcción, debiendo preverse conectadores en caso contrario.

Junta de construcción en centro de vano

Elemento de encofrado para junta de construcción. http://www.maxfrank.com/

Una vez que el hormigón alcanza suficiente resistencia, se retirará el encofrado y se procederá a tratar la junta. El tratamiento puede realizarse mediante cepillado o bien con chorro de agua de caudal y presión suficiente como para eliminar de la superficie la pasta de cemento, bien con chorro de arena húmeda. Estos tratamientos deberán realizarse cuando se espere que los áridos no vayan a desprenderse del hormigón. También es de gran interés utilizar elementos de encofrado especiales, a base de rejillas de acero, que permite el paso de la lechada de cemento, por lo que se forma una superficie rugosa para la segunda tongada. También se podría usar una imprimación con resinas, aunque estas técnicas son de elevado coste y sólo se utilizan en casos especiales. En cambio, está totalmente desaconsejado el “picado” de la junta con medios mecánicos, pues los ensayos realizados demuestran que produce una microfisuración del hormigón que debilita la adherencia de la junta.

Las cualidades de una buena junta son la regularidad y la rugosidad de superficie, evitándose los resaltos y depresiones producidos por los áridos. El mejor tratamiento de limpieza, antes de verter el nuevo hormigón, es la retirada del polvo y la suciedad con aspiradoras, aunque es una técnica que sólo se aplica en presas. No se aconseja la limpieza con chorro de aire comprimido salvo en superficies verticales. Si no es posible utilizar una aspiradora en la limpieza, entonces se debería usar un chorro de agua a baja presión. Por último, es muy importante realizar una vibración enérgica y cuidadosa del hormigón vertido sobre la junta, así como realizar un curado cuidadoso para evitar reducir la resistencia estructural en dicha zona.

Os dejo a continuación algunos vídeos sobre juntas de construcción.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

17 Febrero, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - sostenibilidad, toma de decisiones    

Costanera Center, Santiago, Chile

Referencia:

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Sostenibilidad en el desarrollo de infraestructuras públicas chilenas. X Conferencia Internacional Encuentros Barcelona 2016, 16-18 de octubre, Barcelona (España).

Resumen:

Desde la promulgación de la Agenda 21, se han promovido acciones orientadas a la sostenibilidad en el ciclo de vida de los proyectos de  construcción . No obstante, hoy en día, se reconoce que los aspectos sociales no tienen la misma consideración que los aspectos biofísicos o económicos. No considerar la dimensión social en el desarrollo de una infraestructura ha tenido los siguientes efectos sobre la sociedad: A corto plazo, la interacción de los diversos actores han puesto en riesgo los resultados del proyecto. A largo plazo, vulnera la calidad de vida intra-generacional y repercute sobre las futuras generaciones. Iniciativas recientes en Chile han abordado los aspectos sociales respecto de las iniciativas empresariales a través de la responsabilidad social. En otras instancias ha sido considerados la participación ciudadana en algunos proyectos como una parte de los procesos de Evaluación Ambiental. La definición de los criterios que componen la sostenibilidad social en proyectos de construcción tiene todavía que ser claramente delineada, dependiendo los contextos de aplicación, la perspectiva de los actores involucrados y las etapas durante el ciclo de vida. Esta comunicación  identifica los criterios de sostenibilidad social más adecuados para cada etapa del ciclo de vida de una infraestructura civil pública. Este estudio está limitado a las infraestructuras civiles de uso público, bajo condiciones de uso esperado y a un número limitado de expertos consultados en un contexto chileno.

Palabras claves:

Delphi; Infraestructura; Sostenibilidad Social; Ciclo de vida; Chile.

Descargar (PDF, 419KB)

Descargar (PDF, 1.21MB)

15 Febrero, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, medios auxiliares, prefabricación, Puentes    

Puente Long Key, Layton, Florida (1982). Fuente: http://www.figgbridge.com/long_key_bridge.html

Puente Long Key, Layton, Florida (1982). Fuente: http://www.figgbridge.com/long_key_bridge.html

La potencia de los actuales medios auxiliares permite la construcción prefabricada de puentes vano a vano, que puede ser mediante dovelas previamente ensambladas o bien de un vano completo prefabricado. La construcción del vano mediante dovelas prefabricadas supone ensamblar dichas dovelas sobre una cimbra auxiliar que se apoya sobre las pilas del vano, realizando posteriormente la transferencia del tramo del tablero formado con el resto de la estructura. En cambio, la construcción de un vano completo normalmente se realiza en tramos metálicos o mixtos (la losa se realiza en una segunda fase), estando condicionada la operación por la capacidad de los medios de elevación.

El puente Long Key, en Florida (Muller, 1980), se construyó mediante dovelas prefabricadas. En este caso se dispuso una viga metálica triangulada entre las pilas que actuaba como cimbra y sobre ella se colocaban una a una las dovelas mediante grúa. Posteriormente se unían las dovelas mediante el pretensado, apoyándose el vano sobre las pilas y descargando la cimbra. En el caso del puente de Seven Mile (Florida, 1978), las dovelas se ensamblaron sobre una pontona flotante, izándose posteriormente.

La otra opción es el montaje del vano de una sola pieza. Esta posibilidad sólo sería rentable en el caso de una repetición elevada en el número de vanos, pues los medios auxiliares de elevación son muy costosos. En tramos de hormigón, esta forma de construir deriva de la evolución de los tableros de vigas artesa, dejando la incorporación de la losa superior en una segunda fase, de igual forma que en las estructuras mixtas. Un ejemplo de construcción con vigas por vanos completos es el viaducto en el enlace A3-M45 de Madrid (Álvarez et al., 2008), donde las vigas se montan por vanos completos, con un peso máximo de 170 t para una luz máxima de 41,6 m. Se trata en este caso de vigas artes que trabajan como isostáticas de forma provisional hasta que se da más adelante un pretensado de continuidad. Posteriormente se colocan las prelosas pretensadas colaborantes.

A3-M45 1

Vista con cuatro vigas montadas en el viaducto del enlace A3-M45 de Madrid (Álvarez et al., 2008)

Montaje de prelosas sobre jabalcones provisionales (Álvarez et al., 2008)

Montaje de prelosas sobre jabalcones provisionales (Álvarez et al., 2008)

A continuación os dejo un vídeo donde se ve el montaje del tramo completo de una viga artesa.

En este otro vídeo se puede ver un lanzavigas, ampliándose la longitud del vano por medio de vigas partillo en las pilas.

Referencias:

Álvarez, J.J.; Lorente, G.; Ortega, M.; Matute, L. (2008). Viaducto en el enlace A3-M45 (Madrid). IV Congreso de la Asociación Científico-Técnica del Hormigón Estructura-Congreso Internacional de Estructuras, 24-27 de noviembre.

Muller, J. (1980). Construction of Long Key Bridge. Journal – Prestressed Concrete Institute, 25(6), 97-111.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

14 Febrero, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ciclo de vida, costes, estructuras, hormigón, investigación operativa, optimización, Puentes, sostenibilidad    

Nos acaban de publicar en línea en la revista Structural and Multidisciplinary Optimization (revista indexada en JCR en el primer cuartil) un trabajo de investigación en el que utilizamos las redes neuronales artificiales junto para el diseño multiobjetivo de puentes postesados de carreteras. Os paso a continuación el resumen y el enlace al artículo por si os resulta de interés. El enlace del artículo es el siguiente: http://link.springer.com/article/10.1007%2Fs00158-017-1653-0

Referencia:

García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, doi:10.1007/s00158-017-1653-0

Abstract:

In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.

Keywords:

Multi-objective harmony search; Artificial neural networks; Post-tensioned concrete bridges; Durability; Safety.

Página siguiente »

Universidad Politécnica de Valencia