Optimización y control inteligente de puentes atirantados

Acaban de publicar un artículo nuestro en Results in Engineeringuna de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. Este trabajo trata sobre un sistema avanzado para el seguimiento de la salud estructural (SHM, por sus siglas en inglés) y la optimización de puentes de gran envergadura y estáticamente indeterminados (hiperestáticos).

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Además, muestra la internacionalización de nuestro grupo de investigación, en este caso, con China. A continuación, se presenta un resumen del trabajo y de la información de contexto.

 El problema central que se aborda en este trabajo es la insuficiencia de los métodos de supervisión tradicionales, ya que no permiten una vigilancia continua, en tiempo real y a distancia, crucial para garantizar la seguridad, la longevidad y el mantenimiento rentable de estas complejas infraestructuras.

La solución propuesta es una plataforma inteligente en la nube para el control y la alerta temprana que integra la informática, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este sistema combina los datos de supervisión en tiempo real, obtenidos mediante la tecnología de Internet de las Cosas (IoT), con modelos de elementos finitos (FEM) para evaluar con precisión el estado de la estructura.

Su eficacia se demostró mediante un estudio de caso del Puente del Río Amarillo en China (LZYB). El análisis de los datos de seguimiento y las simulaciones por elementos finitos revelaron que el diseño original del puente era excesivamente conservador, ya que la deflexión vertical real bajo cargas operativas representaba entre el 26,5 % y el 33,9 % del valor predicho en el diseño.

Con base en este hallazgo, se optimizó el diseño de la viga principal del puente, lo que permitió reducir el volumen de hormigón de la losa de fondo en un 15 %. Un análisis posterior del ciclo de vida (LCA) cuantificó los beneficios de esta optimización, que incluyen una reducción de 2009,65 toneladas de emisiones de CO₂ y un ahorro económico de 2 694 189,55 CNY, sin comprometer la seguridad ni el rendimiento estructural. Este enfoque representa un nuevo paradigma para el mantenimiento seguro, económico y sostenible de infraestructuras críticas.

1. Introducción y desafíos de la auscultación estructural.

Los puentes de gran envergadura y estáticamente indeterminados están sometidos a múltiples factores que pueden afectar a su integridad, como la respuesta dinámica de la estructura y el daño por fatiga acumulada debido a la interacción de cargas múltiples y condiciones ambientales complejas. Las microfisuras internas pueden propagarse hasta convertirse en fisuras macroscópicas y provocar la inestabilidad y el fallo de la estructura.

1.1. Limitaciones de los métodos tradicionales.

  • Inspección visual: los métodos iniciales, basados en la inspección visual realizada por personal cualificado para detectar defectos superficiales, como las grietas por fatiga, son imprecisos y propensos a errores.
  • Supervisión de la salud estructural (SHM) convencional: ha mejorado la precisión, pero enfrenta desafíos como la falta de sensores adecuados para el monitoreo autónomo a largo plazo y de algoritmos eficaces para predecir y diagnosticar daños locales por fatiga.
  • Enfoques basados en algoritmos: existen dos métodos principales: los basados en modelos, que utilizan un modelo de elementos finitos preciso, pero que consumen mucho tiempo, y los basados en datos, que analizan series temporales continuas, pero que pueden verse limitados por las bajas tasas de transmisión de datos de las redes inalámbricas.

El estudio aborda estas limitaciones combinando las ventajas de ambos enfoques e integrando algoritmos innovadores de alta eficiencia para avanzar en la monitorización continua de la salud estructural.

2. Marco teórico e innovación del sistema.

El trabajo establece un modelo teórico complejo y una plataforma inteligente que integra múltiples disciplinas para superar las barreras técnicas del seguimiento tradicional.

2.1. Puntos clave de la innovación.

  1. Modelo interdisciplinario: se desarrolló un modelo teórico modal complejo, multifactorial y de múltiples fuentes que combina la ciencia de la computación, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este modelo analiza el impacto de múltiples factores en las estructuras de los puentes y permite realizar un seguimiento de alertas tempranas en una plataforma en la nube.
  2. Supervisión basada en IoT: se adopta un monitoreo en línea, automatizado y en tiempo real basado en el Internet de las cosas (IoT). De este modo, se soluciona la incapacidad de la tecnología tradicional para lograr un seguimiento espaciotemporal continuo y a gran distancia, y se transforma el seguimiento de un «basado en puntos, indirecto y de ajuste de curvas» a otro «espacial, directo y continuo».
  3. Sistema de alerta temprana: proporciona un modelo eficaz de control y de alerta temprana para diversos tipos de deterioro, como grietas, deformaciones, envejecimiento y vibración dinámica. Valida la viabilidad de la estructura en términos de integridad, seguridad, durabilidad y control de la resistencia.

2.2. Componentes del modelo teórico.

El modelo matemático integra varios análisis para evaluar el estado de la estructura:

  • Daño por fatiga estructural: utiliza un modelo de daño por fatiga acumulativa no lineal para analizar la propagación de las fisuras y la degradación continua del módulo de elasticidad del hormigón.
  • Daño por fatiga del acero: se considera que la vida útil del puente está determinada principalmente por la fatiga de las barras de acero. El modelo calcula la profundidad crítica de la fisura y la tensión residual del acero.
  • Efecto de cargas múltiples: se aplica un modelo de mezcla gaussiana para analizar los datos de monitorización, que presentan una distribución de picos múltiples, y se calcula la deflexión total considerando la carga viva, la tensión térmica, la pérdida de pretensado y la retracción y la fluencia del hormigón.
  • Acoplamiento vehículo-puente: Construye una ecuación de un sistema de movimiento acoplado para analizar las interacciones mecánicas entre los vehículos y el puente.
  • Optimización dinámica estructural: utiliza un modelo matemático basado en la función lagrangiana para realizar un diseño de optimización dinámica con un ritmo de convergencia rápido.

3. Estudio de caso: el puente del río Amarillo (LZYB)

La metodología se aplicó a esta estructura atirantada, con un vano principal de 360 metros, ubicada en China.

3.1. Descripción del puente y sistema de control

  • Especificaciones: El LZYB es un puente extragrande para autopista de cuatro carriles con torres romboidales de hormigón armado (C50), una altura de torre de hasta 151 metros y cables atirantados de haces de alambre de acero paralelos galvanizados.
  • Sistema de monitorización: se instalaron 374 dispositivos de 10 tipos diferentes, incluidos sensores de temperatura y de humedad, acelerómetros, extensómetros y sensores de fibra óptica, entre otros. Estos dispositivos se ubicaron en puntos críticos de momento flector y de fuerza cortante, determinados mediante principios de mecánica y el modelo FEM. Los datos se transmiten en tiempo real a una plataforma en la nube basada en internet de las cosas (IoT, por sus siglas en inglés) para su análisis y alerta temprana.
Número Elementos de control Indicadores de alerta Método de adquisición
1 Análisis del modelo de vehículo Identificación de carga nominal (nº de ejes, longitud) Videovigilancia
2 Análisis del flujo de tráfico Autopista de 4 carriles (ADT 2 500-55 000 vehículos) Videovigilancia; captura de video
3 Análisis de sobrepeso Límite de 49 toneladas (se detectaron 82.5; 110 ton) Control dinámico de pesaje
4 Análisis de exceso de velocidad Límite de 80 km/h Control de flujo con exceso de velocidad
5 Control de temperatura ambiental Intervalo de control: -15 ~ 39 °C Sensor de fibra óptica de temperatura
6 Control de humedad ambiental 6,5 % ~ 98 % (torre principal); prevenir corrosión Sensor de fibra óptica de humedad
7 Control de carga de viento Velocidad del viento < 25,8 m/s Anemómetro
8  Control de carga sísmica E1 < 0,20g Instrumento de medición de movimiento del suelo
9  Control de respuesta estructural Frecuencia natural inferior al valor teórico calculado Equipo de monitorización de fibra óptica

3.2. Análisis de los datos de monitorización en tiempo real (abril-julio).

  • Cargas de tráfico: se observó un crecimiento mensual significativo en el volumen total de tráfico, en el número de vehículos con sobrepeso y en el de vehículos que circulaban a exceso de velocidad. El tráfico medio diario osciló entre 7319 y 14 431 vehículos, con picos en junio y julio.
  • Respuesta estructural (deformación): la respuesta de deformación bajo cargas de vehículos mostró una distribución de picos múltiples. El análisis identificó que dicha respuesta se concentraba en la sección de 3.50 L a 5.50 L del lado oeste.
  • Acoplamiento temperatura-deflexión: se halló una fuerte correlación positiva entre la temperatura ambiental y la deflexión de la viga principal (R² = 0,6953). La deflexión máxima registrada fue de 628,9 mm. El análisis identificó las zonas de la viga principal en las que la influencia de la temperatura sobre la deflexión era más marcada.

3.3. Acoplamiento y análisis mediante el modelo de elementos finitos (MEF).

Se creó un modelo 3D del LZYB en Abaqus/CAE 2021 para simular su comportamiento bajo cargas de diseño. Los resultados de la simulación fueron los siguientes:

  • Energía: la energía máxima se concentró en la losa de fondo de la viga principal, entre los vanos 2 y 3.
  • Deformación: la máxima deformación (0,004813 µε) se observó en la parte media de los cables atirantados.
  • Tensión: La tensión máxima (991,175 MPa) se localizó también en los cables atirantados, concretamente en el cable 3-1.
  • Desplazamiento: El desplazamiento vertical máximo calculado fue de 0,002267 metros en el centro del vano principal (sección 6L/12 de la viga).

4. Discusión: optimización y evaluación de la sostenibilidad.

La comparación entre los datos de supervisión en tiempo real y los resultados del FEM sirvió de base para optimizar el diseño.

4.1. Redundancia estructural identificada.

El análisis comparativo reveló una discrepancia significativa: la deflexión vertical global del puente durante su funcionamiento (entre 0,0021 y 0,5944 m) representaba entre el 26,50 % y el 33,90 % del valor máximo predicho por el modelo FEM con cargas de diseño (hasta 2,2434 m). Este hecho indica que el diseño estructural es significativamente conservador o «redundante».

4.2. Optimización del diseño de la viga principal.

Aprovechando la redundancia identificada, se llevó a cabo un proceso de optimización del diseño acoplado de la viga principal. Se analizó el impacto de reducir el volumen de hormigón de la viga de forma iterativa.

Resultado de la optimización: se determinó que era posible reducir el volumen de hormigón de la losa de fondo de la viga principal en un 15 % (es decir, reducir su espesor a 70 mm) sin comprometer el cumplimiento de los requisitos de rendimiento bajo las cargas de diseño originales.

4.3. Evaluación del ciclo de vida (LCA) y de los beneficios.

Se realizó una evaluación del ciclo de vida (LCA) para cuantificar los beneficios ambientales y económicos del diseño optimizado.

Beneficios ambientales y económicos: la reducción del 15 % del hormigón utilizado en la viga principal se traduce en un ahorro significativo a lo largo de todo el ciclo de vida del proyecto.

Indicador de evaluación Reducción
Calentamiento global (GWP100a) 2009,65 toneladas de CO2 eq.
Acidificación (AP) 8,86 toneladas de SO2 eq.
Eutrofización (FEP) 7,12 toneladas de PO4 eq.
Polvo en suspensión (PMFP) 79,63 toneladas
Ahorro económico (coste de material) 2 694 189,55 CNY

5. Conclusiones y hallazgos clave

La investigación demuestra con éxito la viabilidad de un sistema inteligente de supervisión en la nube, acoplado a un modelado FEM, para analizar la seguridad y optimizar el diseño de puentes de gran envergadura.

Resultados clave:

  1. Fallo de cables: el fallo de los cables es un factor crítico para la estabilidad de los puentes atirantados y debe ser un objetivo principal del seguimiento.
  2. Ubicación de la tensión máxima: la tensión más alta se concentra en los cables más largos (en este caso, el cable n.º 10), específicamente en la zona situada a menos de 2 metros de la parte superior de la torre principal.
  3. Diseño del sistema de monitorización subóptimo: el diseño actual de los puntos de control resulta ineficiente. No hay sensores en la parte superior de la torre, donde la tensión es máxima, mientras que hay demasiados en la viga principal.
  4. Enfoque del mantenimiento: el mantenimiento rutinario de los cables atirantados debe centrarse en las zonas de conexión de la parte superior de la torre y de la viga principal.

Innovación y limitaciones: La principal innovación del estudio consiste en aplicar de manera sistemática datos medidos y el modelado FEM 3D para resolver problemas de seguridad y optimización en puentes complejos. Esto ofrece un ejemplo práctico de supervisión en tiempo real y de análisis de la solidez de los datos. Una limitación reconocida es la falta de un estudio en profundidad sobre los efectos destructivos de las sobrecargas de peso y de velocidad, lo que sugiere una línea de investigación para el futuro.

Referencia:

ZHOU, Z.; ZHAO, Z.; ALCALÁ, J.; YEPES, V. (2025). Intelligent operation monitoring and finite element coupled identification of hyperstatic structures. Results in Engineering, 27, 106990. DOI:10.1016/j.rineng.2025.106990

Os dejo una conversación en la que podéis escuchar las ideas más interesantes de este trabajo.

En este vídeo se resumen las ideas más importantes.

Os he dejado una presentación que resume también lo más importante.

Pincha aquí para descargar

Os dejo el artículo completo, ya que está publicado en formato abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Pincha aquí para descargar

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el VIII Encuentro de Estudiantes de Doctorado

Mehrdad Hadizadeb-Bazaz, junto al trabajo galardonado.

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.

En la actualidad, debido a los altos costos de construir grandes estructuras como puentes, resulta sumamente importante prestar atención a la reparación y mantenimiento de dichas estructuras, con el fin de aumentar su vida útil y utilizar los métodos adecuados para reducir los costos asociados a su mantenimiento y reparación. En este sentido, resulta crucial emplear métodos apropiados y no destructivos para diagnosticar y predecir los daños en estas estructuras. Además, es importante considerar la evaluación del ciclo de vida y la sostenibilidad de los diferentes métodos de detección de daños.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Desarrollo regional sostenible de la construcción basada en la teoría de la entropía

Acaban de publicarnos un artículo en Sustainability, revista indexada en el segundo cuartil del JCR. Se trata de aplicar la teoría de la entropía para evaluar el desarrollo sostenible de la construcción en una región determinada, en este caso, en China. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La humanidad se enfrenta actualmente al problema cada vez más urgente de la contaminación medioambiental. Para gestionar el medioambiente de forma rigurosa, los distintos gobiernos nacionales deberían basarse en fundamentos científicos prácticos para ajustar y formular políticas y medidas legales basadas en el análisis de los datos existentes. En este trabajo se lleva a cabo un análisis basado en la teoría de la entropía de la innovación para evaluar el impacto de ocho provincias chinas, incluidos los impactos ambientales, económicos y sociales. Los resultados muestran que los impactos en China deberían crecer hasta aproximadamente 2044. A partir de 2045, se estabilizarían, con un crecimiento negativo en un corto periodo de tiempo. La evaluación del ciclo de vida (ECV) y la evaluación del impacto social (EIS) siguen siendo positivas. No habrá crecimiento negativo en los datos agregados y, antes de 2108, las emisiones serán nulas o negativas. Los datos finales de la investigación se presentan en forma de emisiones anuales y proporcionan una base teórica sobre la que el Gobierno puede formular normativas y planes medioambientales a medio y largo plazo.

Abstract:

Human beings are now facing the increasingly urgent problem of global ecological environment pollution. To verify the scientific nature of environmental governance by governments of various countries, researchers need to provide a scientific basis and practical support for governments to adjust and formulate new policies and regulatory measures at any time through data analysis. This paper applies visual literature, aggregate analysis, engineering data programming, advanced mathematical science algorithms, and innovation entropy theory, and through this study, obtains sustainable impact data from eight Chinese provinces in the 21st century, including environmental, economic, and social impacts. The results show that China’s sustainable data should grow from 2021 to about 2044. After 2045, it will be stable, and there will be negative growth in a short period. The overall life cycle assessment (LCA) and social impact assessment (SIA) remain positive. There will be no negative growth in aggregate data and zero or negative emissions before 2108. The final research data are accurately presented in the form of annual emissions, which provide a scientific and theoretical basis for the government to formulate medium— and long-term ecological regulations and plans.

Keywords:

life cycle cost (LCC); life cycle assessment; social impact assessment; environment; bridge; carbon emissions

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

Como el artículo está publicado en abierto, os lo podéis descargar aquí mismo:

Pincha aquí para descargar

Optimización de puentes mixtos mediante algoritmos de inteligencia de enjambre

Acaban de publicarnos un artículo en la revista Engineering Structures, revista indexada en el primer cuartil del JCR. En este caso se ha optimizado un puente mixto de hormigón y acero, mediante algoritmos discretos de inteligencia de enjambre. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo puedes descargar GRATUITAMENTE en el siguiente enlace: https://authors.elsevier.com/sd/article/S0141-0296(22)00708-8

La optimización de un puente mixto puede ser un reto debido al importante número de variables que intervienen en el problema. En este estudio se realizó la optimización de un puente mixto de hormigón y acero con vigas en cajón, con el coste y las emisiones como funciones objetivo. Ante este reto, el trabajo propone un algoritmo híbrido que integra la técnica de aprendizaje no supervisado de k-means con la metaheurística de inteligencia de enjambre continuo para reforzar el rendimiento de esta última. En particular, se discretizan las metaheurísticas sine-cosine y cuckoo search. Se estudia la contribución del operador k-means a la calidad de las soluciones obtenidas. En primer lugar, se diseñan operadores aleatorios para utilizar posteriormente funciones de transferencia que permitan evaluar y comparar los rendimientos. Además, para tener otro punto de comparación, se adaptó una versión del recocido simulado, que ha resuelto eficientemente problemas de optimización relacionados. Los resultados muestran que nuestra propuesta híbrida supera a los diferentes algoritmos diseñados.

Highlights

  • A cost and CO2 emissions optimization a three-span steel–concrete composite bridge has been performed.
  • The optimization considers 35 design variables on average 55 possible choices for each variable.
  • The performance and robustness of a hybrid k-means swarm intelligence metaheuristic is studied for this optimization problem.
  • Hybrid k-means algorithm results are compared with other discrete trajectory based and swarm algorithms.

Abstract

Composite bridge optimization might be challenging because of the significant number of variables involved in the problem. The optimization of a box-girder steel-concrete composite bridge was done in this study with cost and emissions as objective functions. Given this challenge, this study proposes a hybrid algorithm that integrates the unsupervised learning technique of k-means with continuous swarm intelligence metaheuristics to strengthen the latter’s performance. In particular, the metaheuristics sine-cosine and cuckoo search are discretized. The contribution of the k-means operator regarding the quality of the solutions obtained is studied. First, random operators are designed to use transfer functions later to evaluate and compare the performances. Additionally, a version of simulated annealing was adapted to have another point of comparison, which has solved related optimization problems efficiently. The results show that our hybrid proposal outperforms the different algorithms designed.

Keywords

Combinatorial optimization; Bridge; Metaheuristics; Composite structures; K-means

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

Como este artículo está publicado en abierto, os lo dejo para vuestra descarga:

Pincha aquí para descargar

 

Optimización de la estrategia de desarrollo sostenible en la gestión de proyectos de ingeniería internacionales

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. En este caso se ha desarrollado una aplicación para la optimización de una estrategia sostenible en la gestión de un proyecto de ingeniería internacional. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este artículo es establecer un marco internacional para la gestión sostenible de proyectos en ingeniería, completar la investigación en este campo y proponer una base teórica para el establecimiento de un nuevo sistema de gestión de proyectos. El artículo adopta como método de investigación la revisión de la literatura, un algoritmo de programación matemática y el estudio de casos. La revisión de la literatura analizó los resultados de 21 años de investigación en este campo. Como resultado, se constató que el sistema de gestión de proyectos presenta deficiencias. Se estableció un modelo matemático para analizar la composición y los elementos del sistema optimizado de gestión de proyectos internacionales. La investigación de casos seleccionó grandes puentes para su análisis y verificó la superioridad y viabilidad del sistema teórico propuesto. La aportación de esta nueva investigación radica en el establecimiento de un modelo de sistema de gestión de proyectos internacional completo; en la integración del desarrollo sostenible con la gestión de proyectos; y en la propuesta de nuevos marcos de investigación y modelos de gestión para promover el desarrollo sostenible de la industria de la construcción.

Abstract:

The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.

Keywords:

Bridge; project management; environmental impact; cost; optimization

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

Pincha aquí para descargar