¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejo algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)

Special Issue on Advanced Optimization Techniques and Their Applications in Civil Engineering

Civil Engineers are involved with the creation, monitoring, and management of infrastructural resources, as well as the e›cient, economic utilization and management of renewable natural resources. Nowadays a rapid growth of computer performance enables and encourages new developments in civil engineering as well as related areas. For instance, the construction industry investigates new designs with minimum cost, minimum CO2 emissions, or embodied energy, among other objectives. Conventional optimization techniques are usually inadequate to nd best designs by taking into account all design variables, objectives, and constraints in the complex civil engineering problems. Applications of optimization techniques are most exciting, challenging, and of truly large scale when it comes to the problems of civil engineering in terms of both quality and quantity. In order to overcome the di›culties, researchers are interested in advanced optimization techniques. In the recent literature, researchers have applied the advanced optimization techniques to dišerent purposes.

The aim of this special issue is to collect the studies using optimization algorithms in civil engineering problems such as structural engineering, construction management, and environmental engineering. Potential topics include but are not limited to the following: Intelligent optimization Swarm and evolutionary optimization techniques Single and multiobjective optimization Predictive modeling and optimization Computational complexity and optimization Continuous or discrete optimization Structural optimization Size, shape, and topology optimization New design optimization applications in civil engineering New and novel approaches and techniques for solving optimization problems in civil engineering New research in any areas closely related to optimization and civil engineering designs Authors can submit their manuscripts through the Manuscript Tracking System at http://mts.hindawi.com/submit/journals/ace/otace/

Descargar (PDF, 118KB)

 

International Conference on High Performance and Optimum Design of Structures and Materials HPSM-OPTI 2018

The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture.

The conference addresses issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design. Contributions will highlight the latest development in design, optimisation, manufacturing and experimentation in those areas. The meeting also aims to search for higher performance sustainable materials.

Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis will be placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management.

The conference also addresses the topic of design optimisation. Contributions on numerical methods and different optimisation techniques are also welcome, as well as papers on new software. Optimisation problems of interest to the meeting involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products.

The development of new algorithms and the appearance of powerful commercial computer codes with easy to use graphical interfaces has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines.

This scientific event is a new edition of the High Performance Design of Structures and Materials conference and follows the success of a number of meetings on structures and materials and on optimum design that originated in Southampton as long ago as 1989. As the meetings evolved they gave rise to the current series, which started in Seville in 2002, and followed by Ancona in 2004, Ostend in 2006, the Algarve in 2008, Tallinn in 2010, the New Forest, home of the Wessex Institute in 2012, Ostend in 2014 and Siena in 2016.

The meeting will provide a friendly and useful forum for the interchange of ideas and interaction amongst researchers, designers and scholars in the community to share advances in High Performance and Optimum Design of Structures and Materials.

More information: http://www.wessex.ac.uk/conferences/2018/hpsm-opti-2018

Descargar (PDF, 209KB)

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2016, Siena (Italia)

200x250_hpsm16Los días 19, 20 y 21 de septiembre de 2016 se celebra en Siena (Italia) uno de los congresos más importantes sobre optimización de estructuras: “The 2016 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2016“. Participo en dicho congreso tanto en su Comité Científico como la aportación de tres comunicaciones. A continuación os paso los resúmenes de dichas comunicaciones.

MARTÍ, J.V.; ALCALÁ, J.; GARCÍA-SEGURA, T.; YEPES, V.  (2016). Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges.

Abstract: This paper proposes simulated annealing and threshold accepting procedures for the automatic design of two different bridge types. Both cases are prestressed concrete road bridge decks typically used in public road construction. Simulated annealing is first applied to a precast beam of 30-30 meters of longitudinal spans and 12.00 m of width. The beam has a double U-shape cross-section and a beam spacing of 6 m. This problem involves 59 discrete design variables for the geometry of the beam and the slab, concrete grade, reinforcing steel and prestressing steel. The simulated annealing method indicates savings of about 5% with respect to a traditional design. The second bridge case is a 20-36-20 m post-tensioned cast-in-place concrete slab road bridge deck. This example needs 33 discrete variables to define the complete structure. The threshold accepting method is used for the optimization. Our findings indicate savings of about 7.5% with respect to the design based on experience. Finally, the results show that heuristic optimization provides other options to reduce the design costs of real prestressed bridge decks.

Keywords:  precast-prestressed concrete, post-tensioned cast-in-place, U-shape cross-section, slab deck, heuristic optimization

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.  (2016). Computer-Support Tool for Automatically Optimize Bridges.

Abstract:  In bridge design, many variables like material grades, cross-sectional dimensions, passive and pre-stressing steel need to be modeled to evaluate the structural performance. Efficiency gains are intended while satisfying the serviceability and ultimate limit states imposed by the structural code. In this paper, a computer-support tool is presented to analyze continuous post-tensioned concrete (PSC) box-girder road bridges, to minimize the cost, and to provide the optimum design variables. The program encompasses six modules to perform the optimization process, the finite-element analysis and the limit states verification. The methodology is defined and applied to a case study. A harmony search algorithm optimizes 32 variables that define a three-span PSC box-girder bridge located in a coastal region. However, the same procedure could be implemented to optimize any structure. This tool enables one to define the fixed parameters and the variables that are optimized by the heuristic algorithm. Moreover, the output provides useful rules to guide engineers in designing PSC box-girder road bridges.

Keywords:  post-tensioned concrete; computer-support tool; box-girder bridges; harmony search

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm.

Abstract: In this paper, the influence of steel fiber-reinforcement when designing precast-prestressed concrete road bridges with a double U-shape cross-section is studied through heuristic optimization. A hybrid evolutionary algorithm (EA) combining a genetic algorithm (GA) with variable-depth neighborhood search (VDNS) is formulated to minimize the economic cost and CO2 emissions, while imposing constraints on all the relevant limit states. The case study proposed is a 30-m span-length with a deck width of 12 m. The problem involved 41 discrete design variables. The algorithm requires the initial calibration. Moreover, the heuristic is run nine times so as to obtain statistical information about the minimum, average and deviation of the results. The evolution of the objective function during the optimization procedure is highlighted. Findings show that heuristic optimization is a forthcoming option for the design of real-life prestressed structures. This paper provides useful knowledge that could offer a better understanding of the steel fiber-reinforcement in U-beam road bridges.

Keywords:  steel fiber-reinforcement, precast-prestressed concrete, U-shape cross-section, hybrid evolutionary algorithm

 

Optimización de la gestión sostenible de pavimentos con presupuestos restrictivos

carretera_deterioradaNo resulta nada fácil realizar el mantenimiento de una red de carreteras durante un horizonte, digamos de 20 años, cuando los presupuestos son muy restrictivos. Las consecuencias son nefastas para la calidad del servicio prestado por dicha infraestructura. El problema deriva del hecho de tener que elegir la mejor opción de mantenimiento, en el momento adecuado, con un presupuesto mínimo, de forma que todo ello permita maximizar la condición de servicio de la infraestructura. ¡Un problema nada fácil!

Para solucionar este tipo de problemas hemos propuesto un algoritmo heurístico novedoso capaz de generar soluciones óptimas en casos tan complicados como el que se presenta.

Os dejo el resumen, las palabras clave y la referencia por si queréis citar el artículo.

tcem20.v022.i04.coverAbstract. Insufficient investment in the public sector together with inefficient maintenance infrastructure programs lead to high economic costs in the long term. Thus, infrastructure managers need practical tools to maximize the Long-Term Effectiveness (LTE) of maintenance programs. This paper describes an optimization tool based on a hybrid Greedy Randomized Adaptive Search Procedure (GRASP) considering Threshold Accepting (TA) with relaxed constraints. This tool facilitates the design of optimal maintenance programs subject to budgetary and technical restrictions, exploring the effect of different budgetary scenarios on the overall network condition. The optimization tool is applied to a case study demonstrating its efficiency to analyze real data. Optimized maintenance programs are shown to yield LTE 40% higher than the traditional programs based on a reactive strategy. To extend the results obtained in this case study, a set of simulated scenarios, based on the range of values found in the real example, are also optimized. This analysis concludes that this optimization algorithm enhances the allocation of maintenance funds over the one obtained under a traditional reactive strategy. The sensitivity analysis of a range of budgetary scenarios indicates that the funding level in the early years is a driving factor of the LTE of optimal maintenance programs.

Keywords: Maintenance program; Network management; Heuristic optimization; Asset management; Infrastructure management; Pavement.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770

También os podéis descargar la versión autor:

Descargar (PDF, 568KB)

La optimización de estructuras

¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática.  Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.

En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].

Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.

Referencias:

[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.

[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.

[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).

[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.

[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.

[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.

[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.

[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.

[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.

[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.

[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.

[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.

[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá,  Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.

[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.

[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.

[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).

[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.

[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.

[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction 49 (2015) 123-134.

[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.

[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.

[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.

[23] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.

 

Premio Abertis Chile a la tesis doctoral de Cristina Torres Machí

2015-03-30-12.16.50Acabamos de recibir la agradable noticia de que nuestra compañera Cristina Torres Machí ha sido elegida como ganadora de la categoría Tesis Doctoral del Premio Abertis Chile, patrocinada por la Cátedra Abertis de la Pontificia Universidad Católica de Chile. La tesis, denominada “Optimización heurística multiobjetivo para la gestión de activos de infraestructura de transporte terrestre” se defendió el 30 de marzo de 2015, optando brillantemente a la doble titulación de doctorado, tanto de la Universitat Politècnica de València (UPV) como de la Pontificia Universidad Católica de Chile (PUC). Los directores de tesis han sido la doctora Marcela Alondra Chamorro Gine (PUC), Eugenio Pellicer Armiñana (UPV) y Víctor Yepes Piqueras (UPV). La calificación fue la máxima posible, de sobresaliente “cum laude” por unanimidad.

En el siguiente enlace: http://victoryepes.blogs.upv.es/2015/03/30/tesis-doctoral-sobre-optimizacion-en-la-gestion-de-activos-de-infraestructuras-de-transporte-terrestre/ encontraréis un resumen de la tesis y de su defensa.

¡Enhorabuena por el trabajo bien hecho!

Referencias:

  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages, http://dx.doi.org/10.1155/2014/524329  (link)
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770

El profesor Dan M. Frangopol de estancia con nosotros en la Universitat Politècnica de València

Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.

El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.

De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”

A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/

Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.

Descargar (PDF, 108KB)

Big-Bang: Un nuevo algoritmo aplicado a la optimización de redes de transporte del tipo VRPTW

YEPES, V.; MEDINA, J.R. (2006). Big-Bang: Un nuevo algoritmo aplicado a la optimización de redes de transporte del tipo VRPTW. Actas  del VII Congreso de Ingeniería del Transporte CIT-2006. Libro CD, 8 pp. Ciudad Real, 14-16 de junio. ISBN: 84-689-8341-1.

RESUMEN

La ponencia presenta un procedimiento de optimización económica de rutas de reparto con flotas de vehículos heterogéneas y horarios de servicio flexibles VRPHESTW. Para ello se presenta una nueva heurística, denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes. La simulación de esta heurística de relajación consiste en reducir la velocidad de todos los vehículos, que al principio es muy alta para estabilizarse al final en su verdadera magnitud. El algoritmo emplea para explorar el espacio de soluciones una búsqueda probabilista en entornos variables con una aceptación de máximo gradiente. El algoritmo propuesto encuentra soluciones de elevada calidad, con la ventaja de poder utilizar otros procedimientos de búsqueda local que resulten más eficientes que el de máximo gradiente (algoritmo del solterón, aceptación por umbrales, búsqueda tabú, etc.).

  1. INTRODUCCIÓN

La asignación de rutas de reparto a una flota de vehículos “Vehicle Routing Problem” (VRP) constituye un problema habitual en las empresas dedicadas a la distribución de bienes o personas que conlleva un impacto económico, social y medioambiental importante. Sin embargo, los problemas de optimización que representan numerosas situaciones reales sólo pueden resolverse mediante procedimientos aproximados debido a su elevada complejidad intrínseca (ver Ball et al., 1995).

En las últimas décadas se han aplicado una gran variedad de técnicas para optimizar el problema de las rutas con horarios de servicio “vehicle routing problem with time windows” (VRPTW), tanto con heurísticas de construcción de soluciones (ver Solomon, 1987) o de mejora (ver Potvin y Rousseau, 1995), como metaheurísticas (ver Homberger y Gehring, 2005; Russell y Chiang, 2006). Sin embargo, son escasas las publicaciones que abordan la optimización con modelos más cercanos a la realidad incorporando horarios de servicio flexibles “vehicle routing problem with soft time windows” (VRPSTW) (ver Taillard et al., 1997), flotas heterogéneas de vehículos “vehicle routing problem with a heterogeneous fleet of vehicles” (VRPHE) (ver Gendreau et al., 1999), o ambas “vehicle routing problem with a heterogeneous fleet of vehicles and soft time windows” (VRPHESTW) (ver Yepes y Medina, 2002, 2004, 2006).

Además, los problemas reales de rutas difieren significativamente de los problemas teóricos. En efecto, la optimización jerárquica empleada habitualmente en la literatura (donde las mejores soluciones son las que, en primer lugar, presentan un menor número de rutas; y posteriormente, una menor distancia recorrida por todos los vehículos), no representa adecuadamente los costes reales de las empresas ni sus políticas de tarifas. Yepes (2002) indicó la trascendencia de utilizar una función objetivo de tipo económico para resolver estos problemas ante cambios en los escenarios de tarifas y costes. Asimismo, las restricciones legales y sociales, así como la calidad del servicio también se deben incluir dentro de una función objetivo de tipo económico, que contemple los ingresos y los costes de las operaciones de transporte (Medina y Yepes, 2003).

En la ponencia se presenta una nueva heurística basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes, y que se ha denominado “Big-Bang”. Esta estrategia de relajación, a su vez, se anida en una variante de la búsqueda en entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) apoyada en la elección probabilista de un operador distinto en cada movimiento, empleada con éxito en el trabajo de Yepes y Medina (2006). Todo ello se ensaya con un problema de rutas del tipo VRPHESTW donde, además, se emplea una función objetivo de tipo económico, unas jornadas laborables con distintos costes y con tiempos de viaje dependientes del tiempo de acceso y alejamiento a cada nodo (congestión, tráfico, etc.).

  1. EL ALGORITMO BIG-BANG

El algoritmo Big-Bang que se propone parte de la siguiente idea: Si todos los vehículos tuviesen una velocidad mayor a la real, dicho fenómeno se podría interpretar como que los clientes se encuentran en un espacio donde, físicamente, las distancias fuesen menores. Un procedimiento de búsqueda encontraría un óptimo local en este escenario favorable a la reducción del número de vehículos. Si se desciende escalonadamente la velocidad, y en cada caso se encuentra su óptimo local, probablemente el nuevo óptimo sería similar al anterior, siempre que la disminución fuera suficientemente suave. Esta relajación de la velocidad se interrumpiría en el último escalón, donde el óptimo local encontrado satisfaría la velocidad real de los vehículos. El efecto sería un aumento gradual del espacio físico donde se ubican los clientes, efecto por el cual se ha querido llamar a la heurística algoritmo Big-Bang. En la situación inicial las restricciones fundamentales que condicionan el problema son la capacidad de los vehículos y los horarios de servicio. Al final, la lejanía entre los clientes y el almacén central, son condiciones que se han introducido progresivamente al final de la heurística.

En efecto, un vehículo con una velocidad v llega de 0 a 1 en el instante t01 (ver Figura 1). Se supone, sin perder generalidad, que el tiempo de servicio es nulo. Si la velocidad se incrementase a v’, entonces la llegada ocurriría en t01’. Esta situación equivale a suponer que el nodo, en vez de estar en 1 está más cerca de 0, es decir, en 1’ y la velocidad se mantiene en v. Así, la llegada ocurre en el instante t’01, que es igual al t01’. Por tanto, un aumento en la rapidez de los vehículos es equivalente a un acortamiento físico de las distancias. Sin embargo, las ventanas temporales interfieren en el razonamiento anterior. La existencia de esperas provoca que, aunque la velocidad v’ favorece el acortamiento a la distancia 1’, no es posible iniciar el servicio puesto que lo impide la ventana temporal. La situación equivalente es la representada en la Figura 1 cuando el vehículo circula a una velocidad v’’. En este caso, el acortamiento de distancias a 1’ se ve interrumpido por la limitación en el inicio del servicio a la situación 1’’, donde el inicio del servicio s1’ es coincidente con el s1’’. La conclusión es que el aumento de la rapidez de los vehículos permite relajar las restricciones en las distancias, acortando éstas mientras las limitaciones horarias no lo impidan.

fIG 1
Fig. 1 – Incidencia en la variación de la velocidad de un vehículo en el inicio del servicio

Una de las características más interesantes de esta heurística de relajación consiste en la posibilidad de emplear como procedimientos de búsqueda local en cada escalón de velocidad, metaheurísticas más agresivas de búsqueda que la simple aceptación por umbrales (búsqueda tabú, algoritmo del solterón, cristalización simulada, etc.). En la ponencia que se presenta se ha optado por utilizar una búsqueda de máximo gradiente para comprobar la eficacia intrínseca del algoritmo, para no empañarla con la de otras metaheurísticas que por sí solas resultan, muy eficaces para el problema VRPHESTW (ver Yepes y Medina, 2004).

  1. DESCRIPCIÓN DE LA METAHEURÍSTICA PROPUESTA

El método presentado consta de dos fases. En la primera se genera una solución inicial mediante una heurística de construcción de rutas específica. Posteriormente se emplea el algoritmo “Big-Bang” basándose en una versión probabilista de la búsqueda por entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) y un criterio de aceptación de máximo gradiente.

3.1 Fase 1: Heurística económica de construcción secuencial de rutas.

Se ha empleado el método de Yepes y Medina (2006) para generar una solución inicial de elevada calidad al problema VRPHESTW. El procedimiento inicia una ruta seleccionando adecuadamente al primer cliente para posteriormente agregar otros mientras se cumplan las restricciones impuestas. Además, se elige el vehículo de mayor capacidad para disminuir en lo posible el número necesario.

3.2 Fase 2: Algoritmo “Big-Bang” con búsqueda probabilista en entornos variables.

El algoritmo que se propone consta de un número M+1 de ciclos de búsqueda local por entornos. Cada ciclo de búsqueda termina con la obtención de un óptimo relativo correspondiente con unas velocidades de los vehículos fijadas para dicho ciclo. En el primer ciclo, la velocidad de los vehículos se amplifica por un factor de incremento D= D1>1. Este factor debe reducirse progresivamente hasta llegar al último ciclo de búsqueda local, en el cual D =DM+1 =1. Para este trabajo, la reducción de la velocidad ha sido lineal con el número de ciclos; sin embargo, se podría adoptar otro tipo de función reductora.

Como técnica de búsqueda local se ha empleado la metaheurística propuesta por Yepes y Medina (2006) para el problema VRPHESTW, de búsqueda por entornos variables basada en la elección probabilística de 9 operadores distintos y un criterio de aceptación por máximo gradiente. Los movimientos elegidos han sido los siguientes:

  • Movimientos dentro de una ruta: se emplea el operador relocate (un nodo salta a otro lugar dentro de la ruta) y el swap (dos nodos de la ruta se intercambian entre sí).
  • Movimientos entre dos rutas: se utiliza el operador CROSS-exchange (Taillard et al., 1997) y dos casos particulares, el movimiento 2-opt* (Potvin y Rousseau, 1995) y el 2-exchange (Osman, 1993).
  • Movimiento de vehículos: vehicleswap cambia entre sí los vehículos de dos rutas, y replacement sustituye el vehículo de una ruta por otro de la flota que no está utilizándose.
  • Reconstrucción de soluciones: R&R0 desconecta un nodo al azar y lo introduce en la posición y ruta más favorable, mientras que R&Rseq rompe la ruta con menor número de nodos, y los reintroduce en la mejor posición y ruta (ver Schirmpf et al., 2000).

 

La Tabla 1 contiene las probabilidades que tiene cada operador de ser elegido. Dichos valores han ofrecido buenos resultados en experiencias anteriores (ver Yepes, 2002).

Tabla 1
Tabla 1 – Probabilidad de elección de los operadores
  1. EJEMPLO DE APLICACIÓN AL PROBLEMA VRPHESTW

Se analiza un problema del tipo VRPHESTW denominado HES-A descrito en Yepes y Medina (2004, 2006). Este caso deriva del ejemplo R103 de Solomon (1987), al cual se incorporan horarios flexibles de entrega, flotas heterogéneas y una función económica caracterizada por unos ingresos y unos costes fijos y variables. El lenguaje código utilizado ha sido Visual Basic 6.0 ejecutándose los ejemplos en un ordenador Pentium IV 3.00 GHz.

En las Figuras 2 y 3 se representa el beneficio obtenido y el tiempo empleado por la heurística descrita cuando se aplica al problema HES-A. El número de iteraciones empleadas para cada escalón de velocidad ha oscilado entre 1000 y 50000. Los escalones de velocidad ensayados varían entre 3 y 100. La mejor solución encontrada se corresponde con un beneficio de 164752, obtenida para un factor inicial de modificación de la velocidad D1=130, así como 30000 iteraciones en cada uno de los 30 escalones de velocidad considerados. Sin embargo, esta solución no atiende a todos los clientes (sólo el 96.70% de la demanda queda cubierta). La mejor solución que atiende toda la demanda se corresponde con un beneficio de 155184, obtenida para un D1=150, así como 50000 iteraciones en 100 escalones de velocidad. Destacamos cómo el algoritmo es capaz de aumentar el beneficio de las operaciones a costa de renunciar al servicio a determinados clientes. La mejor solución no factible sólo precisa 12 vehículos y recorre 1224.71 unidades de distancia total, frente a los 13 vehículos y las 1260.54 unidades de distancia de la mejor solución factible. Si se pretende servir toda la demanda, bastaría endurecer las penalizaciones en la función objetivo.

Fig. 2 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por el factor inicial de incremento de velocidad
Fig. 2 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por el factor inicial de incremento de velocidad
Fig. 3 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por la factibilidad de la solución
Fig. 3 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por la factibilidad de la solución

 

En la Tabla 2 se han recogido los valores óptimos en el sentido de Pareto de las soluciones factibles (ver Voorneveld, 2003). Dichos óptimos se corresponden con los valores de mayor beneficio en el menor tiempo de cálculo posible. Se observa que es favorable el aumento del factor de modificación inicial de la velocidad, del número de escalones y del número de iteraciones. Sin embargo, ello comporta un mayor tiempo de cálculo.

Tabla 2 – Resultados óptimos de Pareto para el problema HES-A, para las soluciones factibles
Tabla 2 – Resultados óptimos de Pareto para el problema HES-A, para las soluciones factibles

El mejor resultado obtenido por esta metaheurística (ver Tabla 3) es inferior al encontrado por el algoritmo del solterón propuesto por Yepes y Medina (2004) para un tiempo de cálculo similar. En aquella ocasión se obtuvo un beneficio de 170335, con 13 vehículos que recorrieron un total de 1229.13 unidades de distancia. Esta circunstancia sugiere que la búsqueda local de máximo gradiente empleada podría sustituirse por un algoritmo de búsqueda más agresiva, como el algoritmo del solterón.

Tabla 3 – Resultados obtenidos para el problema HES-A
Tabla 3 – Resultados obtenidos para el problema HES-A
  1. CONCLUSIONES

Se ha presentado una nueva heurística denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan los clientes. Esta estrategia de relajación consiste en reducir progresivamente, de forma escalonada, la velocidad de todos los vehículos, de forma que, al final del proceso, todos dicha velocidad sea la que corresponde con las restricciones del problema. Este procedimiento permite una fuerte tendencia hacia la reducción inicial del número de vehículos necesarios. En la ponencia se ha empleado este procedimiento para la resolución del problema VRPHESTW. Como estrategia de búsqueda local se ha empleado un esquema de búsqueda aleatoria en entornos variables, que emplea de forma probabilista un conjunto de 9 operadores y un criterio de aceptación de nuevas soluciones de máximo gradiente. En los ensayos se ha comprobado que un aumento en el factor de incremento inicial de la temperatura, del número de escalones, y de las iteraciones proporciona un incremento en la calidad de las soluciones, si bien con un mayor tiempo de cálculo. Los resultados obtenidos son de elevada calidad, si bien se sugiere el empleo de procedimientos de búsqueda local más agresivos, como por ejemplo el algoritmo del solterón, que ha dado muy buenos resultados para la resolución de este problema.

 

AGRADECIMIENTOS

Los autores agradecen el apoyo en este trabajo del Ministerio de Educación y Ciencia y de los fondos FEDER (Proyectos: BIA2005-03197 y REN2002-02951).

REFERENCIAS

BALL, M.O.; MAGNANTI, T.L.; MONNA, C.L.; NEMHAUSER, G.L. (Eds.) (1995). Network Routing, Handbooks in Operations Research and Management Science, vol. 8. North-Holland, Amsterdam.

GENDREAU, M.; LAPORTE, G.; MUSARAGNY, C.; TAILLARD, É.D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research 26, pp. 1153-1173.

HOMBERGER, J.; GEHRING, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research 162, pp. 220-238.

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions 27(1), pp. 95-112.

MLADENOVIC, N.; HANSEN, P. (1997). Variable neighborhood search. Computer and Operations Research 24(11) pp. 1097-1100.

OSMAN, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, pp. 421-451.

POTVIN, J.Y.; ROUSSEAU, J.M. (1995). An exchange heuristic for routing problems with time windows. J. Operational Res. Soc. 46(12), pp. 1433-1446.

RUSSELL, R.A.; CHIANG, W.C. (2006). Scatter search for the vehicle routing problem with time windows. European Journal of Operations Research 169, pp.606-622.

SCHIRMPF, G.; SCHENIDER, J.; STAMM-WILBRANDT, H.; DUECK, G. (2000). Record breaking optimization results using the ruin and recreate principle. Journal of Computation Physics 159, pp. 139-171.

SOLOMON, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), pp. 254-265.

TAILLARD, É.; BADEAU, P.; GENDREAU, M.; GUERTIN, F.; POTVIN, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science 31(2), pp. 170-186.

VOORNEVELD, M. (2003). Characterization of Pareto dominance. Operations Research Letters 31, pp. 7-11.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis doctoral. Universidad Politécnica de Valencia. 352 pp.

YEPES, V.; MEDINA, J.R. (2002). Criterio económico para la optimización de rutas con flotas heterogéneas VRPHESTW, en Ibeas, A. y Díaz, J.M. (Eds.):  Actas del V Congreso de Ingeniería del Transporte. Vol. 2, pp. 693-700. Santander, 11-13 junio.

YEPES, V.; MEDINA, J.R. (2004). Algoritmo del solterón aplicado a la optimización de rutas con flotas heterogéneas VPRHESTW, en Larrodé, E. y Castejón, L. (Eds.): Actas del VI Congreso de Ingeniería del Transporte. Vol. 2, pp. 759-766. Zaragoza, 23-25 de junio.

YEPES, V.; MEDINA, J.R. (2006). Economic heuristic optimization for heterogeneous fleet VRPHESTW. Journal of Transportation Engineering, ASCE 132(4), pp. 303-311.

Tesis doctoral sobre optimización en la gestión de activos de infraestructuras de transporte terrestre

2015-03-30 12.30.28Hoy lunes 30 de marzo de 2015 se ha defendido con éxito la tesis doctoral de la profesora Cristina Torres Machí denominada “Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre”, que optaba a la doble titulación de doctorado, tanto de la Universitat Politècnica de València (UPV) como de la Pontificia Universidad Católica de Chile (PUC). Los directores de tesis han sido la doctora Marcela Alondra Chamorro Gine (PUC), Eugenio Pellicer Armiñana (UPV) y Víctor Yepes Piqueras (UPV). La calificación ha sido la máxima posible, de sobresaliente “cum laude” por unanimidad.

Os paso el resumen de la tesis:

“A pesar de la importancia de las infraestructuras en el desarrollo económico y social, los recursos disponibles para su conservación suelen ser insuficientes, generando un deterioro acelerado de las mismas. En este contexto surge la disciplina de gestión de activos de infraestructura, que busca optimizar la asignación de recursos para la gestión, operación y conservación de la infraestructura mediante un análisis de su ciclo de vida.

Los criterios tradicionalmente empleados para evaluar las alternativas de conservación han sido los técnicos y económicos. Si bien, recientemente, se han realizado esfuerzos para cuantificar el impacto ambiental; los modelos actuales carecen de un enfoque integrado. Surge así la oportunidad de desarrollar una evaluación sostenible que integre los aspectos técnicos, económicos y ambientales en el ciclo de vida de la infraestructura.

En relación a la asignación óptima de recursos, los métodos mayoritariamente empleados son los de programación matemática y los métodos de optimización aproximada. Dentro de estos últimos, las aplicaciones de algoritmos heurísticos resultan escasas, limitándose a resolver el problema a nivel de proyecto. Estos métodos, sin embargo, han sido exitosamente aplicados para resolver problemas de optimización combinatoria en otros campos de investigación. A esto hay que añadir que las aplicaciones desarrolladas se centran, mayoritariamente, en la optimización de un único objetivo; obviando la naturaleza multiobjetivo del problema real. Se detecta, por tanto, la oportunidad de desarrollar una herramienta de optimización heurística multiobjetivo que, considerando una evaluación sostenible de alternativas, mejore la asignación actual de recursos.

A la vista de estos antecedentes, el objetivo principal de esta investigación consiste en desarrollar una herramienta para la evaluación de alternativas de conservación y la optimización heurística multiobjetivo, que permita una asignación más sostenible y eficiente de los recursos disponibles para la conservación de redes de activos de infraestructura de transporte terrestre. La herramienta propuesta se aplica a un caso de estudio real que consiste en la gestión de una red de pavimentos urbanos en Chile.

De la aplicación de la herramienta de optimización al caso de estudio se concluye que los algoritmos heurísticos basados en búsquedas por entornos resultan poco eficientes para resolver el problema de asignación de recursos de conservación. Ante esta limitación, se desarrolla un nuevo método híbrido que considera los algoritmos GRASP (Greedy Randomized Adaptative Search Procedure), GLS (Guided Local Search) y GFB (Greedy First Best). Además, el método propuesto permite evaluar las alternativas de conservación considerando, de forma integrada, criterios técnicos, económicos y ambientales.

El algoritmo híbrido propuesto diseña programas de conservación con una efectividad media un 9% superior a la obtenida con el algoritmo de búsqueda por entornos más eficaz, requiriendo para ello un menor esfuerzo computacional. En la aplicación al caso de estudio chileno, se observa que el algoritmo híbrido mejora la gestión actual, aumentando en un 22% la condición media de la red y reduciendo, además, las emisiones de CO2 en un 12%.

En términos prácticos, los programas óptimos consideran una política proactiva, en la que los pavimentos se tratan cuando la condición de los mismos aún es buena. Por último, la herramienta propuesta mejora la planificación temporal de los recursos. En base a las evidencias demostradas en el caso de estudio, se concluye que la distribución temporal del presupuesto es un factor clave en el desempeño técnico y ambiental de la red”.

Palabras Clave: Sostenibilidad; sustentabilidad; análisis del ciclo de vida; gestión de infraestructura; conservación; preservación.

2015-03-30 12.16.50

DSC01886

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.