Resultados finales del proyecto DIMALIFE: Diseño y mantenimiento robusto y basado en fiabilidad de puentes

Figura 1. Mapa mental del proyecto de investigación DIMALIFE

En el pasado Congreso ACHE 2022, celebrado recientemente en Santander, tuve la oportunidad de presentar los resultados del proyecto de DIMALIFE. Este proyecto fue anterior al actual HYDELIFE y supone una línea de investigación de alta productividad para nuestro grupo de investigación. En el periodo comprendido entre 2018 y 2021, tuvimos la ocasión de publicar 50 artículos indexados de alto impacto en el JCR, defender 5 tesis doctorales, 10 trabajos fin de máster y 25 comunicaciones a congresos. A ello hay que añadir la irrupción de la pandemia, que impidió una mayor presencia física en los congresos para diseminar los resultados alcanzados. Pero para eso está internet y las redes sociales.

Os paso, por tanto, el artículo completo donde se recogen los resultados. Lo más interesante son las referencias. Si alguien tiene interés por alguna de ellas, me las puede solicitar. También os paso un enlace a los resultados del grupo en este y otros proyectos de investigación: https://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencia:

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

Descargar (PDF, 373KB)

Comunicaciones presentadas al VIII Congreso Internacional de Estructuras de ACHE

Durante los días 20-22 de junio de 2022 tendrá lugar el VIII Congreso Trienal de la Asociación Española de Ingeniería Estructural (ACHE), un excelente encuentro internacional de profesionales y especialistas en el campo de las estructuras, cuyo nivel técnico lo avalan las anteriores ediciones. Los objetivos fundamentales de este Congreso Internacional de Estructuras son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en Edificación y en Ingeniería Civil e Industrial), y, por otro, exponer las actividades de la Asociación a sus miembros, amigos, y a toda la sociedad a cuyo servicio se encuentra ACHE realizando una labor de difusión técnica sin ánimo de lucro.

Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes. Además, tendré el honor de ser Presidente de Sala en la Sesión Técnica 5 de Gestión de Estructuras, el martes 21 de junio de 2022, en el Aula 5. Nos veremos pronto en el Congreso.

MARTÍ, J.V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En la actualidad, los técnicos se enfrentan al desafío de encontrar soluciones estructurales más eficientes, cumpliendo con todas las restricciones de seguridad y funcionalidad. Como ayuda a este reto, surgen las técnicas de optimización heurísticas. El algoritmo aplicado en este artículo es el Recocido Simulado o Simulated Annealing (SA). La estructura sobre la que se emplea esta metodología es un muro de contrafuertes de hormigón armado de 11 metros de altura. La eficiencia del algoritmo depende de la elección de los parámetros más adecuados que lo definen. Para ello, se realiza un diseño de experimentos factorial fraccionado que permite, a través de un análisis estadístico, detectar aquellos parámetros de la heurística que más afectan al resultado de la solución obtenida.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2022). Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En este trabajo se estudia el óptimo diseño de la estructura y cerramiento entre tres alternativas dispares aplicadas a una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se obtiene así la validación del método para una alternativa “convencional”, “prefabricada” y “tecnológica”, consiguiendo esta última la mejor valoración. Esta información permitiría a cualquier gestor conocer desde el inicio del proyecto los aspectos fundamentales que marcarán el equilibrio medioambiental, económico y social del futuro edificio a lo largo de su ciclo de vida para hacerlo, en definitiva, más sostenible.

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

Un nuevo modelo de toma de decisiones adaptativo basado en ANP y ELECTRE-IS aplicado a edificación

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. Se trata de un nuevo modelo de toma de decisiones que utiliza variables cuantitativas y que se ha aplicado distintas estructuras de edificación. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El proceso analítico en red (ANP) es un método discreto de toma de decisiones multicriterio (MCDM) concebido como una generalización del proceso analítico jerárquico (AHP) tradicional para abordar sus limitaciones. El ANP permite incorporar relaciones de interdependencia y retroalimentación entre los criterios y las alternativas que componen el sistema. Esto implica mucha más complejidad y tiempo de intervención, lo que reduce la capacidad del experto para emitir juicios precisos y coherentes. El presente trabajo aprovecha la utilidad de esta metodología formulando el modelo para variables exclusivamente cuantitativas, lo que simplifica el problema de decisión al dar lugar a un menor número de comparaciones pareadas. Se utilizan siete criterios relacionados con la sostenibilidad para determinar, entre cuatro alternativas de diseño para una estructura de edificio, cuál es la más sostenible a lo largo de su ciclo de vida. Los resultados revelan que el número de preguntas que requiere el AHP convencional se reduce en un 92%. Las ponderaciones obtenidas entre los grupos AHP y ANP muestran variaciones significativas de hasta el 71% en la desviación estándar relativa de algunos criterios. Esta sensibilidad a la subjetividad se ha llevado a cabo mediante la combinación de los métodos ANP-ELECTRE IS, permitiendo al experto reflejar la visión del problema de decisión con mayor flexibilidad y precisión. Tamién se ha analizado la sensibilidad de los resultados a los distintos métodos.

Abstract

The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert’s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.

Keywords:

Multiple-criteria decision-making; sustainable design; analytic hierarchy process; analytic network process; ELECTRE IS; life cycle assessment; modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2022). An Adaptive ANP & ELECTRE IS-based MCDM Model Using Quantitative VariablesMathematics, 10(12):2009. DOI:10.3390/math10122009

Dejo a continuación el artículo, que se puede descargar y compartir, pues está publicado en abierto.

Descargar (PDF, 3.59MB)

¿Es obligatorio calcular la huella de carbono en los proyectos de construcción?

Una pregunta que suelen hacerme es si es necesario el cálculo de la huella de carbono en la redacción de los proyectos de construcción. A estas alturas nadie duda de la importancia que tiene la emisión de gases de efecto invernadero. En el ámbito científico y técnico, la metodología del análisis del ciclo de vida de un producto está plenamente desarrollada. Sin embargo, la docencia de este tipo de técnicas en las enseñanzas universitarias no acaba de incorporarse plenamente en los programas curriculares. Voy a relatar brevemente lo que está ocurriendo a nivel legislativo para que veáis hacia dónde va este tema.

Todo ello viene porque el pasado 1 de abril de 2022 el Pleno del Consell aprobó el proyecto de Ley de Cambio Climático y Transición Ecológica de la Comunitat Valenciana. Se trata de una propuesta de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica que traza una hoja de ruta para reducir las emisiones y contribuir a luchar contra el cambio climático.

La nueva normativa establece un objetivo de reducción de emisiones del 40% para 2030 y conseguir la neutralidad en el horizonte del 2050. En cuanto al consumo de energía, el objetivo es disminuir al menos un 35,4% para 2030. En relación con la transición energética, el objetivo es que el 42% del consumo de energía provenga de fuentes renovables, también en 2030. Una de las diversas obligaciones que impone el nuevo texto legislativo es que, a partir del 1 de enero de 2025, todos los municipios de la Comunitat Valenciana con más de 5.000 habitantes estén obligados a calcular y registrar su huella de carbono.

Asimismo, este requisito parece ser cada vez más como una condición necesaria para poder acogerse a determinadas ayudas públicas. A modo de ejemplo, la Resolución de 16 de febrero de 2022, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se convocan ayudas a los municipios de la Comunitat Valenciana para potenciar proyectos de lucha contra el cambio climático, para el ejercicio de 2022. Por su parte, las grandes y medianas empresas que operen en todo o parte de la Comunidad Valenciana estarán obligadas, de acuerdo con lo que se establezca reglamentariamente, a calcular y reconocer anualmente la correspondiente huella de carbono de sus actividades.

Este es un ejemplo, en el ámbito regional, de cómo se está imponiendo la evaluación de la huella de carbono en los ámbitos públicos y privados. En muchos más ámbitos y países se está legislando de una forma similar. Por tanto, y respondiendo a la pregunta planteada, la respuesta es que sí no es obligatorio calcular la huella de carbono en los proyectos, lo va a ser en el futuro próximo. Los Colegios Profesionales deberán estar atentos a estos cambios legislativos para exigir estos cálculos cuando se proceda al visado de los proyectos.

Como sabéis, nuestro grupo de investigación no solo está desarrollando la metodología para este cálculo en el ámbito ambiental y social, sino que está aplicando técnicas de decisión multicriterio para que el proyectista sea capaz de decidir la mejor de las opciones en el estudio de soluciones del proyecto. Además, para que estas técnicas sean efectivas, deben aplicarse sobre soluciones optimizadas.

Referencias:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

PONS, J.J.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2020). Life cycle assessment of a railway tracks substructures: comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85:106444. DOI:10.1016/j.eiar.2020.106444

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209: 109968. DOI:10.1016/j.engstruct.2019.109968

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3): 398. DOI:10.3390/math8030398

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI:10.3390/su11051307

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:10.1016/j.jclepro.2018.08.177

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:10.1016/j.jclepro.2018.04.268

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:10.1016/j.jclepro.2017.12.140

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:10.1007/s00158-017-1653-0

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. DOI:10.1016/j.jclepro.2017.06.246

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. DOI:10.1016/j.jclepro.2017.01.100

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the lifecycle of Chilean public infrastructure. Journal of Construction Engineering and Management, 142(5):05015020. DOI:10.1061/(ASCE)CO.1943-7862.0001099

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. DOI:10.4067/S0718-915X2014000200006

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, 2014, 524329. DOI:10.1155/2014/524329

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(6):420-432. DOI:10.1631/jzus.A1100304

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26 (3):378-386. DOI:10.1061/(ASCE)CP.1943-5487.0000140

PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. DOI: 10.1016/j.engstruct.2009.02.034

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño óptimo de depósitos de agua elevados de hormigón armado bajo cargas sísmicas

Acaban de publicarnos un artículo en Applied Sciences, revista indexada en el JCR. Se trata de la optimización heurística de un depósito elevado de agua de hormigón armado bajo acciones sísmicas.  El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo trata del diseño sísmico de las columnas de 35 depósitos elevados de almacenamiento de agua de hormigón armado. Los depósitos constan de un tronco cónico superior, una columna de sección cuadrada hueca variable y una cimentación superficial sobre una capa de arena. Las cinco alturas de columna consideradas son 20, 25, 30, 35 y 40 m. Los cinco depósitos se someten a siete grados de carga sísmica caracterizados por la aceleración pico del suelo de referencia en el Eurocódigo 8. Los depósitos elevados se diseñan según las prescripciones completas del Eurocódigo 2, el Eurocódigo 8 y el Código Estructural español. Esto incluye las cargas variables por sismicidad, viento, nieve, etc., junto con la acción del peso propio y las cargas muertas. El método de diseño de optimización considerado es una variante del algoritmo del solterón, un método de aceptación de umbral adaptativo con un movimiento de vecindad basado en el operador de mutación de los algoritmos genéticos. Los resultados de las columnas muestran la alta no linealidad del problema, pues las fuerzas sísmicas horizontales dependen de la rigidez y la altura de las columnas. Las principales características de los depósitos optimizados dan una orientación para el diseño práctico de este tipo de depósitos de agua elevados de hormigón armado.

El artículo se puede descargar, pues está en abierto, en la siguiente dirección: https://www.mdpi.com/2076-3417/12/11/5635

Abstract:

This paper deals with the seismic column design of 35 elevated RC water storage tanks. Tanks comprise a top conic trunk reservoir, a column with variable hollow square cross-sections, and a shallow foundation on a sand layer. The five-column heights considered are 20, 25, 30, 35, and 40 m. The five tanks are subjected to seven degrees of seismic loading characterized by the reference peak ground acceleration in Eurocode 8. The elevated tanks are designed against the full prescriptions of Eurocode 2, Eurocode 8, and the Spaniard Structural Code of Practice. This includes variable loads for seismicity, wind, snow, etc., together with the action of self-weight and dead loads. The optimization design method considered is a variant of the old bachelor algorithm, an adaptive threshold acceptance method with a neighborhood move based on the mutation operator from genetic algorithms. Column results show the high nonlinearity of the problem since the horizontal seismic forces depend on the rigidity and height of the columns. The main features of the optimized tanks give guidance for the practical design of this kind of elevated RC water tank.

Keywords:

Concrete structures; economic optimization; elevated water tanks; old bachelor algorithm; seismic loading; structural design

Reference:

MARTÍNEZ-MARTÍN, F.J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2022). Optimization design of RC elevated water tanks under seismic loads. Applied Sciences, 12(11):5635. DOI:10.3390/app12115635

Os paso a continuación el artículo para que podáis consultarlo.

Descargar (PDF, 5.88MB)

 

XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022

Tengo el placer de anunciar mi conferencia invitada al XXXIX Congreso Sudamericano de Ingeniería Estructural, JSAEE 2022. Dicha conferencia tiene como título: “Diseño y mantenimiento sustentable de estructuras y puentes considerando su ciclo de vida“.

La XXXIX edición de las Jornadas , que se realizará en septiembre de 2022 a distancia, es la continuación de un evento que tuvo su primera edición en 1950. Las Jornadas reúnen a profesionales e investigadores que trabajan en el diseño y construcción de obras verticales y horizontales, constituyéndose en el congreso más importante en esta área del conocimiento en Sudamérica. Las Jornadas están organizadas por la Asociación Sudamericana de Ingeniería Estructural (ASAEE – http://asaee.org ) y por un comité local. En la presente edición, el evento es organizado por el Programa de Posgrado en Ingeniería Civil y Ambiental de la Universidad de Passo Fundo, RS, Brasil.

Os dejo el enlace a la página web del congreso, para mayor información e inscripciones: https://eventos.congresse.me/jsaee2022

 

Comparación de proyectos de vivienda de interés social considerando la sostenibilidad

Acaban de publicarnos un artículo en el International Journal of Environmental Research and Public Health, revista indexada en el JCR. Se trata de comparar distintas alternativas de viviendas sociales en Brasil, considerando la sostenibilidad. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València y de la colaboración con el profesor Moacir Kripka.

Considerando la importancia del desarrollo de nuevos proyectos de vivienda, el propósito de esta investigación es proporcionar un modelo orientado a la identificación de la alternativa más sostenible en proyectos de vivienda unifamiliar de interés social desde la perspectiva del ciclo de vida y del proceso jerárquico analítico (AHP). Se evaluó un proyecto de mampostería cerámica y otro de mampostería de hormigón. En la dimensión ambiental, los resultados mostraron que el proyecto de albañilería cerámica tenía impactos ambientales más significativos y mayores daños a la salud humana y a la disponibilidad de recursos y ecosistemas. En la dimensión social, se comprobó que existen discrepancias entre los salarios de la cadena de suministro de la construcción y que el proyecto de mampostería de hormigón tenía mejores características sociales que el de mampostería cerámica. La dimensión económica reveló que el proyecto de mampostería de hormigón era más atractivo. Relacionando los resultados de las dimensiones ambiental, social y económica, se encontró que el proyecto de mampostería de hormigón presentaba una combinación de características más sostenibles que el proyecto de mampostería de cerámica en la mayoría de los resultados. Entre las implicaciones del estudio realizado aquí está el avance de la sostenibilidad aplicada al sector de la construcción.

Abstract:

Considering the importance of the development of new housing projects, the purpose of this research is to provide a model oriented to the identification of the most sustainable alternative in single-family housing projects of social interest from the perspective of life cycle thinking (LCT) and the analytical hierarchical process (AHP). A ceramic masonry project and a concrete masonry project were evaluated. In the environmental dimension, the results showed that the ceramic masonry project had more significant environmental impacts and greater damage to human health and the availability of resources and ecosystems. In the social dimension, it was found that there are discrepancies between the salaries in the construction supply chain and that the concrete masonry project had better social characteristics than the ceramic masonry project. The economic dimension revealed that the concrete masonry project was more attractive. Relating the environmental, social, and economic dimensions’ results, through the combination of LCT and AHP, it was found that the concrete masonry project presented a combination of more sustainable characteristics than the ceramic masonry project in the majority of the results. Among the implications of the study carried out here is the advancement of sustainability applied to the construction sector.

Keywords:

Social interest housing; life cycle thinking; analytic hierarchy process; sustainability

Reference:

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213. DOI:10.3390/ijerph19106213 .

Descargar (PDF, 1.42MB)

Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad

Este trabajo presenta el estudio entre tres alternativas estructurales dispares aplicadas una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se ha definido un modelo de evaluación y propuesto una serie de indicadores usando la metodología MIVES que permite identificar, estructurar y evaluar las distintas alternativas propuestas transformándolas en un valor, cuyo máximo es la opción óptima. Se obtiene la validación del método para una alternativa tradicional (hormigón in situ), prefabricada (©YTONG) y tecnológica (©ELESDOPA) consiguiendo esta última la mejor valoración a pesar de no ser la más económica ni la más rápida de ejecutar.  Las viviendas unifamiliares suelen estar más ligadas a proyectos singulares para clientes particulares, no siendo objeto de interés para los promotores que obtienen mayores beneficios en otros productos inmobiliarios de tipo plurifamiliar. Sin embargo, para cualquier autopromotor su “hogar” constituye quizás la mayor inversión de su vida, y por tanto una de las decisiones más importantes a tomar. No existe una herramienta específica en el mercado para evaluar de forma rigurosa (más allá del coste de obra) la sostenibilidad de una vivienda durante su ciclo de vida. Los cuestionarios para evaluar los indicadores a través de atributos (tangibles e intangibles) identifican numéricamente las deficiencias de esta tipología para mejorar su índice de valor, ofreciendo al proyectista una herramienta objetiva y eficaz para justificar ante su cliente el mejor uso de materiales, mano de obra y tecnología, para conseguir diseños óptimos (desde el punto de vista ambiental, social, estético, funcional, temporal, económico, seguridad y salud, etc.). En conclusión, un estudio así desde la fase inicial permitiría a todo gestor de proyecto controlar los aspectos fundamentales que marcarán el equilibrio del futuro edificio para que sea más funcional, inteligente, económico y sostenible.

Os dejo a continuación un vídeo explicativo donde os cuento los aspectos básicos del trabajo.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué alternativa de puente es la más sostenible medioambientalmente? ¿Y socialmente?

He empezado una serie de vídeos divulgativos donde quiero explicar, de forma breve, los resultados que estamos obteniendo en nuestro grupo de investigación. Considero que es importante hacerlo debido a que, muchas veces, los artículos científicos quedan almacenados en las grandes revistas y no llegan al técnico o al público en general.

En este caso, os he preparado un vídeo sobre en el que explico cómo hemos realizado el análisis del ciclo de vida de cuatro tipologías de puentes muy utilizados en nuestro país: losas macizas, losas aligeradas, secciones en cajón y secciones mixtas. Se analiza no solo el impacto social, sino también el medioambiental. Os explico qué metodología usamos, el software, las bases de datos, etc. Os llevaréis una relativa sorpresa con los resultados obtenidos. Ya os adelanto que las mejores alternativas medioambientales no se corresponden con las mejores desde el punto de vista social.

Los que queráis descargar gratuitamente el artículo, podéis acudir al siguiente enlace: https://www.mdpi.com/2071-1050/14/9/5186

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria

Acaban de publicarnos un artículo en el Journal of Construction Engineering and Management-ASCE, revista indexada en el primer cuartil del JCR. Se trata de optimizar la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo no está publicado en abierto, pero podéis encontrarlo, solicitándolo, en esta dirección: https://www.researchgate.net/publication/360243758_Slab_Track_Optimization_Using_Metamodels_to_Improve_Rail_Construction_Sustainability o bien descargarlo directamente de la página web de ASCE: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CO.1943-7862.0002288

El ferrocarril es un medio de transporte eficaz, sin embargo, la construcción y el mantenimiento de las vías férreas tienen un impacto medioambiental importante en términos de emisiones de CO2 y uso de materias primas. Esto es especialmente cierto en el caso de la vía en placa, pues necesitan grandes cantidades de hormigón. También son más caras de construir que las vías convencionales con balasto, pero requieren menos mantenimiento y presentan otras ventajas que las convierten en una buena alternativa, especialmente para las líneas de alta velocidad. Para contribuir a un ferrocarril más sostenible, este trabajo pretende optimizar el diseño de una de las tipologías de vía en placa más comunes: RHEDA 2000. El objetivo principal es reducir la cantidad de hormigón necesaria para construir la losa sin comprometer su rendimiento y durabilidad. Para ello, se utilizó un modelo basado en el método de los elementos finitos (MEF) de la vía, emparejado con un metamodelo de kriging que permite analizar múltiples opciones de espesor de la losa y resistencia del hormigón de forma puntual. Mediante kriging, se obtuvieron soluciones óptimas que se validaron a través del modelo MEF para garantizar el cumplimiento de las restricciones mecánicas y geométricas predefinidas. Partiendo de una configuración inicial con una losa de 30 cm de hormigón con una resistencia característica de 40 MPa, se llegó a una solución optimizada, consistente en una losa de 24 cm de hormigón con una resistencia de 45 MPa, que arroja una reducción de costes del 17,5%. Este proceso puede aplicarse ahora a otras tipologías de losas para obtener diseños más sostenibles.

Abstract:

Railways are an efficient transport mode, but building and maintaining railway tracks have a significant environmental impact in terms of CO2 emissions and the use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. To contribute to more sustainable railways, this paper aims to optimize the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a model based on the finite-element method (FEM) of the track was used, paired with a kriging metamodel to allow analyzing multiple options of slab thickness and concrete strength in a timely manner. By means of kriging, optimal solutions were obtained and then validated through the FEM model to ensure that predefined mechanical and geometrical constraints were met. Starting from an initial setup with a 30-cm slab made of concrete with a characteristic strength of 40 MPa, an optimized solution was reached, consisting of a 24-cm slab made of concrete with a strength of 45 MPa, which yields a cost reduction of 17.5%. This process may be now applied to other slab typologies to obtain more sustainable designs.

Keywords:

Slab track; Optimization; Latin hypercube; Kriging; Finite-element method (FEM).

Reference:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, 148(7):04022053. DOI:10.1061/(ASCE)CO.1943-7862.0002288