Doble titulación: Máster Ingeniero de Caminos, Canales y Puertos y Máster en Ingeniería del Hormigón

IMG_20121106_094440

DOBLE TITULACIÓN MICCP-MUIH. Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos.

En el marco de las titulaciones adaptadas al Espacio Europeo de Educación Superior (EEES), han ido surgiendo, progresivamente en los últimos años, numerosos títulos de Máster Universitario, que en ocasiones tiene áreas temáticas similares o incluso coincidente. Estos másteres se pueden dividir en dos grupos, aquellos que habilitan para el ejercicio de una profesión determinada y aquellos que no tienen esta atribución, por tratarse de másteres con una orientación claramente científico-investigadora o aun teniendo un carácter profesional no se ajustan a ninguna profesión reconocida.

Esta situación fuerza al estudiante a tener que tomar decisiones sobre su futuro en detrimento de unos u otros másteres, siendo que en muchas ocasiones hay temas de interés que son tratados por varios másteres de modo complementario. Por ejemplo, el Máster Universitario en Ingeniería de Caminos, Canales y Puertos (en adelante MICCP) tiene bastantes coincidencias con el Máster Universitario en Ingeniería del Hormigón (en adelante MUIH); sin embargo, el primero habilita para ejercer la profesión de Ingeniero de Caminos, Canales y Puertos, mientras que el segundo está orientado al campo de la ingeniería del hormigón, tanto desde el punto de vista de los materiales constituyentes como desde el punto de vista estructural, tanto desde el punto de vista profesional como científico. En este caso concreto un alumno que quiera adquirir las competencias profesionales para ejercer como Ingeniero de Caminos, Canales y Puertos y, además, quiera una especialización profesional o investigadora en ingeniería del hormigón, debería cursar ambos másteres.

La idea de la doble titulación conjunta entre ambos másteres que se presenta en esta propuesta, pretende ofrecer al alumno una trayectoria académica integrada para la realización del doctorado o para la especialización profesional, junto con la obtención de las competencias que le habilitan para el ejercicio de la profesión de Ingeniero de Caminos, Canales y Puertos, todo ello con un coste temporal y económico, para el estudiante, inferior al que representa la obtención de ambos másteres de manera individualizada, y sin coste docente adicional para la entidad.

En esta propuesta está pensada para que un estudiante del MICCP, en lugar de cursar los 120 ECTS del máster MICCP y los 90 ECTS del máster MUIH, curse únicamente un total de 165 ECTS, representando así un ahorro de 45 ECTS y de un cuatrimestre docente. Aunque el planteamiento de la propuesta está realizado en el sentido MICCP->MUIH, puesto que permite una reducción de un cuatrimestre temporal (además de los 30 créditos reconocidos).

Se propone la siguiente tabla de reconocimientos, que se realizará para un bloque completo de 45 ECTS, del siguiente modo:

MICCP Código Tipo ECTS MUIH Código Tipo ECTS
Arte y estética de la ingeniería civil 33532 Optativo 4,5 Historia y estética del hormigón estructural 32766 Optativo 2,5
Ingeniería computacional de estructuras 33537 Obligatorio 4,5 Tecnología del hormigón estructural 32763 Optativo 2,5
Diseño conceptual de construcciones singulares 33539 Obligatorio 4,5 Ejecución y control de estructuras de hormigón 32762 Optativo 5,0
Teoría avanzada de estructuras 33441 Obligatorio 4,5 Construcciones con hormigón prefabricado 32764 Optativo 2,5
Hormigón y sostenibilidad 32765 Optativo 2,5
Materiales no convencionales en la ingeniería civil 33524 Optativo 4,5 Hormigones especiales y nuevos materiales 32749 Obligatorio 5,0
Hormigón estructural II (alumnos procedentes del GIC) 33549 Optativo 6,0 Estructuras de hormigón pretensado 32758 Obligatorio 5,0
Mantenimiento y conservación de estructuras 33538 Obligatorio 4,5 Patología y rehabilitación 32751 Obligatorio 5,0
Proyecto de estructuras de hormigón 33521 Optativo 4,5 Proyecto de elementos estructurales de hormigón mediante el método de bielas y tirantes 32757 Obligatorio 5,0
Análisis computacional de estructuras de hormigón 33522 Optativo 4,5 Análisis de estructuras de hormigón mediante elementos finitos 32752 Obligatorio 5,0
Proyecto y ejecución de estructuras de edificación 33523 Optativo 4,5 Diseño de estructuras de edificación 32759 Obligatorio 2,5
Bases para el diseño de estructuras de hormigón 32756 Obligatorio 2,5
SUMA 46,5 SUMA 45

 

Los reconocimientos asignatura-asignatura no están considerados en la doble titulación, debiéndose tramitar oportunamente según el procedimiento general que establece la universidad para asignaturas de títulos diferentes. El reconocimiento es, como se ha comentado previamente, para el bloque completo de 45 créditos indicado en la tabla anterior. El plan de estudios de MICCP no se ve afectado en ningún caso por esta propuesta de doble título.

Por lo tanto, el itinerario MICCP-> MUIH para el que está pensado fundamentalmente esta titulación quedaría del siguiente modo:

CUATRIMESTRE A CUATRIMESTRE B
MICCP: 30 ECTS MICC: 30 ECTS
MICCP: 30 ECTS MICCP: 30 ECTSAsignaturas optativas del MICCP 22,5 ETCSTrabajo Fin de Titulación MICCP 7,5 ECTS
MUIH: 30 ECTSCiencia y tecnología de los conglomerantes y adiciones (32748) 5 ECTSAnálisis no lineal y diferido de estructuras de hormigón (32753) 5 ECTSModelos predictivos y de optimización de estructuras de hormigón (32755) 5 ECTS

Durabilidad de las construcciones de hormigón (32750) 5 ECTS

Acciones extraordinarias en estructuras de hormigón: sismo y fuego (32760) 5 ECTS

Análisis experimental de estructuras de hormigón (32754) 5 ECTS

Trabajo Fin de Máster MUIH 15 ECTS

 

El estudiante cursará una carga total de 165,0 ECTS, incluyendo 7,5 ECTS correspondientes al TFM de MICCP y 15,0 ECTS correspondientes al TFM de MUIH. Para el caso de los alumnos provenientes del MICCP, el total de cuatrimestres previsto es de seis, aunque el último de ellos tendrá una carga docente prevista de 15,0 ECTS únicamente, correspondientes al TFM del MUIH.  Se propone su implantación para el curso 2016-2017.

 

Historia de la prefabricación del hormigón

Alejandro López Vidal y David Fernández Ordoñez acaban de publicar una reseña de gran interés sobre la construcción con prefabricados de hormigón (http://www.andece.org/IMAGES/BIBLIOTECA/historia_prefabricados_noticreto.pdf). Este artículo se ha publicado en la revista Noticentro, en su número 133 correspondiente a noviembre y diciembre de 2015. Espero que os sea interesante su lectura.

Descargar (PDF, 2.76MB)

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón

phiLa mayoría de avances alcanzados relacionados con los métodos estandarizados para cuantificar la sostenibilidad de la construcción, están fundamentalmente enfocados a la edificación más que a las infraestructuras, especialmente en su variante residencial. El impacto global de la edificación residencial es el mayor de todos, pues implica a los tres ejes de la sostenibilidad: medioambiental (emisiones de gases de efecto invernadero, derivados de los consumos de calefacción y/o refrigeración para lograr unas condiciones interiores confortables), social (la vivienda es una primera necesidad para las personas) y económico (suele representar el mayor gasto que afronta una persona a lo largo de su vida). Mientras tanto, la obra civil no ha evolucionado igualmente en esta materia. Aunque generalmente se trata de construcciones de mayor envergadura, los impactos sobre la sostenibilidad son mucho más difusos y no tienen una repercusión tan directa sobre la vida diaria de los ciudadanos. Por estas razones, puede explicarse que los métodos de evaluación de la sostenibilidad para la obra civil no estén tan desarrollados como los existentes en la edificación, incluso con cierta dificultad para encontrar referencias sobre este campo. Esto puede implicar de alguna forma un obstáculo para la promoción técnica de los elementos prefabricados de hormigón, en un área que suele estar dominado por ingenieros que, en general, saben apreciar mejor las ventajas funcionales que esta metodología constructiva ofrece con respecto a otras. Este artículo pretende describir las fortalezas que la construcción con prefabricados de hormigón tendrá en el inminente marco reglamentario sobre la sostenibilidad en la obra civil, como vía para mejorar sus posibilidades y lograr una mayor cuota de mercado. También se analizarán algunos de los indicadores de la sostenibilidad que ya aparecen en los borradores de normas actuales.

Referencia:

López-Vidal, A.; Yepes, V. (2015). Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón. Una primera aproximación. PHi Planta de Hormigón Internacional, 5:18-24.

GDE Error: Error al recuperar el fichero. Si es necesario, desactiva la comprobación de errores (404:Not Found)

 

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón. Una primera aproximación

La mayoría de avances alcanzados relacionados con los métodos estandarizados para cuantificar la sostenibilidad de la construcción, están fundamentalmente enfocados a la edificación más que a las infraestructuras, especialmente en su variante residencial. El impacto global de la edificación residencial es el mayor de todos, pues implica a los tres ejes de la sostenibilidad: medioambiental (emisiones de gases de efecto invernadero, derivados de los consumos de calefacción y/o refrigeración para lograr unas condiciones interiores confortables), social (la vivienda es una primera necesidad para las personas) y económico (suele representar el mayor gasto que afronta una persona a lo largo de su vida). Mientras tanto, la obra civil no ha evolucionado igualmente en esta materia. Aunque generalmente se trata de construcciones de mayor envergadura, los impactos sobre la sostenibilidad son mucho más difusos y no tienen una repercusión tan directa sobre la vida diaria de los ciudadanos. Por estas razones, puede explicarse que los métodos de evaluación de la sostenibilidad para la obra civil no estén tan desarrollados como los existentes en la edificación, incluso con cierta dificultad para encontrar referencias sobre este campo. Esto puede implicar de alguna forma un obstáculo para la promoción técnica de los elementos prefabricados de hormigón, en un área que suele estar dominado por ingenieros que, en general, saben apreciar mejor las ventajas funcionales que esta metodología constructiva ofrece con respecto a otras. Este artículo pretende describir las fortalezas que la construcción con prefabricados de hormigón tendrá en el inminente marco reglamentario sobre la sostenibilidad en la obra civil, como vía para mejorar sus posibilidades y lograr una mayor cuota de mercado. También se analizarán algunos de los indicadores de la sostenibilidad que ya aparecen en los borradores de normas actuales.

Referencia:

López-Vidal, A.; Yepes, V. (2015). Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón. Una primera aproximación. PHi Planta de Hormigón Internacional, 5:18-24.

Descargar (PDF, 1.13MB)

 

Towards sustainable civil engineering works using precast concrete solutions

CV ARTICULOMost of the achieved advances related to define standardized methodologies to quantify the contribution to “sustainabilize” the construction are linked to buildings rather than infrastructures, and much more in particular to housing. Global impact on housing is the widest and highest one, gathering the three sustainable axis: environmental (greenhouse gas emissions derived from heating or cooling to reach indoor comfort  conditions), social (home is a basic need for families) and economic (it usually represents the main expense over the life of people). Meanwhile civil engineering work has not evolved as long on this topic. Although we generally refer to greater constructions, sustainable impacts are more diffused and don´t have such a direct repercussion into the citizens and daily life. For this reasons, there are not as many assessment methods for civil engineering works as there are for buildings, or even any literature regarding this field. Therefore it may implies a technical and promotional handicap to promote a higher use of precast concrete elements in a sort of constructions governed by engineers that usually appreciate better their performance advantages. This article pretends to describe the strengths that precast concrete construction will have into the upcoming standards for civil engineering works, in order to enhance their possibilities to reach a greater market share. Sustainable indicators on current draft standards will be assessed.

Reference:

López-Vidal, A.; Yepes, V. (2015). Towards sustainable civil engineering works using precast concrete solutions. Concrete Plant International, 5: 18-24. (link)

Descargar (PDF, 2.31MB)

Enfilado de las armaduras activas de un puente

Enfilando cables de pretensado. Youtube.

El enfilado consiste en la colocación de la armadura dentro de la vaina, pudiéndose realizar esta operación antes o después de colocar la vaina en posición. Enfilar antes suele hacerse en taller, para elementos no muy largos, pero en el caso de un puente, suele hacerse con la vaina ya colocada. El enfilado de la armadura activa de un puente se suele realizar el día anterior al hormigonado para evitar los riesgos de un posible abollamiento o rotura de la vaina durante el hormigonado. En cualquier caso, hay que evitar tiempos prolongados entre el enfilado y la puesta en tensión de los cables.

Para realizar el enfilado se precisa de la bobina de acero de pretensar y de una  enfiladora. Una vez montada la bobina de cordón en la devanadora se procede al enfilado de los distintos cordones que constituyen un tendón mediante la enfiladora. La enfiladora es una máquina de tracción mecánica que empuja de forma semicontinua el torón de pretensar al interior de la vaina. En cualquier caso, por la parte delantera se dispone de un elemento esférico o con punta redondeada para que no se produzcan muescas o entallas en la vaina. Siempre se debe dejar aproximadamente un metro en cada extremo del tablero para que el gato pueda realizar las operaciones de tesado. Durante esta operación, la enfiladora se debe fijar lo mejor posible para evitar desplazamientos. Además, El especialista que maneja la enfiladora debe estar perfectamente comunicado con el operario situado en el extremo contrario con el fin de indicar la parada de la máquina.

Suele ocurrir que el último torón que se debe enfilar para completar los necesarios en una vaina puede ser difícil de enfilar, especialmente si el diámetro de esta vaina es muy justo. Lo que suele hacerse es soldar dos torones a uno que ya esté enfilado y se tira del extremo contrario del torón ya enfilado para introducir los otros dos que hemos soldados. Sin embargo, es preferible elegir un diámetro de vaina suficiente pare evitar estos problemas. En el extremo de cada cable se coloca una pieza metálica en forma de bala que evita que se desfleje y dañe la vaina.

Una vez realizado el enfilado de todos los cables, se debe repasar el trazado en alzado de las vainas para comprobar que no han perdido su posición durante el enfilado. Suele taparse el metro que sobresale por cada extremo se tapa con bolsas de plástico para evitar la caída de mortero durante el hormigonado del tablero, lo que dificultaría el tesado de la unidad al requerirse una limpieza cuidadosa que, obviamente, se evita protegiendo con bolsas de plástico.

Es muy habitual observar cómo el acero de pretensar pierde el color gris metálico si se deja la bobina a la intemperie durante unos días. Esto no es problema alguno dado que la capa de óxido superficial es pasivizante y no supone corrosión alguna de la armadura. Este comentario es extensivo a armaduras pasivas y vainas de pretensar. En la figura vemos cómo la bobina se coloca en un bastidor fijo al suelo para que la bobina no se mueva durante el traqueteo que supone el enfilado.

Os dejo un par de vídeos donde podéis ver cómo se enfilan los cables para el postesado del puente.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aplicación a la docencia de posgrado en ingeniería: la optimización de distintas tipologías de muros

Variables geométricas del muro de contrafuertes

Resumen:

Este artículo trata sobre la formación universitaria en ingeniería de proyectos en un curso de postgrado dentro del Máster en Ingeniería del Hormigón de la UPV, centrado en el diseño automatizado de estructuras de hormigón, optimizando el coste de ejecución material. El curso considera la mayoría de los algoritmos heurísticos básicos aplicándolos al diseño práctico de estructuras reales, tales como muros, pórticos y marcos de pasos inferiores de carreteras, pórticos de edificación, bóvedas, pilas, estribos y tableros de puentes. Se presentan dos tipos distintos de muros de hormigón armado in situ usados en la construcción de carreteras. Se aplica el algoritmo recocido simulado (SA), en primer lugar a un muro ménsula de 10,00 metros de altura, y en segundo lugar a un muro nervado de la misma altura. El primer modelo consta de 20 variables que definen la geometría estructural, así como las características del hormigón y los armados. El segundo modelo necesita 32 variables para su definición. Los parámetros son los mismos para los dos casos. Finalmente, se concluye que la optimización heurística es una buena herramienta para diseñar muros y comparar las distintas tipologías de proyecto, reduciendo los costes.

Palabras clave:

Educación posgrado; Diseño estructural; Optimización; Algoritmos heurísticos; Estructuras de hormigón; Muros.

Referencia:

MARTÍ, J.V.; YEPES, V. (2015). An engineering postgraduate course on heuristic design of different types of retaining walls. 19 th International Congress on Project Management and Engineering, 15-17 July, Granada (Spain).

Descargar (PDF, 20.71MB)

Construcción de un pavimento bicapa de hormigón con terminación de árido visto

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (de 4 a 5 cm) sobre otra capa de hormigón, extendiéndolas juntas para que trabajen como una capa única, creando así el pavimento descrito. Esto permite el uso de áridos de peor calidad en la capa inferior, reservando los de mayor calidad para satisfacer las estrictas exigencias de resistencia al desgaste y al pulimento que se aplican a la capa de rodadura. La disminución del tamaño máximo del árido, que resulta en un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento), también se puede limitar a esta capa superior.

En España, no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes, adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendedoras y las centrales de hormigón preparado.

Os dejo a continuación un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto que se ejecutó en un tramo de la autovía C-17 en Barcelona. Espero que os guste.

Referencia:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica

Resumen: Este artículo se ocupa del diseño automático de estribos abiertos de hormigón armado en puentes de carretera de coste mínimo, empleando para ello dos algoritmos híbridos de escalada estocástica con operadores de mutación basados en los algoritmos genéticos. Los algoritmos empleados se basan en el recocido simulado (SAMO) y en la aceptación por umbrales (TAMO). Ambos algoritmos se aplican a un estribo definido por 40 variables discretas. Se han comprobado ahorros económicos superiores al 18 % respecto a un estribo de referencia de una altura de 9 m realmente construido, con diferencias pequeñas entre ambos algoritmos, del 0,5 % a favor de SAMO. Además, se ha realizado un estudio paramétrico para alturas de estribo entre 6 y 15 m para diferentes tensiones admisibles del terreno que ofrece criterios de predimensionamiento a los proyectistas. Se ha comprobado, además, que el ahorro económico se localiza fundamentalmente en la zapata de estas estructuras.

Palabras clave: Hormigón estructural; optimización heurística; estribos; recocido simulado; aceptación por umbrales; diseño estructural; puentes.

Cómo citar este artículo/Citation: Luz, A., Yepes, V., González-Vidosa, F., Martí, J. V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540): e114, doi: http://dx.doi.org/10.3989/ic.14.089.

Descargar (PDF, 883KB)

Procedimiento para la construcción y reparación de pavimentos de hormigón

losaLa construcción y la reparación de losas de hormigón usadas como pavimento es un reto que requiere el uso de técnicas constructivas. Uno de los problemas principales radica en la solución de las juntas para conseguir economía y durabilidad en la ejecución de esta unidad de obra. Os presento a continuación una solución de la empresa FAROBEL que resuelve el problema con losas más pequeñas y de menor espesor (entre 3,30 y 0,80 m) para reducir las tensiones por flexión debidas a las cargas y gradientes térmicos.  La reparación de los firmes actuales de asfalto se hace con pequeñas losas de 0,8*1,1*0,08 con juntas JRI+ y la reparación de los firmes de hormigón con una aplicación de la junta JRI+ para pavimentos de hormigón ya existentes. Para ello se utiliza una junta machihembrada tipo JRI+ que apoya los bordes y permite giros entre dichos bordes de losas. A esa junta se le dota de gomas impermeables, resultando un pavimento con transferencia de cargas e impermeabilidad permanentes.

jri+detalles

Las ventajas que presenta esta tecnología se pueden resumir en los siguientes puntos:

1.- Elimina las capas de base

2.- Elimina los pasadores

3.- Elimina el corte y el sellado

4.- Disminuye el espesor de las losas de hormigón

5.- Disminuye el mantenimiento

6.- Puede ponerse la capa asfáltica de rodadura sin erosionarse en la zona de la fisura.

7.- Aumenta la vida útil del pavimento

sistemafuerzasJri+

Os dejo un vídeo sobre la instalación:

También os dejo un artículo de José Ramón Vázquez sobre el tema.

Descargar (PDF, 1.12MB)