El sistema de perforación OD

Perforación OD
EVERDIGM_Durawing Overburden Drilling System

En algunos casos, cuando las condiciones del terreno lo requieren (terrenos muy alterados o inestables, existencia de agua, etc.) o cuando es necesario recurrir a sistemas especiales de perforación, se puede realizar una entubación con recubrimiento, que consiste en la entubación del taladro al mismo tiempo que se avanza en la perforación. El operario puede controlar el avance escogiendo la combinación que mejor se adapte a las diversas capas del terreno, perforando en rotación con corona o en rotopercusión con la boca interior. Tanto la boca como la corona anular son de carburo de tungsteno. En estos casos, el sistema de barrido de detritus es muy eficaz, con una presión del fluido algo mayor de lo habitual.

Los dos métodos más extendidos de perforación con recubrimiento son los conocidos como método OD (overburden drilling) y método ODEX (overburden drilling with the eccentric). En esta entrada, describiremos brevemente el primero de ellos.

El sistema de perforación OD consiste en perforar con un avance simultáneo de una tubería exterior auxiliar y un varillaje conductor del elemento perforador propiamente dicho en su interior, ambos en giro solidario o independiente, dependiendo de las características de la maquinaria utilizada. Por ello también se le conoce como sistema «Duplex». Los mecanismos de percusión y rotación funcionan de forma independiente. En cualquier etapa de la perforación, pueden extraerse muestras del terreno.

El método OD se aplicó de forma sistemática por primera vez en 1956, durante la excavación del canal de Lindo en Suecia, y desde entonces se ha extendido considerablemente por las indudables ventajas que presenta en terrenos inestables.

El equipo que se emplea en este método consta de:

  • Un conjunto de tubos roscados con una corona anular en su extremo.
  • Un conjunto de barras unidas por manguitos con una boca en cruz en su extremo, alojada en el interior de la entubación.
  • Un sistema de barrido de agua a alta presión.

La finalidad de la tubería exterior es contener las paredes de la actuación, lo que evita el uso de lodos viscosos de perforación, bastando el uso de agua limpia o del propio suelo y/o aire como fluido de circulación para la extracción de detritos. El espacio de corona anular resultante entre la perforación y la tubería definitiva (mínimo de 37 mm) permite llevar a cabo los trabajos de cementado, sellado y colocación de empaque de material granular filtrante, condicionados por las características del suelo sondeado.

La ventaja del sistema consiste en la rapidez en la ejecución del avance de la perforación, sin modificar la permeabilidad del suelo. Sin embargo, los diámetros se limitan hasta 300 mm (suficientes para equipos de bombeo de baja capacidad). Por la propia mecánica de ejecución, cuya principal característica es la velocidad de avance e inalterabilidad de la permeabilidad del suelo sondeado, tiene su óptima eficiencia en la aplicación de control de nivel piezométrico.

En voladuras submarinas con medios neumáticos de carga, una vez se ha alcanzado la cota del fondo y después de introducir la entubación de plástico que es necesaria para cargar el explosivo, se extrae el entubado de la perforación.

En estos vídeos podéis ver cómo funciona la perforación OD con recubrimiento. Espero que os sean útiles.

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Aplicación a la docencia de posgrado en ingeniería: la optimización de distintas tipologías de muros

Variables geométricas del muro de contrafuertes

Resumen:

Este artículo trata sobre la formación universitaria en ingeniería de proyectos en un curso de postgrado dentro del Máster en Ingeniería del Hormigón de la UPV, centrado en el diseño automatizado de estructuras de hormigón, optimizando el coste de ejecución material. El curso considera la mayoría de los algoritmos heurísticos básicos aplicándolos al diseño práctico de estructuras reales, tales como muros, pórticos y marcos de pasos inferiores de carreteras, pórticos de edificación, bóvedas, pilas, estribos y tableros de puentes. Se presentan dos tipos distintos de muros de hormigón armado in situ usados en la construcción de carreteras. Se aplica el algoritmo recocido simulado (SA), en primer lugar a un muro ménsula de 10,00 metros de altura, y en segundo lugar a un muro nervado de la misma altura. El primer modelo consta de 20 variables que definen la geometría estructural, así como las características del hormigón y los armados. El segundo modelo necesita 32 variables para su definición. Los parámetros son los mismos para los dos casos. Finalmente, se concluye que la optimización heurística es una buena herramienta para diseñar muros y comparar las distintas tipologías de proyecto, reduciendo los costes.

Palabras clave:

Educación posgrado; Diseño estructural; Optimización; Algoritmos heurísticos; Estructuras de hormigón; Muros.

Referencia:

MARTÍ, J.V.; YEPES, V. (2015). An engineering postgraduate course on heuristic design of different types of retaining walls. 19 th International Congress on Project Management and Engineering, 15-17 July, Granada (Spain).

Pincha aquí para descargar

Los movimientos de ladera. Ahora Guatemala

https://robertoaugustorivas.files.wordpress.com

Hoy, 3 de octubre de 2015, nos desayunamos con una catástrofe que, de forma sistemática sacude una y otra vez. Se trata de las decenas de muertos y cientos de desaparecidos del movimiento de ladera ocurrido en Guatemala. Es, por tanto, una oportunidad para difundir este tipo de fenómeno para ver si, de una vez por todas, se toman las medidas preventivas necesarias.

Un movimiento de ladera es un desplazamiento de una masa de rocas o tierras hacia el exterior de la misma con un componente descendente inducido por la acción de la gravedad. Se trata de una importante amenaza para la población y sus bienes que a menudo se infravalora. Así, en Estados Unidos se producen entre 25 y 50 muertes al año, con pérdidas valoradas en unos 310 millones de dólares. Los terribles terremotos que han azotado Nepal nos han recordado la tragedia que suponen los corrimientos de tierras y las víctimas que conllevan. Este fenómeno debe tenerse en cuenta en la planificación territorial, tanto urbanística como en la implantación de infraestructuras.

Existen muchas clasificaciones de los movimientos de ladera. Sin embargo, podemos distinguir algunos de ellos:

  • Caída o desprendimiento: caída libre de bloques, cantos, gravas, etc. La caída de material se produce fragmento a fragmento.
  • Vuelco: rotación hacia el exterior de una masa de roca, derrubios o suelo sobre un pivote o bisagra en la ladera.
  • Deslizamiento: movimiento del material a lo largo de una superficie de cizalla (corte) reconocible. Se clasifican a su vez en rotacionales o traslacionales.
  • Flujo: movimiento en el que las partículas individuales de material viajan separadas dentro de la masa que se mueve. Según los materiales pueden ser debris-flow, mud-flow y sand-flow.

HtnwEICxXduigPp63mWBUjl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9

Para disminuir las probabilidades de que este riesgo se materialice, es necesario llevar a cabo una serie de medidas preventivas basadas principalmente en la utilización de estructuras de ingeniería como protección. Existen dos clases:

  • Protección estructural activa: Dentro de la protección activa se encuentran las redes, los muros de contención, las mallas metálicas, los anclajes y cualquier protección que ejerza una acción sobre el elemento inestable para fijarlo.
  • Protección estructural pasiva: Engloba a las barreras dinámicas y a cualquier estructura que no evite que se desencadene el suceso, pero sí lo retenga antes de que llegue a cualquier población amenazada.

En el siguiente vídeo de la universidad de La Laguna, el profesor Abel López nos explica las amenazas geológicas y geomorfológicas que supone un movimiento de ladera.

En estos otros vídeos podemos ver algunos deslizamientos de ladera, algunos realmente espectaculares.

En este otro vídeo, vemos cómo el Gobierno de El Salvador comunica los riesgos a las personas este tipo de riesgo.

 

 

 

 

 

Hinca de pilotes o tablestacas por inyección de agua a presión

Pilote de hormigón armado hincado con lanza de agua a presión (FHWA)
Pilote de hormigón armado hincado con lanza de agua a presión (FHWA)

La hinca de elementos en suelos granulares compactos como las arenas, especialmente en terrenos secos, presentan serias dificultades que pueden resolverse mediante la inyección de agua a presión en la punta del pilote o la tablestaca o en alojamientos previamente preparados en sus caras. La presión del agua, de entre 0,4 y 4 MPa, debe ser apropiada al tipo de terreno y al elemento que se va a hincar, con un caudal de alimentación permanente de entre 72 y 900 m³/h.

Este procedimiento puede ser suficiente para la hinca, pero lo usual es combinarlo con otros sistemas de tipo dinámico, especialmente la vibración. La hinca con chorro de agua es muy recomendable en zonas donde el rechazo se presente al 100 %, como en los terrenos arenosos. Sin embargo, en suelos arcillosos, la eficacia de la inyección de agua es prácticamente nula. En terrenos granulares con gravas gruesas y bolos, la inyección de agua puede no movilizarlas, por lo que el efecto también es bajo. En cualquier caso, hay que prever las consecuencias que puede tener en el entorno de la hinca por la pérdida de cohesión que sufrirá el terreno. Este procedimiento no se recomienda en aquellos pilotes que vayan a trabajar por fuste o que soporten cargas horizontales importantes, debido justamente al aflojamiento del terreno.

Las normas obligan a que la lanza de agua se mantenga entre 1 y 4 m por encima de la profundidad prevista, puesto que el suelo se afloja. Por tanto, la hinca se terminará mediante un procedimiento ordinario. Esta prescripción es muy relevante en el caso de los pilotes que trabajan por punta. También se suspenderán los trabajos si el pilote empieza a torcerse debido a una perturbación excesiva del terreno.

A continuación, dejamos un vídeo que ilustra el procedimiento constructivo.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilote «monotubo» Unión

MonotubeEl pilote «monotubo» Unión es apropiado para pequeños trabajos donde no se requiera un equipo especial de hinca, como un mandril. Se trata de un tubo de acero de sección cónica y estriada de pequeño espesor que se hincan en el terreno sin ayuda de un núcleo o mandril. El estriado le permite soportar los esfuerzos de hinca sin pandeo. Presentan un diámetro de 20 cm en la punta y de 30 a 45 cm en la cabeza. Se utilizan pilotes de hasta 37 m de longitud y cargas de 300 a 600 kN. Son especialmente apropiados para trabajos pequeños, porque no requieren equipos especiales de hinca, como el mandril.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilote «button-bottom»

Pilote entubado “button-bottom” (Western Foundation Corporation Viginia, USA)
Pilote entubado “button-bottom” (Western Foundation Corporation, Viginia, EE. UU.)

Este pilote, llamado pilote Western «de fondo de botón», emplea un tubo metálico de unos 30-35 cm de diámetro que se hinca en el terreno hasta el rechazo. En el extremo del tubo hay una punta de hormigón prefabricado (button) de unos 45 cm de diámetro, algo mayor que queda perdida. La forma y la resistencia de esta punta permiten atravesar estratos de gran resistencia. Una vez alcanzado el nivel previsto, se introduce en el tubo una chapa ondulada que se une con el fondo. Esta chapa se queda en el terreno y tiene como misión proteger el hormigón. Una vez fijada la chapa ondulada, se vierte el hormigón en su interior, pudiendo disponerse o no de armadura, y después se extrae el tubo que ha servido de hinca. Esta chapa corrugada favorecería inicialmente la resistencia del fuste del pilote; sin embargo, el hueco que se forma alrededor de la misma cuando se recupera el tubo de hinca no favorece el rozamiento, por lo que es mejor considerar que trabaja por punta. Su longitud alcanza unos 20-30 m y soporta cargas de unos 500 kN o mayores. Este tipo de pilote es patentado por Western.

Pilote Western “de fondo de botón” (Western Foundation Corporation, Virginia, EE. UU.)

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes de desplazamiento

hincado13Los pilotes de desplazamiento se construyen sin extraer las tierras del terreno. Están formados, total o parcialmente, por elementos prefabricados que se introducen en el suelo sin excavarlo previamente mediante un procedimiento denominado, en términos generales, hinca. La introducción de un volumen adicional en el terreno produce una modificación significativa de su estado tensional.

En función del tipo y del comportamiento del terreno, el efecto de la hinca es diferente. Así, se distingue claramente entre suelos granulares y suelos cohesivos:

  1. En suelos granulares, la introducción de un volumen adicional compacta el suelo. Esto provoca, en general, una depresión en la superficie del terreno en la zona circundante al pilote.
  2. En suelos cohesivos, la hinca provoca una perturbación debido al aumento de las presiones intersticiales, al arrastre de una pirámide de suelo bajo la punta y a la rotura de estratos intermedios, entre otros. Estas modificaciones suponen un comportamiento dependiente del tiempo del suelo cohesivo, debido a la disipación de presiones intersticiales y, en general, a su endurecimiento.

La hinca es el procedimiento de introducción de pilotes en el terreno más antiguo (los primeros pilotes fueron de madera). La hinca puede realizarse con diferentes métodos o sistemas:

  • Hinca dinámica o por impacto. Se introduce el pilote en el terreno mediante una sucesión de golpes en la cabeza del mismo con unos equipos denominados martinetes o martillos. Es el método de hinca más versátil y más utilizado.
  • Hinca por vibración. Unos equipos denominados vibrohincadores. Su uso está prácticamente limitado a la hinca de perfiles metálicos, tanto de pilotes como de tablestacas.
  • Hinca por presión.
Pilotes prefabricados. Vía http://fernandeztadeo.com

Una vez hincado en el terreno, este ejerce sobre el pilote y en toda su superficie lateral una fuerza de adherencia que aumenta al continuar clavando más pilotes en las proximidades. De este modo, se puede conseguir una consolidación del terreno mediante este procedimiento. Por este motivo, la hinca de un grupo de pilotes debe realizarse siempre de dentro hacia afuera.

En el mercado existen diversos tipos de pilotes que pueden ser considerados pilotes de desplazamiento según los efectos que produce su introducción en el terreno. En su mayor parte, se trata de elementos prefabricados que se introducen mediante hinca, aunque hay otros cuya técnica de ejecución es más similar a la de los pilotes de extracción. Sin embargo, deben considerarse pilotes de desplazamiento.

 Según la configuración del pilote, se pueden diferenciar dos grupos de pilotes de desplazamiento:

  • Pilotes de desplazamiento prefabricados. El pilote es un elemento estructural completamente prefabricado que se introduce en el suelo mediante hinca u otros sistemas. Dentro de este grupo se encuentran los pilotes de madera, de hormigón armado o pretensado y los pilotes metálicos.
  • Pilotes de desplazamiento hormigonados “in situ. Se introduce en el terreno mediante hinca u otro sistema, no el pilote, sino un elemento auxiliar (un tubo metálico con tapón en la punta o un tapón de grava u hormigón). El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, creando así el pilote propiamente dicho. El elemento auxiliar o parte de él puede extraerse posteriormente. Dentro de este grupo se encuentran los pilotes de hormigón in situ con camisa prehincada, los pilotes de hormigón in situ apisonados tipo «Franki», los pilotes roscados sin extracción de terreno y otros.

La principal limitación de los pilotes hincados prefabricados es la posibilidad de encontrar un estrato competente difícil de atravesar. Además, para cubrir la profundidad requerida, se debe desperdiciar cierta longitud de material y hay que prever un almacenamiento e inversión importantes de los prefabricados.

Un artículo para ampliar información sobre diseño y pruebas de pilotes prefabricados hincados podéis verlo en un artículo de Carlos Fernández Tadeo: http://fernandeztadeo.com/WordPress/?p=2647

Os dejo a continuación un vídeo sobre la construcción e hincado de pilotes de 40 x 40 cm de sección y 15,00 m de longitud en un tramo. Para mayor información: www.cimentacionesaplicadas.com

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Muro de cribas o de jaula

Los muros de cribas o muros jaula son obras de contención constituidas por una serie de celdas rellenas de material granular, preferentemente compactado. Se trata de un muro realizado con piezas prefabricadas de hormigón, aunque también pueden ser de madera, que crean una red espacial que se rellena con suelo. El conjunto funciona como muro de gravedad y, a diferencia de los muros de hormigón, necesita una base de apoyo más amplia.

Se trata de un sistema sencillo de construir y mantener que utiliza el suelo en la mayor parte del volumen y emplea elementos prefabricados que permiten un buen control de calidad. Sin embargo, necesita un buen material granular autodrenante, es costoso cuando se construye un solo muro y no es apto para alturas superiores a 7 m. Generalmente, se instalan en su intradós con pendiente, aunque pueden ser verticales en aplicaciones de escasa altura.

Travesaños y largueros de un muro de cribas
Travesaños y largueros de un muro de cribas

 

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El desastre del embalse del Vajont (Italia)

El valle de Vajont tras el derrumbe del monte Toc que causó el desastre. Wikipedia

La presa de Vajont fue construida en 1961 en los Pre-Alpes italianos, a unos 100 km al norte de Venecia. Era una de las presas más altas del mundo, con 262 m de altura, 27 m de grosor en la base y 3,4 m en la cima. Desde el principio, los técnicos ya detectaron problemas de corrimientos de tierras, por lo que recomendaban no llenar el embalse por encima de un determinado nivel de agua. El 9 de octubre de 1963, a las 22.39 h, el tercer llenado del depósito produjo un gigantesco deslizamiento de unos 260 millones de m³ de tierra y roca, que cayeron en el embalse, prácticamente lleno, a unos 110 km/h. El agua desplazada resultante hizo que 50 millones de m³ de agua sobrepasaran la presa en una ola de 90 m de altura. A pesar de ello, la estructura de la presa no recibió daños importantes. La tragedia podría haber sido aún mayor si la presa se hubiera derrumbado, vertiendo otros 50 millones de m³ que, a pesar de todo, permanecieron embalsados. El formidable tsunami consecuencia del deslizamiento destruyó totalmente el pueblo de Longarone y las pequeñas villas de Pirago, Rivalta, Villanova y Faè. Varios pueblos de los territorios de Erto y Casso y el pueblo de Codissago, cerca de Castellavazzo, sufrieron daños importantes. Murieron unas 2000 personas. Los destrozos fueron causados exclusivamente por el desplazamiento de aire al explotar la ola en los pueblos colindantes.

Animación del deslizamiento. Fuente: http://ireneu.blogspot.com.es

¿Cómo pudo suceder un desastre de tales proporciones? ¿Se pudo evitar? Es mucha la información en distintas webs sobre la tragedia de Vajont. Nos pone en guardia sobre los límites de la técnica y del sentido común. Desgraciadamente, se ha convertido en un ejemplo de cómo el ser humano decidió retar a la naturaleza, quien le avisó de lo que podía suceder. Sin embargo, cuando los responsables decidieron mirar hacia otro lado, el desastre llegó con sus mayores consecuencias. Este es un buen ejemplo de estudio de caso, tanto desde el punto de vista técnico como ético.

En el siguiente enlace podéis descargaros un artículo de 1964 de José Mª Valdés sobre algunas meditaciones acerca de esta catástrofe. Se trata de una conferencia pronunciada el 24 de abril de ese año en el Centro de Estudios Hidrográficos de la Dirección General de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2991_01.pdf

En un documental emitido por el canal Historia, una de las víctimas relata que un ingeniero dijo a su abuela: “Recuerde que la presa no se caerá porque está muy bien hecha, pero la montaña cederá, y acabarán atrapados como ratas”. A continuación os dejo varios de estos vídeos al respecto para la reflexión.