Control del nivel freático mediante lanzas de drenaje (wellpoints)

Figura 1. Disposición de lanzas de drenaje en dos fases. https://www.empresadesatascossevilla.es/2015/08/achiques-de-agua-del-nivel-freatico-en-sevilla.html

El descenso de la capa freática por el método de vacío, también llamado lanzas de drenaje, agujas filtrantes, tubos filtrantes, tubos de achique o pozos-punta, se le conoce comúnmente por su nombre en inglés de “wellpoint”. Se trata de un equipo autoaspirante para el bombeo por vacío del agua. Es un método de control de descenso de agua subterránea, aplicable en terrenos granulares de diversa densidad y graduación. Es un sistema simple, versátil y de costo razonable, especialmente cuando el sitio donde se va a construir es accesible y el estrato saturado que se pretende drenar no es muy profundo.

Este sistema de agotamiento de agua puede resultar de gran eficiencia y utilidad en excavaciones cuya cota se encuentra por debajo del nivel freático. Por ejemplo, en la ejecución de sótanos o zanjas para colectores.

Tiene aplicación en un amplio rango de terrenos, con permeabilidades comprendidas entre 10-3 y 10-5 m/s, aunque su funcionamiento óptimo se produce cuando se instala en arenas de grano medio sin presencia de finos. En otro tipo de terrenos pueden ser necesarias operaciones adicionales de montaje (perforación previa y ejecución de filtro granular). Es especialmente útil en terrenos de baja permeabilidad (arenas finas y limos), donde el agua no puede drenar por gravedad a un sumidero. Además, el efecto de succión hace que la arena fina se mantenga con taludes empinados en excavaciones de altura inferior a 2 m. En terrenos poco permeables la depresión del nivel freático sería muy lenta, con caudales muy pequeños y un tiempo para alcanzar el nivel definitivo que podría durar meses. Es por ello que en estos terrenos no es viable el sistema, no solo por bajo rendimiento, sino porque los finos taponarían el filtro de la lanza, impidiendo el paso del agua.

La aspiración del agua se produce por vacío a través de numerosos puntos de captación, tantos como lanzas colocadas, a través de los filtros existentes en los extremos de las mismas. Consiste básicamente en unas lanzas de 2,5 a 6 m de longitud, de un diámetro entre 1,75 y 2,00 pulgadas, que se hincan separadas entre 1 y 1,5 m de forma paralela a la zanja que se quiere excavar. Estas lanzas se conectan a una bomba de succión. Las lanzas están equipadas en su extremo inferior con una boquilla de inyección, de forma que cuando se hincan se impulsa agua a presión para introducirla con facilidad. Una vez instalada, se succiona el agua para abatir el nivel freático. La limitación se encuentra en la altura de aspiración, de unos 5 a 6 m, por lo que, si se quiere profundizar más, deberán realizarse escalonamientos (Figura 2).

Figura 2. Drenaje mediante wellpoint en etapas (Justo Alpañes y Bauzá, 2010)

El montaje del equipo no es complicado. La hinca de las lanzas se ejecuta mediante inyección de agua a presión a través de las mismas (self-jetting). Una vez colocadas, las lanzas se recogen en su parte superior por una tubería colectora, que a su vez irá conectada a la bomba de vacío, desde donde se conducirá el agua extraída al punto de vertido (con la ayuda de dos bombas incorporadas).  La bomba de vacío, de gran cilindrada, es la que produce la depresión base del sistema. El accionamiento y control del funcionamiento del equipo es muy sencillo. Es necesario garantizar la estanqueidad de toda la conducción para conseguir la aspiración del agua.

Debido a que el agotamiento se produce en numerosos puntos, disminuye el efecto de arrastre de finos, típico de las bombas de fondo.

El sistema funciona como un equipo compacto, que puede ser móvil o estar situado en un punto fijo de la obra, pues no precisa moverse para realizar el trabajo; en efecto, el bombeo se realiza a través de los conductos de aspiración al que concurren las diversas lanzas de drenaje.

Los componentes del sistema son:

  • Bomba de hinca: bombas de agua a presión conectadas a las cabezas de las lanzas, de modo que el agua sale por la punta de la lanza desplazando y arrastrando el terreno allí situado. Este vaciado hace que descienda la lanza.
  • Bomba de vacío: junto con un tanque separador de la mezcla aire-agua y bomba de agua, junto con una unidad de control eléctrico, la bomba de vacío provoca una subpresión que aspire el agua.
  • Manguitos de unión: tubos flexibles que conectan las lanzas con la conducción de aspiración.
  • Lanzas o agujas de drenaje: tubos de acero galvanizado y 50 mm de diámetro, con un filtro de 1 m de longitud en el extremo más profundo. Se hincan en el terreno y aspiran el agua una vez ensambladas a la bomba de vacío.
  • Mangueras de presión
  • Colectores: para la tubería perimetral.
  • Accesorios: codos, tes, tapones, tubos bifurcados, uniones, mangueras flexibles.
  • Cuadro eléctrico: 380 V, 36 A
  • Alargadores
Figura 3. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/files/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Una página interesante es la de la empresa ISCHEBECK, os dejo su catálogo a continuación.

Descargar (PDF, 4.58MB)

Os dejo un vídeo explicativo de las lanzas de drenaje.

Os paso algunos vídeos sobre la ejecución de esta técnica.

REFERENCIAS:

  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

CURSO:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Electroósmosis como técnica de drenaje del terreno

Figura 1. Proceso de electroósmosis (Terrancorp.com, 2014)

Muchos problemas de ingeniería tienen que ver con la estabilidad de los terrenos. Para solucionar estos problemas se utilizan distintos métodos que permiten aumentar la resistencia del mismo mediante tratamientos de tipo granular, químico o térmico. Una forma de estabilizar los suelos finos saturados o parcialmente saturados es la electroósmosis, que no solo permite mejorarlos, sino también se emplea como técnica de drenaje. Otro de los usos habituales de esta técnica es para combatir la humedad por capilaridad, con lo que se combaten las eflorescencias. Sin embargo, en este artículo nos centraremos en el empleo de la electroósmosis como técnica de mejora del terreno y como técnica de drenaje del nivel freático.

La electroósmosis es un fenómeno basado en la precipitación eléctrica de sustancias coloidales en suspensión, observado por el físico Reuss (1808) quien introdujo dos tubos verticales abiertos en sus extremos dentro de un bloque de arcilla húmeda llenándolos de agua hasta la mitad de su altura. Después de situar un par de electrodos en su interior, hizo pasar por ellos una corriente eléctrica comprobando que el nivel de agua subía en uno de los tubos mientras descendía en el otro. Esto demostraba la existencia de un flujo de agua de un tubo al otro a través de la arcilla.

Más tarde Casagrande (1.952) llevó a la práctica el sistema aplicándolo para consolidar un suelo arcilloso en la excavación de un talud. Para ello, colocó como cátodos, dos series de tubos porosos de 10 cm de diámetro y 7 m de profundidad, en torno a los cuales situó un relleno de gravilla para facilitar la entrada del agua. Entre cada dos cátodos separados 9 m se intercalaron como ánodos, tubos de 12 mm de diámetro. El paso de una corriente de 90 voltios y una potencia de 1,5 kW provocó la acumulación del agua en los tubos porosos (cátodos) de los cuales se pudo extraer fácilmente por bombeo.

La electroósmosis es un método de drenaje eléctrico empleado para estabilizar arcillas blandas y limos al incrementar su resistencia por la reducción de humedad. Téngase en cuenta que son terrenos que presentan problemas para aplicar las técnicas de pozos con sistema de vacío convencional. El sistema deja de ser efectivo en arenas finas con permeabilidades inferiores a 3·10-5 m/s. La diferencia con otros procedimientos es que el movimiento del agua no se produce por gravedad sino por efecto de un campo eléctrico. Con la electroósmosis se desatura el suelo, aumenta su resistencia y se consolida, como un efecto principal y, en consecuencia, se mejoran las condiciones del terreno con su estabilización.

El agua fluye de los ánodos (+) a los cátodos (-) en un medio poroso saturado (Figuras 2 y 3). Dan buenos resultados cátodos de un diámetro de 120 mm colocados cada 3-5 m y barras de acero o aluminio como ánodos intercalados de 100 mm de diámetro. En el cátodo se sitúa un wellpoint o un pozo drenante, que es un tubo abierto por el fondo. Los ánodos y cátodos son tubos abiertos por el fondo. Los gradientes de potencial varían entre 30 y 180 V. A mayor voltaje, más volumen de agua drenada, aunque pueden producirse fenómenos de hidrólisis, por lo que deben hacerse ensayos para establecer los parámetros energéticos más convenientes. Se necesitan de 0,5 a 1,4 kW/m3 de suelo drenado en excavaciones grandes, y hasta un máximo de unos 14 kW/m3 en las pequeñas. Este movimiento del agua genera consolidación, con un aumento temporal de las tensiones efectivas.

La conductividad eléctrica del agua depende de su salinidad y ello influye en la eficiencia de la corriente y el voltaje aplicado. En un suelo con mayor salinidad, el volumen de agua drenada con la electroósmosis es mayor y la consolidación es más eficiente y rápida.

Figura 2. Disposición del equipo para el drenaje
Figura 3. Disposición del equipo para el drenaje (Bell, 1993)

Las desventajas de este método radican en el alto costo de la energía necesaria y en los problemas relacionados con la seguridad de los operarios al trabajar con un circuito de corriente continua. Los elevados costes de ejecución y a la poca práctica en su uso, limitan la aplicación de la electroósmosis a casos especial en los que el caudal a evacuar sea escaso. Su empleo más frecuente es la mejora permanente de las propiedades de los cimientos o en la estabilidad de los taludes. En la Figura 4 se muestra el principio de la electroósmosis empleado en el drenaje previo a la excavación de un túnel.

Figura 4. Tratamiento por electroósmosis previo a la excavación de un túnel (Bielza, 1999)

A continuación os dejo un vídeo que os he grabado para explicar este procedimiento de tratamiento de suelos. Espero que os guste.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

CURSO:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de gravas

Figura 1. Tratamiento del terreno con columnas de grava en función de la altura del terraplén. Fuente: Carlos Oteo

Las columnas de grava constituyen un método de mejora de terrenos cohesivos blandos mediante la rigidización que produce la introducción de columnas de grava en los orificios creados por el vibrador o equipo de pilotaje convencional, según sea el método de ejecución escogido. Aumenta la capacidad portante del terreno, la estabilidad al deslizamiento en terraplenes, acelera el proceso de consolidación del terreno (constituyen drenes verticales) y provoca una reducción de los asientos en servicio. Se aplica sobre arenas limosas, limos, limos arcillosos, arcillas y rellenos heterogéneos.

En casos en los que además de una preconsolidación es necesario un refuerzo del terreno, como en el caso de terraplenes elevados, que precisan de terrenos portantes de mayor resistencia, la inclusión de columnas de grava permite solucionar el problema.

Las columnas de grava aparecieron como una extensión de las técnicas de vibrocompactación profunda de suelos finos. Puede realizarse mediante un pilotaje convencional o mediante el uso de vibradores especiales (Figura 2). La técnica mediante pilotaje convencional puede ser por sustitución o por desplazamiento. La vibrosustitución o vibrodesplazamiento, se aplica en terrenos cohesivos (contenido de finos > 12%), y supone la sustitución del terreno por un material granular de aportación.

Figura 2. Ejecución de columnas de grava

No obstante, también se puede aplicar la vibración profunda en suelos granulares (contenidos de finos < 12%), normalmente con vibradores específicos de baja frecuencia y usando agua a presión para facilitar el hincado, lo que produce una licuación parcial del terreno y su densificación. Este procedimiento se denomina vibroflotación o vibrocompactación. El terreno no se sustituye, rellenándose el cono de hundimiento alrededor del vibrador con el terreno, no siendo propiamente una columna de grava. Sin embargo, a veces se aporta material granular de mayor calidad transportado a la obra, por ejemplo, árido de machaqueo de 20-40 mm, por lo que se podría hablar en este caso de una columna de grava.

En la Figura 3 se puede observar el ámbito de aplicación de las columnas de grava frente a la vibrocompactación en función del tipo de terreno. En las arenas se comprueba que existe una zona de transición entre ambas técnicas de mejora de terrenos mediante vibración profunda.

Figura 3. Ámbito de aplicación de las técnicas

Como limitación de esta técnica, en suelos blandos originales que tengan baja capacidad portante para soportar la resistencia lateral que le pueden exigir las columnas cargadas, con resistencias a corte sin drenaje cu ≤ 0.015 MPa.

Figura 4. Relaciones asiento-tiempo en terraplenes con diferentes tratamientos. Fuente: Carlos Oteo

Las recomendaciones más importantes para ejecutar una columna de grava serían las siguientes:

  • Tamaño entre 5 y 40 mm para la grava, con un ángulo de rozamiento interno entre 38º y 40º, sin ser friable (valores menores al 30-35% en el ensayo de los ángeles)
  • Separación entre columnas de 2 a 10 m, en malla regular
  • Diámetros entre 40 y 120 cm, dependiendo del terreno
  • Profundidad que puede llegar a 37 m, aunque lo normal es no pasar de 20 m
  • El cálculo de las columnas de grava suele hacerse con el método de Priebe (1995), que obtiene los parámetros del suelo equivalentes mejorados. Con este método deben utilizarse valores conservadores, por ejemplo, un grado de rozamiento de 40º, y garantizar una correcta ejecución de las columnas para que, por ejemplo, el ángulo de rozamiento de la columna sea superior al supuesto.

A continuación os dejo un catálogo de Terratest sobre columnas de grava que creo os puede ampliar la información al respecto.

Descargar (PDF, 3.14MB)

Dejo también un artículo de Juan Manuel Fernández Vincent sobre las columnas de grava.

Descargar (PDF, 1MB)

Os paso varios vídeos de esta técnica de mejora de terrenos. Espero que os sean útiles.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

MONTEJANO, J.C. (2017). Ejecución de columnas de grava como refuerzo de la cimentación de un parque eólico en Nouakchott, Mauritania. Interempresas.net

PRIEBE, H.J. (1995). Design of vibro replacement. Ground Engineering, 28(10):31-37.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ensanchadoras de la base de pilotes: el balde de quijadas

Figura 1. Balde de quijadas con articulación en la base y con articulación superior

En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.

El ensanche del fondo de la excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.

Figura 2. Herramienta para ensanchamiento de la punta del pilote

 

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problema de selección de una cimentación. Desarrollo del pensamiento crítico

http://cimentacioneslevante.es/muros-pantalla/

Desde el proceso de Bolonia, muchos cambios ha habido en nuestras universidades y planes de estudios. Uno de ellos es la necesidad de desarrollar y evaluar las competencias del título correspondiente a través de cada una de las asignaturas y comprobar que se adquieren los resultados de aprendizaje. De este tema ya hemos hablado varias veces. Hoy os traigo un problema que me sirve para evaluar, a través de una rúbrica, la competencia transversalPensamiento Crítico” en la asignatura de Procedimientos de Construcción II, del grado de Ingeniería Civil de la Universitat Politècnica de València. Espero que os sea de interés.

También os dejo una presentación que hice en un congreso docente donde explico cómo realizamos esta evaluación.

ENUNCIADO:

Se quiere construir un edificio de 30 plantas de altura más seis sótanos (altura de 3,00 m cada sótano) en una ciudad de 500.000 habitantes. El solar se encuentra entre dos medianerías, y tiene una superficie rectangular de 20 x 35 m, siendo las medianerías los lados de 20 m. Existe la posibilidad de utilizar un solar anejo para ejecutar la obra, de 44 x 35 m. Hay acceso directo tanto al solar donde se va a realizar el edificio como al solar disponible, según se observa en la Figura 1. El clima es atlántico, con lluvias abundantes, con temperaturas que se supone oscilan entre 5 y 25 °C, y se tienen 10 horas de luz de media durante la construcción de la cimentación.

Figura 1. Esquema de la situación del solar del edificio, del solar disponible y de los edificios construidos

Se ha efectuado un sondeo y se ha determinado un corte del terreno que se muestra en la Figura 2. Se observa que el nivel freático se encuentra a 3,50 m de la superficie. Existe un sustrato duro de areniscas de 4,00 m de espesor situado entre dos capas de limos arcillosos con trazas de arenas y gravas. A 22 m de profundidad existe una capa de calizas sanas, de al menos 15 m de potencia. Los primeros 2,20 m son un relleno antrópico donde existen tocones de árboles, basura y una mezcla de limos arcillosos y gravas.

Figura 2. Esquema básico del corte geológico

La solución a proyectar debe conjugar la posibilidad técnica de ejecución, el impacto ambiental y social sobre el entorno (contaminación, ruidos, vibraciones, etc.), la facilidad constructiva y la viabilidad económica, Use los datos del enunciado que considere importantes y, en el caso de necesitar datos, razone adecuadamente el uso de información adicional.

Preguntas de grupo:

  1. Indique qué tipo de cimentación sería la más conveniente.
  2. Razone dos procesos constructivos que podrían ser aplicados y cuál de los dos cree que será más eficaz. La respuesta debe ser de consenso entre los miembros del grupo.
  3. Define los principales pasos en la construcción de dichas cimentaciones.
  4. Descarte, justificando las razones, al menos tres procesos constructivos de cimentación que no sean aplicables a este caso.
  5. Indique si ha tenido que consultar otras fuentes para la elección de la tipología y el proceso constructivo (en dicho caso indicar cuál), o ha sido suficiente con el temario de la asignatura.

 

Preguntas individuales:

  1. Critique los dos procesos constructivos de la pregunta 2, indicando si está de acuerdo con lo consensuado por el grupo. Se valorará especialmente su opinión crítica, personal, justificada y si hay diversidad de opiniones entre los miembros del grupo.
  2. Realice una crítica sobre el ejercicio 1, indicando aquellas cosas con las que está de acuerdo con el grupo o no. Se valorará la justificación crítica de la respuesta.
  3. Indique los cinco riesgos para las personas más importantes que supone el procedimiento constructivo elegido y qué medidas preventivas debería utilizar.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

GARCÍA-SEGURA, T.; YEPES, V.; MOLINA-MORENO, F.; MARTÍ, V. (2017). Assessment of transverse and specific competences in civil engineering studies: ‘Critical thinking’. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3683-3692. ISBN: 978-84-617-8491-2

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Assessment of the argumentative ability in innovation management of civil engineering studies. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3904-3913. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; MOLINA-MORENO, F. (2017). Transverse competence ‘critical thinking’ in civil engineering graduate studies: preliminary assessment. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 2639-2649. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14. ISBN: 978-84-9048-541-5.

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento crítico” por los alumnos de GIOP (2015). XIV Jornadas de Redes de Investigación en Docencia Universitaria 2016

MARTÍ, J.V.; YEPES, V. (2016). Evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. XIV Jornadas de Redes de Investigación en Docencia Universitaria 2016

YEPES, V.; SEGADO, S.; PELLICER, E.; TORRES-MACHÍ, C. (2016). Acquisition of competences in a Master Degree in Construction Management. 10th International Technology, Education and Development Conference (INTED 2016), March, Valencia, pp. 718-727. ISBN: 978-84-608-5617-7.

MARTÍ, J.V.; YEPES, V. (2015). Pensamiento crítico como competencia transversal en el grado de Ingeniería de Obras Públicas: valoración previa. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-12. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1560 (link)

JIMÉNEZ, J.; SEGADO, S.; YEPES, V.; PELLICER, E. (2015). Students’ guide as a reference for a common case study in a master degree in construction management. 9th International Technology, Education and Development Conference INTED 2015, Madrid, 2nd-4th of March, 2015,  pp. 4850-4857. ISBN: 978-84-606-5763-7.

YEPES, V.; MARTÍ, J.V. (2015). Competencia transversal ‘pensamiento crítico’ en el grado de ingeniería civil: valoración previa. XIII Jornadas de Redes de Investigación en Docencia Universitaria, Alicante, 2 y 3 de julio,  pp. 2944-2952. ISBN: 978-84-606-8636-1. (link)

YEPES, V.; MARTÍ, J.V. (2015). La competencia transversal de comunicación efectiva en estudios de máster en el ámbito de la ingeniería civil y la construcción. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-14. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1540 (link)

JIMÉNEZ, J.; SEGADO, S.; PELLICER, E.; YEPES, V. (2014). Strategic evaluation of a M.Sc. degree in construction management: a faculty vs. students comparison. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain), 10-12 March, pp. 1974-1984. ISBN: 978-84-616-8412-0  (link)

YEPES, V. (2014). El uso del blog y las redes sociales en la asignatura de Procedimientos de Construcción. Jornadas de Innovación Educativa y Docencia en Red IN-RED 2014. 15-16 de julio, Valencia, pp. 1-9. ISBN: 978-84-90482711.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. ISBN: 978-84-616-8412-0 (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descabezado de muro pantalla

Figura 1. Descabezado con martillo rompedor manejado desde una retroexcavadora. http://www.generadordeprecios.info

Se define como descabezado la operación por la cual se retira el hormigón contaminado, o de inferior calidad, o el exceso de la cabeza del muro-pantalla por encima del nivel de coronación previsto. Se trata de un procedimiento similar al descabezado de pilotes, tema que ya tratamos en un artículo anterior. A continuación vamos a describir brevemente los procedimientos usuales de descabezado de muros pantalla (Figura 1).

Son varias las razones por las que tenemos que descabezar un muro pantalla. En primer lugar, puede ocurrir que hayamos rellenado a una cota superior a la teórica, pero lo más habitual es que el hormigón de la parte superior de las pantallas esté contaminado con los lodos de perforación o con el propio terreno, por lo que debe sanearse. Se debe realizar el descabezado del hormigón hasta el nivel de coronación usando equipos y métodos que no dañen al hormigón, la armadura o cualquier instrumentación instalada en los paneles. En particular, es importante respetar las armaduras del muro pantalla para que solapen con la viga de coronación. En ocasiones se utilizan equipos mecánicos pesados que pueden ocasionar un riesgo de fisuración extensiva, por lo que, en ocasiones, se debe restringir el tipo y tamaño de la máquina empleada.

Cuando sea posible, se puede descabezar por encima del nivel de coronación antes de que el hormigón haya fraguado. Sin embargo, se debe hacer el descabezado final hasta el nivel de coronación solo después de que el hormigón haya alcanzado la suficiente resistencia.

Una de las preguntas habituales es saber qué distancia hay que descabezar. La respuesta fácil es que la Dirección Facultativa, en función de la contaminación de la parte superior de la pantalla, es quien debería determinar la magnitud requerida. En una conversación técnica mantenida con Luis Miguel Salazar (PONTEM), me comentó que la norma NTE-CCP, que trata sobre pantallas, se determina lo siguiente: “la cota final de hormigonado rebasará a la teórica en al menos 30 cm. Este exceso, en su mayor parte contaminado por el lodo, será demolido antes de construir la viga de atado de los paneles. Si la cota teórica coincide con la coronación de muretes se deberá hacer rebosar el hormigón hasta comprobar que no está contaminado”. Por tanto, ya tenemos una cota mínima: al menos 30 cm, pero la recomendación es comprobar la profundidad en la que el hormigón se encuentre contaminado.

Una de las formas habituales de descabezar el muro-pantalla es de forma manual con ayuda de martillos picadores. En la Figura 2 se puede ver esta operación. Se trata de un procedimiento que presenta poco rendimiento y que puede resultar penoso para los operarios. Es por ello que, en caso de descabezar grandes volúmenes, es preferible desde el punto de vista económico y de rendimiento el uso de medios más mecanizados. Por ejemplo, en la Figura 3 se observa un martillo rompedor manejado desde del brazo de una retroexcavadora.

Figura 2. Descabezado de la pantalla con martillos picadores manuales. Cortesía: Geocisa

 

Figura 3. Descabezado de muro pantalla mediante martillo rompedor. http://www.gestionaobras.com/muros-pantalla-torremalilla/

El descabezado de muros pantalla mediante herramientas hidráulicas presenta ventajas respecto al empleo de martillos rompedores: una mayor productividad, mínimo daño sobre el propio muro pantalla, la posibilidad de dejar la armadura intacta, no hay grietas por debajo del nivel de corte, bajos costes de operación y alta eficiencia.

Se puede realizar el descabezamiento de muros pantalla mediante un quebrantador hidráulico, de forma similar a los pilotes (ver Figura 4). Se trata de un cilindro quebrantador que funciona con el principio de cuña. Existen quebrantadores que pueden manejarse por un solo operario con una fuerza de quebrantación superior a las 4000 kN. El trabajo es silencioso, sin polvo ni vibraciones, de peso ligero y apto para utilizarse en espacios cerrados o de difícil acceso.

Figura 4. Descabezamiento de un pilote mediante quebrantador hidráulico. http://www.taladraxa.com/servicios/quebrantado/descabezado-de-pilote.html

También existen herramientas accionadas mediante gatos hidráulicos que permiten un descabezado limpio y preciso de la cabeza del muro-pantalla, tal y como podemos observar en las Figuras 5 y 6.

Figura 5. Descabezado de muro pantalla mediante gatos hidráulicos. http://geojuanjo.blogspot.com/2011/05/descabezando-muros-pantalla.html

 

Figura 6. Descabezador hidráulico de muros pantalla. https://www.pilebreaker.com/wall-breaker

Otra de las opciones es emplear unas mandíbulas hidráulicas que, literalmente, “se comen” el hormigón, rompiéndolo (Figura 7).

Figura 7. Descabezado de muros pantallas mediante mandíbulas. http://coynsa.com/derribos/demolicion-de-pantallas-de-hormigon-armado-en-macropozo/

También se pueden utilizar otros procedimientos como la hidrodemolición (ya se escribió sobre ello en un artículo sobre descabezado de pilotes) o bien se puede utilizar el fresado para el descabezado. Las Figuras 8 y 9 muestras dos tipos de máquinas que realizan un fresado de la cara interior del muro-pantalla. Sin embargo, la misma herramienta sirve para el descabezado, tal y como se puede ver en el vídeo que sigue.

Figura 8. Fresado de muro pantalla. http://www.retasur.com/servicios/fresado-de-pantallas-de-hormigon/

 

Figura 9. Fresado de muro pantalla. http://www.comportiz.com/fresado-de-muro-de-pantalla.html

 

 

Referencias:

ORDEN de 8 marzo 1983, Norma Tecnológica de la Edificación NTE-CCP, «Cimentaciones, Contenciones, Pantallas». BOE 16 abril 1983, núm. 91, pág. 10529.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm² de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se efectúa a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 kVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación por presión hidráulica

Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

El sistema de entibación por presión hidráulica está formado por una cámara compuesta por paneles, del tipo tablestacas. Su profundidad recomendada de trabajo es de hasta 7 m y su anchura máxima de 1,70 a 4,70 m. Una viga accionada hidráulicamente hinca e iza los paneles, por lo que no se recomienda en terrenos rocosos o con bolos. Ambas caras de la cámara están apuntaladas y sostenidas por unas secciones especiales situadas en los bordes.

Es un sistema especialmente diseñado para reparar conductos o instalar tuberías. También se recomienda para trabajos de arqueología y en cascos antiguos, pues no transmite vibraciones. Una vez instaladas las tuberías, una excavadora mueve la cámara a lo largo de unos carriles hasta la siguiente sección.

Entibación por presión hidráulica. https://www.sbh-verbau.de/es/entibacion-trench-shoring-perfiles-sbh/entibacion/pressbox.html

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas con la perforación o la hinca de pilotes ante información confusa del terreno

Reconocimiento geotécnico. https://www.arqhys.com/construccion/reconocimiento-geotecnico.html

En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“: http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

 

Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):

  1. Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
  2. Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
  3. Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
  4. Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
  5. Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
  6. Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
  7. La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
  8. Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
  9. La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.

Referencias:

RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes prefabricados de hormigón armado hincados

Figura 1. Hinca de pilotes prefabricados. Cortesía de Rodio

Los pilotes prefabricados de hormigón constituyen una técnica de cimentación profunda enmarcada en los pilotes de desplazamiento. Este tipo de pilotes pueden fabricarse de hormigón armado o pretensado.

Los pilotes prefabricados de hormigón armado suelen de sección cuadrada, de dimensiones habituales entre 200 y 400 mm de lado, aunque también los hay de sección rectangular, circular o poligonal. A veces, incluso pueden ser huecos para poder introducir algún tipo de canalización como las instalaciones de geotermia. Por sus dimensiones reducidas se utilizan para cargas y longitudes moderadas, como en obras de edificación. Se confeccionan con hormigones de resistencia característica mayor a 40 MPa. Las armaduras longitudinales son de, al menos, 12 mm de diámetro, disponiéndose como mínimo una barra en cada vértice. Las armaduras transversales serán, de al menos 6 mm de diámetro, duplicándose la cuantía en al menos una longitud de 3 veces el diámetro del pilote. Se comportan bien por fuste en arenas, gravas y arcillas. La durabilidad es buena, pero en ambientes agresivos se deben proteger las armaduras de la corrosión con cementos especiales o revestimientos.

Los prefabricados presentan ventajas como el curado al vapor, la disminución de almacenaje en obra, los mayores rendimientos y la calidad, entre otros. Ello permite cargas de trabajo de 10 – 12,5 MPa, lo que disminuye la sección para igual capacidad portante. Son habituales secciones de 25×25 cm y 30×30 cm para capacidades que van de 600 a 1000 kN.

Con longitudes largas, se realizan empalmes entre las piezas de hormigón, de un máximo usual de 12 m por razones de transporte. Las juntas de empalme suelen ser objeto de patente y pueden ser mecánicas (tipo machihembrado), por anclaje mediante resinas epoxi, mediante forros de acero o soldados en piezas metálicas dejadas en los extremos. Además, se debe cuidar la manipulación del pilote desde el vehículo de transporte hasta el lugar de hinca.

La hinca de estos pilotes se suele ejecutar mediante equipos de caída libre, con una maza entre 50 y 110 kN que se eleva mediante equipos de accionamiento hidráulico. La maza golpea constantemente la cabeza del pilote hasta su rechazo, que se produce cuando, tras un determinado número de golpes, el pilote no desciende un determinado número de centímetros. En ese momento, se supone una capacidad resistente tanto por rozamiento por fuste como por su trabajo en punta. No obstante, en suelos arcillosos, debe comprobarse el rechazo alcanzado, transcurrido un periodo mínimo de 24 horas.

La protección de la punta del pilote frente a la hinca es un detalle que no se debe olvidar. Para ello suele añadirse una pieza metálica cónica o piramidal, o bien un azuche metálico específico, como puede verse en la Figura 1, que permite también la fijación del pilote en un sustrato rocoso. Se trata de azuche especial denominado punta de Oslo. En la Figura 3 se observa la protección de la cabeza del pilote frente a la hinca.

Figura 2. Detalle de azuche de acero en pilote de prefabricado de hormigón (Rodio Kronsa). Fuente: http://www.fontdarquitectura.com/productos/cimentaciones/pilotes/588
Figura 3. Detalle del anillo de protección del pilote frente al golpeo. Imagen: I. Serrano (www.desdeelmurete.com)

Una vez el pilote se hinca hasta el rechazo, la parte libre del pilote queda a distintas alturas. Ahora se debe limpiar y eliminar el hormigón de la cabeza que pueda haber quedado resentido por el golpeo de la maza y no reúna las características mecánicas necesarias y para dejar unas esperas para unir el pilote al encepado.

A continuación os dejo un vídeo explicativo que, entre otros, explica este tipo de pilote prefabricado. Espero que os sea de interés.

Os dejo un vídeo sobre el procedimiento constructivo de hinca de estos pilotes prefabricados.

Referencias:

FERNÁNDEZ-TADEO, C. (2018). ¿Cómo comprobar que los pilotes prefabricados hincados tienen la resistencia suficiente?. Interempresas.net

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.