Esta mañana, a las 7 de la mañana, empezaron las maniobras para la instalación de un cubípodo de 45 toneladas en un jardín anexo a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Se trata de una de las acciones encaminadas a conmemorar el 50 aniversario de nuestra Escuela. Por cierto, esto nos hermana con la Escuela de Ingenieros de Caminos de A Coruña, que también tiene uno en sus jardines (ver la última fotografía).
Para ello se ha utilizado una grúa de 200 t. Este cubípodo se ha utilizado, entre otros sitios, en el contradique de Langosteira.
Felicito desde esta página al director de nuestra Escuela, Eugenio Pellicer y a su equipo por la iniciativa. Os dejo algunas fotografías y vídeo sobre esta instalación.
Cubípodo instalado en la Escuela de Ingenieros de Caminos de A Coruña. Imagen: V. Yepes
Os dejo algún vídeo explicativo de este cubípodo, desarrollado por profesores de nuestra Escuela e instalado por SATO.
La Faculdade de Engenharia da Universidade do Porto (Portugal), a través del Instituto de Hidráulica y Recursos Hídricos (FEUP), junto con la Universitat Politècnica de València, han organizado un Curso de Planificación y Gestión de Playas, que tendrá lugar en Oporto entre los días 25 y 29 de junio de 2018. Esta es la segunda vez que se programa este curso, de 25 horas, que en su primera edición en 2010, tuvo un éxito muy notable en cuanto a participación e inscripción. El curso se desarrollará en español, contando con la participación de tres catedráticos de la UPV: Víctor Yepes, Vicent Esteban y José Serra.
Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.
Referencia:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides.Sustainability, 10(3):845. doi:10.3390/su10030845 .
Mucho se está hablando sobre el concepto de «playa inteligente» o «smart beach». Sobre este tema ya impartí una conferencia en el XVIII Foro Internacional de Turismo de Benidorm, celebrado en octubre del 2016. La respuesta es un no rotundo. Sin embargo, parece que algo se está avanzando en este sentido. Hay quien bautiza este concepto como playa 4.0, pero mucho me temo que es una vuelta de tuerca más en el ámbito del marketing para vender más de lo mismo.
Sobre este mismo tema me han invitado a impartir una conferencia magistral en el III Congreso Internacional de Calidad Ambiental en Playas Turísticas, organizado por la Universidad de la Guajira en Colombia, del que también formo parte del Comité Científico Internacional. Dicho congreso se celebra entre el 21 y el 23 de marzo de 2018. Debido a problemas de agenda, se me invitó a impartir la charla por teleconferencia. Para evitar problemas técnicos, he grabado dicha comunicación y os la paso para que tengáis acceso a dicha información. Espero que os sea de interés.
Playa de San Lorenzo, Gijón. Fotografía de Víctor Yepes
Resumen: El artículo destaca la importancia de la adopción voluntaria de sistemas de gestión de las playas como soporte de gran parte de la actividad turística española. Se describen brevemente las normas específicas desarrolladas recientemente para las playas turísticas de uso intensivo, en especial la norma UNE 150104 y el proyecto de norma PNE 187001. Además, un análisis de la evolución de los certificados de gestión en las playas de la Comunidad Valenciana permite comprobar la aplicabilidad de estos sistemas y la compatibilidad entre ellos. El trabajo concluye que los sistemas de gestión y los distintivos de calidad de las playas suponen una oportunidad de mejora en los aspectos sociales, económicos y medioambientales del litoral. Sin embargo, se hace necesaria una revisión de estas normas en el marco de una gestión integrada del litoral, pues en este momento se encuentran excesivamente orientadas hacia la satisfacción de los consumidores turísticos. No hacerlo, supone olvidar aspectos fundamentales que podrían acarrear una pérdida de los atractivos naturales y paisajísticos que motivan, entre otros, los viajes turísticos.
Palabras clave: playa, sistemas de gestión, gestión integrada de las zonas costeras, turismo, calidad, sostenibilidad.
Referencia:
YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.). La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.
La draga de succiónestacionaria (plain suction dredger, en inglés) es una máquina hidráulica con un mecanismo de succión sumergible similar a las dragas de succión en movimiento. Sin embargo, a diferencia de estas, las dragas estacionarias operan ancladas en un punto fijo y también difieren en la forma de cargar el material extraído. En general, estas dragas no tienen cántara y el material se transporta a través de gánguiles o se bombea por tuberías si la zona de vertido está cerca de la de extracción.
Al estar ancladas, estas dragas crean un hueco con forma de cono invertido en la zona de dragado (ver Figura 1). Por este motivo, no se recomiendan para proyectos que requieran un mayor grado de precisión, como el mantenimiento de canales de navegación o la nivelación de terrenos. En cambio, son ideales para la extracción de material granular en la restauración de terrenos.
Estos equipos están diseñados para dragar materiales sueltos y no cohesivos, como arenas de grano medio. La capacidad de la bomba de succión también influye en el tipo de material que se puede dragar. Ofrecen altos rendimientos cuando la capa de sedimentos es de al menos 3 m de espesor. La profundidad máxima de dragado suele ser de aproximadamente 50 metros. La draga puede trabajar con olas de hasta 3 m de altura y corrientes con velocidades máximas de 3 nudos. Son útiles en zonas de trabajo alejadas de los puntos de vertido, pero tienen la limitación de que la descarga del material en gánguiles solo es posible en aguas tranquilas.
Por lo tanto, las principales ventajas de esta técnica son su capacidad para extraer materiales ubicados bajo capas estériles, la posibilidad de realizar dragados en aguas poco profundas y su alta producción en capas de sedimentos gruesos y sueltos. Por otro lado, entre sus desventajas se encuentran su sensibilidad a las condiciones marítimas si la carga se encuentra sobre gánguiles y su uso limitado a materiales granulares.
Figura 2. Draga de succión estacionaria (Bray, Bates y Land, 1997)
El modo de operación y su ciclo de trabajo (ver Figura 3) es el siguiente:
Estacionamiento en la zona de trabajo
Posicionamiento de la barcaza junto a la draga o conexión a las tuberías de impulsión en el caso de bombeo
Descenso de los equipos de succión hasta la capa de material granular
Puesta en marcha de la succión y de los cabezales inyectores de agua que fluidifican y arrastran el terreno
Carga de los gánguiles a través de conductos elevados con difusores o bombeo
Figura 3. Ciclo de producción de las dragas estacionarias de succión (Bray, Bates y Land, 1997)
Las dragas estacionarias no necesitan un equipo auxiliar muy grande. Solo es necesario ajustar los cabezales de succión y la forma de descarga. Para dragar a profundidades elevadas, se coloca la bomba de dragado en la parte inferior del tubo de succión, lo que soluciona las limitaciones del cabezal hidráulico de succión. En otros casos, se agrega una bomba de chorro en la entrada del conducto de succión. En cualquier caso, estos cambios tienen como objetivo aumentar la cantidad de material que entra en el conducto de succión o disolver los sedimentos del fondo marino cerca de la entrada del conducto de succión, lo que se logra con inyectores de agua de alta presión.
En cuanto a los métodos de descarga, tenemos los siguientes:
Descarga por el fondo: Este método es similar a la descarga de las dragas de succión en marcha.
Conductos laterales: Esta opción es una alternativa a la descarga sobre cántara. La mezcla bombeada se dirige a través de una tubería hasta los conductos laterales, y desde allí se cargan las barcazas o gánguiles.
Tubería: Las dragas estacionarias también pueden descargar el material de manera similar a las dragas con cabezal cortador, conectando tuberías flotantes por donde se desplaza el material dragado.
He grabado un vídeo explicativo que, espero, sea de vuestro interés.
Os pongo un vídeo que muestra el funcionamiento de esta máquina de succión. Espero que os sea útil.
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Figura 1. http://ingenieriaycomputacion.blogspot.com.es/2011/02/watermaster-classic-excelente-draga-y.html
La draga retroexcavadora (backhoe/dipper dredge, en inglés) es una draga mecánica montada sobre un pedestal situado en un extremo de una pontona. Está equipada con un cazo con una capacidad de entre 1 y 20 m³. Desarrollada a partir de las retroexcavadoras hidráulicas terrestres, en ocasiones se fijan directamente estas últimas a un pontón. Para garantizar su estabilidad durante la excavación, la barcaza se ancla con tres pilones: uno en la popa y dos en los costados de la proa. Las dragas de retroexcavadora son típicas en Europa, mientras que en Estados Unidos es más habitual el uso de palas frontales.
La draga retroexcavadora es apta para suelos de diferentes tipos, incluso rocas con una resistencia a compresión simple de hasta 10 MPa. La profundidad de dragado oscila entre 2 y 24 m. Puede trabajar en condiciones de oleaje con alturas máximas de 1,5 m y velocidades máximas de corriente de 2 nudos. Aunque es adecuada para trabajar en espacios reducidos, su uso en regeneraciones costeras es limitado debido a la necesidad de barcazas o vertido directo. Además, su funcionamiento discontinuo reduce su productividad en comparación con otras dragas. El campo de aplicación de la draga retroexcavadora es similar al de las dragas de rosario, y es más adecuada para dragar rocas y suelos con menor resistencia al oleaje.
La cuchara de la retroexcavadora tiene una cara cóncava orientada hacia atrás, lo que permite que el cucharón se acerque a la plataforma durante la excavación. La cuchara entra en la capa de material que se va a extraer de arriba hacia abajo. Este método de trabajo es similar al de las dragas de pala frontal al excavar coronas circulares. Sin embargo, estos equipos pueden operar tanto en avance como en retroceso, lo que reduce los derrames y garantiza un fondo dragado de mejor calidad. La capacidad de trabajar en ambas direcciones mejora el rendimiento en la extracción de materiales compactos o rocas rotas. Las dragas retroexcavadoras con cables son muy efectivas en el dragado de arcillas cohesivas, pues se pueden instalar empujadores en la parte inferior del brazo de excavación que facilitan la descarga del material.
Figura 2. Draga retroexcavadora con accionamiento por cables o hidráulico
Método de operación:
Situación del pontón en la zona de trabajo (estacionaria)
Descenso de los 3 pilonos de anclaje (spuds) que absorben esfuerzos horizontales de la excavación
Descenso del brazo de la retroexcavadora, extracción y elevación del material
Carga sobre gánguiles
Izado de los 2 spuds situados en el tercio delantero. El spud de popa hace girar a la draga sobre su eje (eje motor). Reinicio del proceso.
Figura 3. Ciclo de trabajo de la draga de retroexcavadora (Bray et al., 1997)
La draga de retroexcavadora presenta varias ventajas, como la capacidad de dragar diferentes tipos de terrenos, incluso con escombros y cantos, de trabajar en espacios reducidos y controlar la posición y profundidad con precisión, de no necesitar anclajes, de diluir el material dragado con mínimas consecuencias y de tener un tiempo de ciclo más corto en comparación con una draga de cuchara de tamaño similar. Además, los componentes clave del equipo se producen en serie, lo que reduce los costes de instalación y mejora la calidad y el control. Solo se requiere una persona para realizar las operaciones de dragado, aunque, por motivos de seguridad y para ayudar en la maniobra del pontón, se recomienda contar con un equipo de dos o tres personas.
El principal desafío de la retroexcavadora es su baja capacidad de producción en comparación con la de otros equipos de dragado que trabajan de forma continua. Este inconveniente es común a la mayoría de las dragas mecánicas, excepto a la draga de Rosario, que también depende de la disponibilidad de los gánguiles de descarga. La habilidad del operador es crucial para lograr un perfil final de trabajo uniforme, pero también es importante tener en cuenta las características del terreno que se va a dragar.
He grabado un vídeo sobre esta draga, que espero os sea de interés.
Os dejo unos vídeos donde podréis ver cómo funciona esta draga. Espero que os gusten.
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Figura 1. Draga de succión en marcha. Fuente: http://tecnologia-maritima.blogspot.com.es/
Una draga hidráulica de succión en marcha o de arrastre es una embarcación autopropulsada y autoportante que draga de forma continua elevados volúmenes de material en aguas profundas, incluso en condiciones marítimas desfavorables. Este tipo de dragas supone algo menos de una cuarta parte del parque mundial de dragas hidráulicas.
El material se aspira mediante una tubería provista de un cabezal de succión en su extremo. La bomba de dragado centrífuga puede ser sumergible (se instala en la tubería de succión a medio camino entre el cabezal y la conexión del tubo de succión al forro exterior del casco) o estar a bordo. La bomba pone en suspensión el material suelto y el agua, y aspira dicha mezcla mientras el barco sigue en movimiento, almacenándola en la cántara de la propia draga. El material sólido se decanta y el agua se evacúa por rebose. La cántara puede almacenar entre 1000 y 20 000 m³, por lo que es posible transportar el material a grandes distancias. El material se descarga mediante la apertura del fondo o por bombeo.
Esta draga es muy útil en terrenos blandos con poca compactación y cohesión (fangos, arcillas blandas, arenas y gravas). La profundidad de trabajo de esta draga se encuentra habitualmente entre los 4 y los 50 m, aunque ya se han alcanzado profundidades de trabajo de hasta 120-150 m. Navega a una velocidad de 17 nudos. Puede trabajar con una altura de ola de hasta 5 m. El tamaño máximo de partícula es de 300 mm y la resistencia máxima al corte del material a dragar es de 75 kPa.
Figura 2. Ciclo de trabajo de las dragas de succión en marcha (Sanz, 2001)
Os paso un vídeo donde podéis observar cómo trabajan estas dragas. Espero que os guste.
[politube2]65107:450:384[/politube2]
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
La semana pasada tuve oportunidad de intervenir en una jornada organizada por el Instituto de la Ingeniería de España donde tuve la ocasión de explicar a grandes rasgos algunos impactos que podría tener el cambio climático en el turismo. Hasta aquí todo normal. Íñigo Losada, director de investigación del Instituto de Hidráulica Ambiental de la Universidad de Cantabria, así como experto del IPCC (Intergovermental Panel on Climate Change) expuso los datos científicos actuales sobre la incidencia del cambio climático en la subida del nivel medio del mar en el litoral español y Ángel Muñoz explicó las acciones que la administración española está tomando al respecto desde el Ministerio de Agricultura y Medio Ambiente.
Independientemente de las causas que originan este fenómeno, sorprende cómo existen colectivos que niegan de forma contundente y sistemática la veracidad de los datos aportados por los científicos. Otros, sin leer los informes científicos al respecto y sin ningún tipo de reflexión, se creen a pie juntillas todo lo que los medios informan, incluido lo del cambio climático. Basta leer los comentarios que en los medios de prensa se dan a cualquier noticia al respecto. Mi impresión es que las redes sociales permiten amplificar cualquier tipo de postura o ideología magnificando el impacto sobre la opinión pública. Parece como si el debate sobre el cambio climático perteneciera al espacio de la opinión y las ideas, donde unos y otros son «creyentes» o «negacionistas» de fenómenos detectados por la Ciencia. Los debates superan cualquier racionalidad y entran en descalificaciones en los dos sentidos que no tienen lógica posible. Incluso este post, donde no estoy entrando en ningún tipo de argumentación a favor o en contra, también será objeto de opinión y debate. Seguro.
El fondo del asunto trasciende el contenido de este post. En numerosas ocasiones la Ciencia sorprende al sentido común y origina fuertes controversias. La Tierra es la que gira alrededor del Sol y la evolución de las especies parece que está más que demostrada. Lo primero parece que se acepta claramente, lo segundo aún hay colectivos que lo niegan. Mi experiencia aplicando la teoría de la evolución a la optimización de estructuras es sorprendentemente positiva, lo cual confirma lo que ya muchos investigadores saben: la validez de los supuestos en los que se basan los algoritmos genéticos. La constatación de que un crecimiento exponencial de la población es insostenible ya fue explicada por Malthus. También esta teoría ha sido duramente criticada, como también denostada por algunos el concepto de sostenibilidad. La Física actual, especialmente la cuántica, nos sorprende constantemente y rebate cualquier tipo de interpretación sensorial de la realidad. La dualidad onda corpúsculo genera una paradoja conceptual que tiene explicaciones en forma de la interpretación de Copenhague, la formulación de integrales de caminos o la teoría universos múltiples. Si una función de onda cuántica colapsa por el hecho de ser medida, ello implica que la existencia material de un objeto sólo es posible si alguien la observa. Paradojas científicas difíciles de entender.
Eppur si muove o E pur si muove (y sin embargo, se mueve, en español) es la hipotética frase en italiano que, según la tradición, Galileo Galilei habría pronunciado después de abjurar de la visión heliocéntrica del mundo ante el tribunal de la Santa Inquisición.
Por mi parte, os dejo tanto la presentación que hice en la jornada como el vídeo completo de las mismas, por si os interesa. También un par de enlaces a medios de prensa donde se recogieron algunas de las conclusiones: