Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyecciones de alta presión: Jet grouting

Figura 1. Esquema básico del funcionamiento de la inyección a alta presión o jet-grouting. Fuente: https://commons.wikimedia.org/wiki/File:Jetgrouten.png

La inyección de alta presión, conocida como Jet-Grouting es un proceso que implica romper el suelo (o roca suelta), mezclarlo y reemplazarlo parcialmente por un agente cementante (en general, cemento). La desagregación se logra mediante un fluido con alta energía, que puede incluir el propio agente cementante (Figura 1).

El jet-grouting, por tanto, se considera como una técnica de tratamiento del terreno que mejora sus propiedades resistentes y su compresibilidad, y reduciendo la permeabilidad.

La primera patente se aplicó en el Reino Unido en los años 50, aunque su desarrollo real se llevó a cabo en Japón a principios de los 70, y a mediados de los 70 se introdujo en Europa. Hoy en día se ha desarrollado extraordinariamente la técnica.

En general se usa una mezcla de agua y cemento. Se pueden utilizar otro tipo de conglomerantes hidráulicos, como bentonita, filler y cenizas volantes. Si se emplea bentonita en la mezcla, se debe preparar e hidratar la suspensión de agua y bentonita antes de agregar el cemento.

Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándolo y sustituyéndolo por cemento, así se van llenando huecos y discontinuidades. Básicamente, se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La distancia que alcanza la erosión por chorro (energía de corte) varía en función del fluido empleado, tipo de suelo, velocidad de ascenso, etc., pudiendo alcanzar hasta 5 m de diámetro. La técnica del jet-grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), siendo el fluido de perforación también variable (cemento, bentonita, mezclas químicas, etc.).

Las presiones de trabajo varían, llegando en algunos casos puntuales hasta los 90 MPa. Los sistemas jet-grouting permiten inyectar lechadas de cemento en suelos de grano muy fino, en los que con otros sistemas solo serían inyectables productos químicos o ni siquiera estos. El jet-grouting puede aplicarse en arenas, limos e incluso en suelos arcillosos de cierta consistencia.

La perforación del terreno previa a la inyección, puede hacerse con cualquier equipo (a rotación o a rotopercusión, con las condiciones que requiera el terreno) con tal que el varillaje se adapte a las altas presiones a las que se efectúa la inyección.

Casi todos los equipos de perforación empleados en la ejecución de anclajes son utilizables. Si la perforación se hace con jet en suelos blandos, para inyectar después de perforar, el cambio de salida del agua por el de la lechada en algunos equipos puede hacerse por medio de una válvula situada en la boquilla de inyección.

En gravas, la inyección a alta presión introduce el mortero a través de los huecos, lo mismo que con un equipo convencional, pero en este caso forma un bloque mucho más compacto, sin dificultades que originan los rellenos de arcilla en el procedimiento tradicional.

Dependiendo del sistema de desplazamiento y fracturación del terreno y su mezcla con la lechada inyectada, la normativa europea (EN 12716) distingue los siguientes sistemas de jet-grouting (ver Figura 2):

  • Sistema de fluido único: La disgregación y cementación del suelo se obtiene con un chorro único de un fluido a alta presión, que suele ser lechada de cemento.
  • Sistema de doble fluido (aire): La presencia de aire desagrega y cementa el suelo, y también facilita la evacuación de los detritus generados. En comparación con un sistema de fluido único, produce un jet mayor y realiza una mayor sustitución del terreno.
  • Sistema de doble fluido (agua): El suelo se rompe mediante un chorro de agua a alta presión que fluye a través de la boquilla superior, mientras que por la inferior se inyecta una lechada para cementar el suelo.
  • Sistema de triple fluido: Mediante un chorro de agua a alta presión, un chorro de aire a presión y lechada de cemento se consigue romper el suelo. Es el más complejo de los sistemas, pero puede sustituir todo el suelo y producir una columna de mayor diámetro.
Figura 2. Sistemas de jet-grouting. Fuente: http://www.interempresas.net/Mineria/Articulos/146294-Diametro-columnas-jet-grouting-funcion-energias-especificas-perforacion-inyeccion.html

El sistema de fluido único es apropiado en arenas medias a densas y suelos cohesivos muy blandos. El doble fluido suele usarse en arenas medias a densas y suelos cohesivos de blandos a medios. En cambio, el triple fluido se puede utilizar prácticamente para cualquier suelo.

En la Tabla 1 se recogen los parámetros de trabajo más habituales para la maquinaria empleada en el jet-grouting.

Tabla 1. Parámetros de trabajo estándares para la maquinaria de jet-grouting

Parámetros de trabajo

Fluido sencillo

Doble fluido (aire) Doble fluido (agua)

Triple fluido

Presión de la lechada (MPa)

30 – 50

30 – 50 > 2

> 2

Caudal de la lechada (l/min)

50 – 450

50 – 450 50 – 200

50 – 200

Presión de agua (MPa)

30 – 60

30 – 60

Caudal de agua (l/min)

30 – 150

50 – 150

Presión de aire (MPa)

0,2 – 1,7

0,2 – 1,7

Caudal de aire (m3/min)

3 – 12

3 – 12

El rango de aplicación del jet-grouting está limitado principalmente por la resistencia del terreno que va a ser erosionado. Esta es una de las principales diferencias con las inyecciones comunes, donde lo importante es el tamaño de las fracturas y de los poros, que en el jet-grouting es irrelevante.

El jet-grouting puede emplearse en la mayoría de terrenos, desde rocas débiles a arcillas, puesto que solo requiere su fracturación, al igual que ocurre con las inyecciones con fracturación. A diferencia de las inyecciones convencionales, destaca la aplicabilidad del jet-grouting en los suelos cohesivos. No obstante, cada tipo de sistema de jet-grouting posee un campo de validez característico.

El límite superior de aplicabilidad del jet-grouting está en las gravas de 60 mm de diámetro. Obviamente, es imposible mover y cortar elementos gruesos en el entorno del jet, como bolos o bloques, ya que su energía no es suficiente.

La aplicación principal del jet-grouting son los suelos, pero también puede emplearse en el caso de emboquilles con roca alterada, rocas con cementación escasa, roca afectada por una excavación, etc. En roca sana, su resistencia a compresión se opone a la erosión provocada por los jets.

Las aplicaciones principales del jet-grouting son:

  • Mejora del terreno
  • Control de agua (permeabilidad)
  • Recalces
  • Túneles

La principal ventaja de este método radica en su versatilidad y flexibilidad. Como ya se ha indicado, es utilizable en todo tipo de terrenos y puede realizarse en espacios reducidos, alcanzando profundidades importantes sin tener que descubrir el terreno hasta la superficie.

En la Figura 3 se puede observar el aspecto de las columnas de refuerzo que se pueden conseguir con la inyección a elevada presión.

Figura 3. Sistemas de jet-grouting. Fuente: http://www.interempresas.net/Mineria/Articulos/146294-

Sin embargo, una aplicación de interés es el uso del jet-grouting para ejecutar cortinas de impermeabilización. El caso más habitual es la construcción de columnas secantes, solapadas en una o varias filas (Figura 4).

Figura 4. Ejecución de una pantalla con jet-grouting mediante columnas secantes. Fuente: https://www.terratest.cl/soluciones-cortinas-de-impermeabilizacion-pantallas.html

Otro empleo muy común es la creación de pantallas de estanqueidad en el caso del fondo de un recinto apantallado sometido a subpresiones (Figura 5), o bien en barreras de impermeabilización en núcleos de presas (Figura 6).

Figura 5. Croquis de un tapón ejecutado con jet-grouting en el fondo de un recinto apantallado. Fuente: https://2bd7e8ad-9629-4fd0-a14e-4054a92f2fc8.filesusr.com/ugd/c939f2_2befc25a84ae4fc1b8741456e0fd9584.pdf
Figura 6. Croquis de barreras de impermeabilización con jet-grouting en una presa de materiales sueltos. Fuente: https://aetess.com/wp-content/uploads/Aplicaciones-del-jet-grouting-2019.pdf

También se puede utilizar el jet-grouting como elemento de impermeabilización en juntas de pantallas in situ o como elemento de cierre en pantallas de pilotes o micropilotes, cuando estos se construyen separados. En este caso, las columnas se realizan cada dos pilotes. Los pilotes serían el elemento estructuras y el jet-grouting garantizaría la impermeabilización.

Os dejo, por su interés, el artículo 677 del PG-3, donde se describen las características técnicas exigibles al jet-grouting.

GDE Error: Error al recuperar el fichero. Si es necesario, desactiva la comprobación de errores (404:Not Found)

Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:

Referencias:

ARMIJO, G.; HONTORIA, E. (2015). Diámetro de las columnas de jet grouting en función de las energías específicas de perforación e inyección. Ingeopres, 246:36-41.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Electroósmosis como técnica de drenaje del terreno

Figura 1. Proceso de electroósmosis (Terrancorp.com, 2014)

Muchos problemas de ingeniería tienen que ver con la estabilidad de los terrenos. Para solucionar estos problemas se utilizan distintos métodos que permiten aumentar la resistencia del mismo mediante tratamientos de tipo granular, químico o térmico. Una forma de estabilizar los suelos finos saturados o parcialmente saturados es la electroósmosis, que no solo permite mejorarlos, sino también se emplea como técnica de drenaje. Otro de los usos habituales de esta técnica es para combatir la humedad por capilaridad, con lo que se combaten las eflorescencias. Sin embargo, en este artículo nos centraremos en el empleo de la electroósmosis como técnica de mejora del terreno y como técnica de drenaje del nivel freático.

La electroósmosis es un fenómeno basado en la precipitación eléctrica de sustancias coloidales en suspensión, observado por el físico Reuss (1808) quien introdujo dos tubos verticales abiertos en sus extremos dentro de un bloque de arcilla húmeda llenándolos de agua hasta la mitad de su altura. Después de situar un par de electrodos en su interior, hizo pasar por ellos una corriente eléctrica comprobando que el nivel de agua subía en uno de los tubos mientras descendía en el otro. Esto demostraba la existencia de un flujo de agua de un tubo al otro a través de la arcilla.

Más tarde Casagrande (1.952) llevó a la práctica el sistema aplicándolo para consolidar un suelo arcilloso en la excavación de un talud. Para ello, colocó como cátodos, dos series de tubos porosos de 10 cm de diámetro y 7 m de profundidad, en torno a los cuales situó un relleno de gravilla para facilitar la entrada del agua. Entre cada dos cátodos separados 9 m se intercalaron como ánodos, tubos de 12 mm de diámetro. El paso de una corriente de 90 voltios y una potencia de 1,5 kW provocó la acumulación del agua en los tubos porosos (cátodos) de los cuales se pudo extraer fácilmente por bombeo.

La electroósmosis es un método de drenaje eléctrico empleado para estabilizar arcillas blandas y limos al incrementar su resistencia por la reducción de humedad. Téngase en cuenta que son terrenos que presentan problemas para aplicar las técnicas de pozos con sistema de vacío convencional. El sistema deja de ser efectivo en arenas finas con permeabilidades inferiores a 3·10-5 m/s. La diferencia con otros procedimientos es que el movimiento del agua no se produce por gravedad sino por efecto de un campo eléctrico. Con la electroósmosis se desatura el suelo, aumenta su resistencia y se consolida, como un efecto principal y, en consecuencia, se mejoran las condiciones del terreno con su estabilización.

El agua fluye de los ánodos (+) a los cátodos (-) en un medio poroso saturado (Figuras 2 y 3). Dan buenos resultados cátodos de un diámetro de 120 mm colocados cada 3-5 m y barras de acero o aluminio como ánodos intercalados de 100 mm de diámetro. En el cátodo se sitúa un wellpoint o un pozo drenante, que es un tubo abierto por el fondo. Los ánodos y cátodos son tubos abiertos por el fondo. Los gradientes de potencial varían entre 30 y 180 V. A mayor voltaje, más volumen de agua drenada, aunque pueden producirse fenómenos de hidrólisis, por lo que deben hacerse ensayos para establecer los parámetros energéticos más convenientes. Se necesitan de 0,5 a 1,4 kW/m3 de suelo drenado en excavaciones grandes, y hasta un máximo de unos 14 kW/m3 en las pequeñas. Este movimiento del agua genera consolidación, con un aumento temporal de las tensiones efectivas.

La conductividad eléctrica del agua depende de su salinidad y ello influye en la eficiencia de la corriente y el voltaje aplicado. En un suelo con mayor salinidad, el volumen de agua drenada con la electroósmosis es mayor y la consolidación es más eficiente y rápida.

Figura 2. Disposición del equipo para el drenaje
Figura 3. Disposición del equipo para el drenaje (Bell, 1993)

Las desventajas de este método radican en el alto costo de la energía necesaria y en los problemas relacionados con la seguridad de los operarios al trabajar con un circuito de corriente continua. Los elevados costes de ejecución y a la poca práctica en su uso, limitan la aplicación de la electroósmosis a casos especial en los que el caudal a evacuar sea escaso. Su empleo más frecuente es la mejora permanente de las propiedades de los cimientos o en la estabilidad de los taludes. En la Figura 4 se muestra el principio de la electroósmosis empleado en el drenaje previo a la excavación de un túnel.

Figura 4. Tratamiento por electroósmosis previo a la excavación de un túnel (Bielza, 1999)

A continuación os dejo un vídeo que os he grabado para explicar este procedimiento de tratamiento de suelos. Espero que os guste.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

CURSO:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Springsol: mejora de terrenos mediante columnas de suelo-cemento

Figura 1. http://www.tectonica-online.com/

Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.

Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).

Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.

Figura 2. Aspecto de la columna formada. http://www.rodiokronsa.es/
Figura 3. A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/
Figura 4. http://actions-incitatives.ifsttar.fr/

Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

La precarga como técnica para la mejora de terrenos

Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646
Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646

La precarga consiste en aplicar al terreno una carga igual o superior a la que producirá en servicio la estructura que se proyecta apoyar en él, provocando su consolidación, lo que se traduce en un aumento de la resistencia del terreno y una disminución de los asientos postconstructivos. En algunas ocasiones es necesario realizar la precarga cuando la obra está acabada o semiacabada, como en tanques de almacenamiento de líquidos.

Este tratamiento es un método de mejora destinado, en principio, a suelos cohesivos blandos. Estos suelos son susceptibles de sufrir asientos importantes bajo sobrecargas pequeñas, con una evolución lenta de estos asientos, y, dada su baja resistencia al corte, procesos de rotura (deslizamiento de terraplenes, hundimiento de cimentaciones superficiales, etc.). La primera vez que el suelo blando se carga se deforma de 5 a 10 veces más que si se carga posteriormente, después de ser precargado y descargado. Sin embargo, existen situaciones donde esta primera deformación puede oscilar entre 2 y 20 veces más (Ministerio de Fomento, 2002). La profundidad eficaz del tratamiento puede llegar hasta varias decenas de metros.

En un suelo blando los asientos son irreversibles casi en su totalidad, aunque las cargas aplicadas sean retiradas el terreno no vuelve a su posición original. Si se vuelve a cargar hasta el mismo valor de la carga previa, o no hay asientos o son mucho menores.

La Figura 1 representa la curva de asientos de un suelo precargado bajo un terraplén. Durante la precarga el suelo asienta según la curva descrita hasta llegar al punto 1, correspondiente al instante del inicio de la retirada del terraplén. Así, la curva describe esta descarga hasta llegar al punto 2 donde el suelo ya no tiene carga, pero los asientos remanentes, son casi iguales a los producidos por la carga del terraplén.

precarga-1
Figura 1. Curva carga-asiento de un suelo precargado bajo un terraplén

Al recargar el suelo con una carga igual a la del terraplén (punto 3 de la Figura 2) el suelo describe una curva similar a la de descarga, pero de sentido contrario. Se observa como los asientos inducidos por la recarga son pequeños, debido a la memoria de carga del suelo.

Figura 2. Curva carga-asiento tras la retirada del terraplén
Figura 2. Curva carga-asiento tras la retirada del terraplén

Lo que se ha descrito es la finalidad de la precarga, preconsolidar un suelo compresible para que cuando vuelva a ser cargado por la estructura definitiva sufra los menores asientos, además de aumentar su resistencia.

Casi todos los suelos, tanto secos como saturados, pueden mejorarse con buenos resultados con la precarga. Se ha utilizado en suelos naturales, como arenas sueltas y limos, arcillas limosas blandas, limos orgánicos, turbas y depósitos aluviales erráticos, al igual que en suelos artificiales formados de materiales dragados sin compactar, residuos industriales (cenizas) y depósitos de residuos urbanos. Los suelos sobreconsolidados, es decir, aquellos sometidos a una carga mayor que la actual, no responden tan bien a la precarga, puesto que su comportamiento es más elástico que los normalmente consolidados. La realización de precargas es la técnica más habitual para mejorar la compacidad de los rellenos portuarios realizados con material proveniente del dragado. En la Figura 3 se observa el uso de la precarga en el Puerto de Tarragona, en la construcción del Muelle de Baleares.

Figura 3. Precarga en la construcción del Muelle de Baleares en el Puerto de Tarragona. https://www.elestrechodigital.com/2021/02/15/el-puerto-de-tarragona-encara-la-fase-final-de-la-construccion-del-muelle-de-baleares/

El método más común de aplicar la precarga es apilar el material de relleno sobre el terreno original, usando camiones y extendedoras, y dejando la carga un cierto tiempo. El material se retira una vez alcanzada la consolidación con medios auxiliares similares. A continuación, se ejecuta la nueva obra, considerando que las deformaciones con que responderá el terreno serán admisibles. El material retirado sirve para otra precarga o para la construcción de terraplenes. Existen otros métodos de precarga que consisten en bajar el nivel freático mediante pozos filtrantes, zanjas, bombeo al vacío en pozos, y el fenómeno de electroósmosis.

Como ventajas de la aplicación de este método pueden destacar:

  • Bajo coste. Entre un 10-20% respecto a otros métodos. Entre un 20-40% si la precarga se realiza con drenes.
  • Los equipos utilizados son sencillos y baratos (equipos de movimiento de tierras)
  • Se evalúan los efectos de un modo directo e inmediato. Equivale a un ensayo a escala natural.
  • En zonas sensibles a la sismicidad, se reduce el riesgo de licuación en suelos arenosos finos.
Figura 3. Precompresión del terreno
Figura 4. Precompresión del terreno

Uno de los factores más limitantes de esta técnica es el tiempo necesario para la consolidación, por lo que a veces no se dispone siquiera de unos pocos meses para que funcione la precarga. Esto puede evitarse con una buena previsión del trabajo, anticipándose la ejecución de la precarga a la finalización del proyecto o comienzo de las obras. Como factores limitantes de la precarga, además del tiempo, puede considerarse: el límite de la capacidad de soporte del suelo, el efecto sobre estructuras próximas (asientos, empujes laterales del terreno, rozamiento negativo) y posibles costes elevados de auscultación y control.

Para acelerar la consolidación y así reducir el tiempo de precarga, puede ser económico realizar tratamientos adicionales que mejoren el drenaje del terreno, reduciendo el camino del agua a zonas más permeables y modificando las direcciones de flujo. Estos métodos son:

  1. Inclusiones verticales por columnas de grava. Esta técnica, además de acelerar el proceso de consolidación, supone un refuerzo del terreno.
  2. Instalación de drenes verticales en el terreno. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se provocan asientos de forma anticipada, con asientos postconstructivos insignificantes.

El Ministerio de Fomento (2002) establece como parámetros para fijar los objetivos de la precarga los asientos producidos durante la construcción de la obra y posteriores, así como la seguridad frente a los distintos estados límite. También fija los siguientes aspectos que deben controlarse durante su ejecución: extensión en planta y altura de la precarga, densidad aparente de los materiales de la precarga, fechas de colocación y retirada de las precargas, asientos superficiales del terreno, presiones intersticiales en el terreno y posibles agrietamientos y otros síntomas de inestabilidad en la superficie externa de las precargas.

Os dejo un vídeo explicativo que os he grabado de esta técnica.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)

http://www.malcolmdrilling.com/cutter_soil_mixing/
Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

La pantalla de suelo-cemento con hidrofresa (cutter soil mixing) es una técnica de mejora de suelos que se emplea para generar pantallas impermeabilizantes verticales mediante el uso de hidrofresas. Consiste en excavar el terreno en paneles verticales mediante una cabeza cortadora (hidrofresa) suspendida de un brazo grúa articulado. Esta cabeza presenta dos elementos cortantes giratorios provistos de dientes de corte que giran en direcciones opuestas para expulsar el material excavado.

La cabeza también posee un inyector, en la parte central de las dos ruedas cortantes, por el cual se inyecta una mezcla de bentonita-cemento. Esta mezcla, gracias al movimiento giratorio de los dientes y de unas paletas giratorias, se amalgama con los detritos formando un nuevo material. Tras el fraguado del cemento se obtiene una pantalla impermeable. La ventaja del método es que se usa el propio material del terreno, no generando apenas residuos.

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html
http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

En pantallas poco profundas, de menos de 20 m, se ejecuta en una fase, que consiste en inyectar la bentonita-cemento según se tritura el terreno. Se usa con tiempos cortos de perforación para que no fragüe el cemento. En mayores profundidades se usan dos fases; en la primera se excava hasta la cota deseada y luego durante el ascenso se inyecta la mezcla.

Para ejecutar muros continuos, se divide la construcción en paneles primarios y secundarios, que se solapan con los anteriores con juntas frescas si los paneles primarios no han fraguado, o bien con solapes duros si ya han endurecido.

Os dejo un caso de estudio de la empresa Bauer, que espero que os sea de utilidad.

Descargar (PDF, 5.27MB)

Os dejo algunos vídeos y animaciones al respecto.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pantallas realizadas por mezcla profunda de suelos (Deep Soil Mixing Walls)

http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp
http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp

Esta técnica de mejora y refuerzo de suelos blandos o flojos consiste en el mezclado mecánico y profundo de los materiales disgregados del terreno con un aglomerante, líquido o sólido, generando un nuevo material tipo suelo-cemento. El aglomerante suele ser cemento, cal y bentonita. El terreno así estabilizado es más resistente, menos permeable y de menor compresibilidad que el terreno original.

La incorporación de los aglomerantes al terreno puede llevarse a cabo en forma de lechada (Método húmedo) o mediante aire comprimido (Método seco)Para  cada caso es necesaria la utilización de una herramienta especial que permita la ejecución de la mezcla en profundidad.

La mezcla profunda de suelos se puede clasificar en dos grupos: mezclado vertical, generando columnas o en masa horizontal, produciendo fajas o extensiones importantes en plantas.

En el caso de mezclado vertical, el diámetro de la columna es constante en profundidad y depende de la capacidad de la herramienta y el método que se utilice (húmedo o seco). Se ejecuta con una mezcladora giratoria que perfora el terreno hasta la profundidad requerida. En ese momento empieza la inyección del aglomerante mientras se extrae el varillaje.

http://jafecusa.com/?page_id=2796
http://jafecusa.com/?page_id=2796

La técnica de mezclado en masa consiste en una retroexcavadora en la que el brazo de la pala sustituye por un brazo excavador con un cabezal rotatorio que posee un inyector por el que se impulsa la mezcla aglomerante. Este método utiliza equipos no complejos: una retroexcavadora y una bomba de inyección. Es rápido en la ejecución, pero su uso se limita a la longitud del brazo, que no suele ser superior a 5 m.

Os dejo un folleto de la empres Bauer donde se explica con mayor detalle este procedimiento constructivo.

Descargar (PDF, 1.71MB)

A continuación os dejo varios vídeos y animaciones al respecto.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Congelación de suelos

Figura 1. http://www.tectonica-online.com/productos/2683/artificial_congelacion/#

Al excavar y estabilizar el suelo, aunque sea de forma provisional, una posibilidad consiste en congelar artificialmente el suelo, en especial, cuando estos son blandos y están saturados. Ello permite disponer de una pared provisional que impide el desmoronamiento del terreno.

El estudio de la congelación artificial del suelo precisa conocimientos en relación con las técnicas de congelación existentes, así como de las propiedades térmicas y geotécnicas del terreno. Este procedimiento constructivo precisa la participación de empresas especializadas. Aquí podéis descargar un documento donde se explica una aplicación práctica de la técnica.

Fundamento teórico

La estabilización temporal del terreno por congelación es una técnica empleada en minería desde mediados del siglo pasado. Se basa en la transformación del agua intersticial en hielo, que en ese estado actúa como elemento aglutinante de las partículas que componen el suelo.

Se consiguen así dos efectos, por una parte, un aumento de la resistencia del terreno y por otra una completa impermeabilidad que facilita durante un tiempo las condiciones de excavación. Pero al mismo tiempo, también se alteran otras condiciones geotécnicas que pueden afectar a estructuras contiguas a la obra, que en el proyecto previo han de ser estudiadas cuidadosamente.

Figura 2. Sistema de congelación de terrenos

Aplicabilidad

La congelación es adecuada en una gran variedad de suelos, incluso en casos donde las inyecciones y otros métodos no pueden ser utilizados. El requisito que plantea es la necesidad de que los suelos estén saturados de agua, ya que de lo contrario la técnica no mejora las características del terreno. Así, se podría congelar un terreno con un grado de saturación del 20%, pero en terrenos cohesivos la congelación no llega a ser del 100%, por lo que el tratamiento deja de ser eficiente.

Figura 3. http://teoriadeconstruccion.files.wordpress.com

Sistemas de congelación

El procedimiento pasa por instalar un conjunto de tubos o sondas de congelación por las que habrá de circular la sustancia refrigerante, con la disposición y separación entre sondas que aconsejen las condiciones de obra (profundidad de excavación, planta, etc.) y el terreno.

Figura 4. Esquema de congelación del terreno

Como sustancias refrigerantes pueden emplearse salmueras (con frecuencia, cloruro cálcico, aunque también se han utilizado cloruros de sodio, magnesio o litio), anhídrido carbónico (nieve carbónica), o nitrógeno líquido. Todas ellas presentan el mismo fundamento físico: la capacidad de absorción de calor de estas sustancias, al pasar de líquido a gas.

El método de instalación varía en función de si se recupera el elemento refrigerante (circuito cerrado) o no (circuito abierto). En el primer caso, ha de establecerse un circuito cerrado como el que se muestra en la figura. El fluido, en forma líquida, pasa por los tubos refrigerantes y al evaporarse a través de ellos absorbe calorías del terreno. Conseguido este efecto, la sustancia en forma de gas se hace pasar por un compresor que en combinación con un sistema refrigerador lo licua a baja temperatura, y después es conducida a un depósito, en el que es almacenada en forma líquida a alta presión. Desde este tanque el caudal se bombea a las sondas refrigerantes para ser reutilizado en un nuevo recorrido a través del circuito cerrado de congelación. La salmuera suele estar al menos a 5 °C por debajo de la mínima temperatura que debe alcanzarse, con puntos de congelación habituales entre -20 °C y -40 °C.

Cuando la congelación se aplica sin recuperar la sustancia refrigerante, esta (a menudo nitrógeno líquido), es transportada a pie de obra en camiones cisterna y desde ellos es bombeada a baja temperatura (» -196 °C), hacia las sondas o tubos congeladores de la instalación: el fluido, después de pasar a través de las sondas, ya evaporado se dirige hasta el final del circuito, en este caso abierto, del cual sale a la atmósfera en forma de gas a unos -60 °C de temperatura.

Figura 5. Congelación artificial del suelo usando nitrógeno líquido. Adaptado de Cashman y Preene (2012)

Este sistema resulta más caro que el anterior por no recuperarse la sustancia refrigerante, pero los efectos de congelación que se consiguen en la práctica son más rápidos.

Existe la opción de utilizar un procedimiento mixto. Consiste en combinar la capacidad frigorífica del nitrógeno líquido, para efectuar la congelación del terreno de forma rápida, y la economía de la salmuera, para el mantenimiento durante los trabajos de excavación y ejecución de la estructura. Para ello, los circuitos de sondas deben estar separados de forma que se puedan emplear ambos procedimientos.

Condiciones de ejecución

La elección del procedimiento y medios de congelación más efectivos, requiere el estudio del terreno y de la obra en tres etapas:

  • Estudio de viabilidad
  • Elección del sistema
  • Ejecución y control

El estudio de viabilidad decide la factibilidad de la congelación y definir qué tipo de acciones se deben adoptar si se necesitan medidas correctoras del terreno. Obviamente, se debe comenzar con el conocimiento hidrogeológico del terreno y del entorno afectado por la congelación. En este estudio, los parámetros térmicos y geotécnicos del suelo durante todo el proceso son los que presentan un mayor interés.

Es conveniente conocer el volumen y las condiciones del agua que entre en contacto con el material congelado debido al calor proporcionado y a los efectos de la velocidad de circulación. A partir de velocidades de 1,5 – 2 m/día, la congelación no es posible con nitrógeno líquido. Con esas velocidades altas se puede inyectar el terreno para mejorar la eficiencia del tratamiento. La congelación suele ser factible en suelos saturados, aunque también se podría emplear en suelos con grados muy bajos de saturación (10%).

El estudio de viabilidad decide el sistema de congelación y la mejor disposición de los tubos para adaptarse a las condiciones del terreno. Se recurre a superficies cilíndricas, de sección circular o elíptica, para que los esfuerzos generados en el material congelado sean de compresión. El análisis térmico permite seleccionar la disposición más favorable de las sondas, la potencia del equipo de congelación y el tiempo de trabajo necesario para lograr la congelación.

Las sondas termométricas permiten el control de la temperatura en el interior del suelo congelado. De esta forma se controla la evolución de la congelación durante la excavación y determinar la potencia frigorífica necesaria. Por tanto, la congelación se realiza en dos etapas, la etapa activa, que congela el terreno para formar la pantalla, y la etapa pasiva, donde se mantiene estable el espesor congelado.

La resistencia de un suelo congelado la determina la cohesión y el ángulo de rozamiento. Pero estos parámetros varían según la temperatura y el tiempo, con leyes diferentes en función de la composición del suelo y de la duración de la carga aplicada.

Ventajas y limitaciones

La congelación del terreno permite acortar plazos cuando es importante la cantidad de agua en una excavación, siendo un método aplicable a una gran variedad de suelos. Sin embargo, su ejecución precisa empresas especializadas que, junto a su coste, han limitado su uso en España. Asimismo, en el caso de gravas con un flujo de agua considerable, se requiere una inyección previa. Por último, el asiento producido tras la descongelación del terreno puede ser significativo.

Os dejo aquí un caso real en Varsovia de aplicación de la congelación del terreno.

Descargar (PDF, 2.15MB)

Os dejo a continuación un vídeo que os he preparado para explicar este procedimiento constructivo. Espero que os guste.

En el siguiente vídeo se muestra un proyecto de congelación, para la posterior construcción de un túnel.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.
  • MUZÁS, F. (1980). El frío, la helada, congelación de terrenos. Capítulo 16 de Geotecnia y Cimientos III, de J.A. Jiménez Salas, Ed. Rueda.
  • MUZÁS, F. (1980).  Congelación artificial del terreno. IV Curso sobre Técnicas de Mejora del Terreno. Valencia, 16 de octubre. (link)
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación dinámica rápida

La compactación dinámica rápida (“rapid impact compaction”, RIC) es una técnica de mejora del terreno que se desarrolló en Inglaterra en los años 90. La técnica densifica suelos granulares sueltos a poca profundidad utilizando un martillo hidráulico que golpea una placa de impacto. Se trata de generar impactos mediante un elevador hidráulico con pesos de 7 a 16 toneladas que cae desde una pequeña altura de 1 a 2 m, sobre una placa de 1,5 m en contacto con la superficie del terreno a una velocidad de 40 a 80 golpes por minuto. En condiciones adecuadas se podría compactar capas un espesor entre 4 y 7 m, aunque se han compactado capas de hasta 10 m. Los puntos de impacto se distribuyen en mallas de 2 a 3 m de lado..

Figura 1. Compactación dinámica rápida

La energía se transfiere por impacto directo en la superficie, pero también por transmisión de ondas de “choque” dinámicas que se desplazan en el suelo, al igual que en la compactación dinámica (Figura 2). Se ha conseguido una capacidad portante de 190 kPa con este método en capas de 6 m de un relleno heterogéneo. No obstante, la compactación depende de las condiciones del suelo y es más efectiva para materiales granulares que contengan menos de un 15% de finos.

Una de las ventajas de la compactación dinámica rápida es que la placa permanece siempre en contacto con el terreno, lo que asegura el control de la compactación. Además, la baja altura y el tamaño relativamente pequeño del equipo permiten acceder a lugares difíciles en los que otras técnicas de compactación profunda pueden no ser apropiadas o posibles. Es una buena alternativa a la retirada de 4-5 m de suelos naturales o rellenos existentes para rellenar y compactar dicho material en capas de 15 a 30 cm con un compactador de rodillos convencional.

Figura 2. Efecto de la compactación dinámica rápida. Cortesía de Keller.

A continuación os dejo un folleto explicativo de Menard.

Descargar (PDF, 5.55MB)

Os dejo algunos vídeo explicativos. Espero que os gusten.

https://www.youtube.com/watch?v=O-z9xenTP6I

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la sustitución dinámica?

La sustitución dinámica o “puits ballastés” constituye una variante diferenciada de la compactación dinámica en la cual la energía de compactación sirve para constituir inclusiones granulares de gran diámetro, como refuerzo de los terrenos compresibles, de los que se necesitan varios metros de espesor sobre un estrato de terreno con capacidad portante suficiente.

Se punzona en este caso el terreno con una maza pequeña y pesada que se deja caer desde cierta altura. Este procedimiento crea un cráter que se rellena con material granular, que se golpea nuevamente con el objeto de desplazar el terreno y hacer penetrar dicho material granular. Con este procedimiento se consigue rigidizar el terreno creando puntos de apoyo que presentan una mayor carga admisible. Además, la ventaja adicional es que constituyen drenes verticales, aunque no muy profundos, por lo que podrían combinarse con tratamientos de mejora de precarga, de forma que se reducirían los tiempos de consolidación del suelo.

Esta técnica combina, por tanto, las ventajas de la compactación dinámica y de las columnas de grava.

Aplicaciones:

– Terrenos cohesivos (arcillas y limos blandos o muy blandos), apoyados sobre un sustrato rocoso
– Necesidad de estabilización y reducción de los asientos de terraplenes viarios y ferroviarios
– Estructuras con distribución heterogénea de grandes cargas repartidas y puntuales

Principales características:
– Tasa de incorporación de material claramente superior a la obtenida por medio de columnas de grava (hasta 20 a 25%)
– Muy alta compacidad de las inclusiones constituidas
– Cada “columna” granular puede soportar cargas importantes de hasta 150 t
– Mejora de las características mecánicas de las capas superficiales del terreno entre las columnas en un 25% y entorno al 50% en los estratos más profundos
– Funcionamiento de las inclusiones como drenes verticales reduciendo así el tiempo de consolidación y acelerando los asientos antes de la construcción

Ventajas:

– Fuerte incremento del módulo de deformación, de la capacidad portante y de la capacidad drenante del terreno
– Técnica bien adaptada a grandes cargas
– Muy alta resistencia interna al corte del material granular que constituye la inclusión
– A diferencia de las columnas de grava, aplicación adaptada a suelos evolutivos (turbas, orgánicos…) debido a su reducida esbeltez.

La profundidad del terreno mejorado con esta técnica depende tanto de las características del terreno como de la energía de los impactos. A este respecto, Menard nos facilita la siguiente fórmula para calcular dicha profundidad (García Valcarce et al., 2003):

D2 ≤ 10·M·h

donde:

D: Espesor a compactar (m)

M: Peso de la maza (kN)

h: Altura de caída de la maza (m)

Aunque la máxima profundidad afectada quedaría limitada por la siguiente expresión:

D = 0,44·√10Mh

Os paso a continuación un Polimedia explicativo de esta técnica que espero que os guste:

Os dejo a continuación el folleto explicativo de Menard.

Descargar (PDF, 4.36MB)

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.