Rehabilitación sostenible de edificios costeros de hormigón: ¿cómo optimizar el mantenimiento?

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Review, una de las revistas con mayor impacto científico, dentro del primer decil del JCR. En este trabajo se aborda, desde un enfoque innovador, la optimización de los intervalos de mantenimiento reactivo en edificios costeros construidos con métodos modernos de construcción (MMC). La investigación se enmarca dentro del proyecto RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se muestra un resumen del trabajo e información de contexto.

Quienes trabajamos en ingeniería de la construcción sabemos que los entornos costeros son un auténtico reto. La combinación de humedad, salinidad y vientos cargados de cloruros acelera la corrosión de las armaduras en el hormigón armado. Como consecuencia, estructuras tan comunes como hoteles de playa, bloques residenciales o edificios públicos junto al mar sufren un deterioro prematuro que reduce su vida útil, incrementa los costes de reparación y pone en riesgo la seguridad estructural.

Tradicionalmente, la industria de la construcción ha centrado sus esfuerzos en reducir el impacto ambiental de los materiales y de la fase inicial de obra, dejando en segundo plano la importancia del mantenimiento y la rehabilitación. Sin embargo, cada vez está más claro que prolongar la vida útil mediante estrategias de conservación es clave para lograr ciudades sostenibles.

La pregunta de partida

El equipo investigador se planteó la siguiente cuestión central: ¿qué combinación de diseño preventivo y mantenimiento reactivo permite alargar la vida útil de un edificio costero de hormigón armado de la forma más sostenible, equilibrando costes, impacto ambiental y repercusiones sociales?

Para responderla, compararon doce alternativas de diseño que mejoran la durabilidad frente a los cloruros y analizaron distintas estrategias de reparación en función del nivel de deterioro.

La aportación más destacada

Lo más novedoso del trabajo es la integración de un análisis del ciclo de vida (LCA) con un modelo de ayuda a la decisión basado en FUCOM-TOPSIS. Este enfoque híbrido no solo cuantifica los costes de construcción y mantenimiento, sino también los impactos ambientales (emisiones, recursos y salud humana) y sociales (seguridad de los trabajadores, generación de empleo, molestias a usuarios y a la comunidad local).

En otras palabras, el modelo permite determinar qué intervalos de mantenimiento reactivo son óptimos para cada diseño año tras año y compararlos desde una perspectiva de sostenibilidad global.

Cómo se ha llevado a cabo

  • Caso de estudio: un módulo de hotel en Sancti Petri (Cádiz), construido con losas aligeradas tipo Unidome mediante MMC.

  • Diseños preventivos analizados: desde adiciones (humo de sílice, cenizas volantes), cementos resistentes a sulfatos, reducción de la relación agua/cemento o mayor recubrimiento, hasta soluciones más avanzadas como aceros galvanizados o inoxidables.

  • Estrategias de mantenimiento: cuatro niveles de intervención, desde reparaciones superficiales hasta sustitución de armaduras corroídas.

  • Modelización: se aplicó el modelo de corrosión de Tuutti para estimar periodos de iniciación y propagación del daño.

  • Criterios de evaluación: ocho en total (dos económicos, dos ambientales y cuatro sociales), ponderados mediante FUCOM y evaluados con TOPSIS.

Resultados principales

Los resultados son muy ilustrativos para la práctica profesional.

  • Las soluciones más sostenibles combinaban cemento multirresistente, tratamientos hidrofóbicos anticorrosión y adiciones minerales, como el humo de sílice. Estas alcanzaron una mejora de la sostenibilidad de hasta el 86 % respecto al diseño base.
  • El cemento sulforresistente (SRC) se presentó como la alternativa más equilibrada, con un ciclo de mantenimiento cada 53 años y un ahorro del 65 % en comparación con el caso de referencia.
  • El acero inoxidable prácticamente elimina el mantenimiento durante 100 años, pero su impacto económico y medioambiental inicial lo convierte en una opción poco competitiva.
  • El acero galvanizado ofrece un buen compromiso, ya que es más duradero que el hormigón convencional y su coste es razonable, aunque su impacto ambiental es superior al de otras soluciones.
  • No siempre «menos mantenimiento» significa más sostenibilidad: la clave es intervenir en el momento adecuado para reducir costes y emisiones acumuladas a lo largo de todo el ciclo de vida.

Aplicaciones prácticas en la ingeniería

Este estudio aporta varias lecciones que se pueden aplicar directamente a la práctica:

  1. Planificación a largo plazo: las decisiones de diseño inicial deben ir acompañadas de una estrategia de mantenimiento clara, no solo de criterios de durabilidad normativa.

  2. Visión integral: al evaluar alternativas, no basta con comparar costes iniciales. También hay que tener en cuenta el impacto ambiental y social de cada opción.

  3. Aplicabilidad amplia: aunque el caso analizado es un hotel costero, la metodología es válida para puentes, puertos, depuradoras y cualquier otra estructura de hormigón expuesta a ambientes marinos.

  4. Alineación con la normativa europea: este tipo de enfoques encaja con las estrategias de descarbonización y economía circular de la UE, que exigen evaluar todo el ciclo de vida de las infraestructuras.

En definitiva, este trabajo nos recuerda que la sostenibilidad en la construcción no solo depende de lo que hacemos al levantar un edificio, sino también de cómo lo mantenemos a lo largo de su vida útil. Y, sobre todo, que la ingeniería ya cuenta con herramientas sólidas para planificar esas decisiones de manera objetiva, transparente y alineada con los Objetivos de Desarrollo Sostenible.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Como el artículo está publicado en abierto, os lo dejo para su descarga:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón frente al mar: cómo alargar la vida de los edificios costeros

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE.

Este trabajo se ha publicado en una de las revistas de mayor impacto científico, dentro del primer decil del JCR: Environmental Impact Assessment Review.

También os dejo enlaces a la noticia. Espero que os resulte interesante.

 

La UPV desarrolla una metodología pionera que combina economía, medioambiente y sociedad para decidir cómo construir y mantener de forma sostenible en entornos marinos.

Por las mañanas, cuando la brisa marina llega a las playas gaditanas, también transporta consigo algo menos poético que el aroma del mar: partículas de sal. Estas sales, cargadas de cloruros, penetran en los materiales de los edificios y aceleran la corrosión del hormigón armado. El resultado es un problema silencioso, pero de gran magnitud: estructuras que se deterioran antes de tiempo, con costes de reparación muy elevados y, en algunos casos, con riesgos para la seguridad.

Un equipo de la Universitat Politècnica de València (UPV) ha desarrollado una herramienta que podría cambiar la forma en la que se planifican las construcciones en la costa. Su investigación, publicada en la revista internacional Environmental Impact Assessment Review, propone un método novedoso que integra tres dimensiones de la sostenibilidad:

  • la económica (cuánto cuesta construir y mantener),
  • la ambiental (qué huella deja en términos de emisiones y recursos),
  • y la social (cómo afecta a trabajadores, vecinos y usuarios).

En palabras de Antonio J. Sánchez-Garrido, autor principal del trabajo: “No basta con calcular cuántos años puede durar un material; hay que considerar también qué impacto tendrá sobre la comunidad, sobre el medio ambiente y sobre el bolsillo de quienes deben mantenerlo”.

Un edificio piloto frente al mar

Para aterrizar su modelo, los investigadores eligieron un caso muy concreto: un hotel situado en primera línea de playa en Sancti Petri (Cádiz). A partir de ahí simularon doce alternativas constructivas distintas, desde cementos especiales hasta recubrimientos protectores o cambios en el tipo de acero de las armaduras.

A cada una de estas alternativas le aplicaron modelos matemáticos de predicción del deterioro y un sistema de decisión multicriterio (FUCOM–TOPSIS) que permite ordenar las opciones en función de su sostenibilidad. El horizonte temporal fue de 100 años, lo que ofrece una visión a largo plazo del ciclo de vida del edificio.

El resultado: una especie de “hoja de ruta” que indica qué material conviene utilizar y cada cuánto tiempo hay que intervenir para alargar la vida útil de la construcción.

Resultados que desmontan intuiciones

Uno de los hallazgos más llamativos es que las soluciones más duraderas no son necesariamente las más sostenibles. El acero inoxidable, por ejemplo, puede resistir más de un siglo sin apenas corrosión. Sin embargo, su elevado coste económico y el fuerte impacto ambiental asociado a su producción lo convierten en una opción menos recomendable si se busca un equilibrio global.

En cambio, alternativas como el cemento resistente a sulfatos (SRC) se posicionan como las más equilibradas: ofrecen buena durabilidad, costes razonables y un impacto ambiental moderado. Según el estudio, con esta solución bastaría con intervenir aproximadamente cada 53 años, lo que supone un gran ahorro económico y logístico.

Otros materiales, como las mezclas con humo de sílice o los tratamientos hidrofóbicos, también obtienen puntuaciones muy competitivas, alargando la vida útil de la estructura y reduciendo la necesidad de reparaciones frecuentes.

Más allá del cálculo técnico

El valor añadido del trabajo radica en su enfoque integral. Hasta ahora, muchas decisiones en construcción se han basado en criterios parciales: el coste inmediato, la resistencia mecánica o la facilidad de ejecución. La propuesta de la UPV va más allá al incluir también los efectos sociales: desde la generación de empleo en la fase de construcción y mantenimiento, hasta las molestias que las obras provocan en vecinos, turistas o trabajadores.

“Un hotel en primera línea de playa no puede permitirse cerrar cada pocos años para reparaciones. Reducir la frecuencia y la duración de las obras no solo ahorra dinero, sino que mejora la experiencia de quienes viven o disfrutan de esos espacios”, explica Víctor Yepes, coautor del estudio e investigador del Instituto ICITECH de la UPV.

Aplicaciones prácticas y futuro

Las aplicaciones de esta metodología son numerosas. Puede ayudar a promotores inmobiliarios a elegir materiales más sostenibles, a administraciones públicas a incluir métricas objetivas en sus licitaciones de obra, y a ingenieros y arquitectos a planificar proyectos con una visión a largo plazo.

Además, se trata de un modelo replicable y transparente, lo que significa que puede adaptarse a diferentes contextos: desde viviendas costeras hasta paseos marítimos, puentes o incluso puertos.

El equipo de la UPV ya trabaja en los siguientes pasos: incorporar inteligencia artificial y modelos probabilísticos para mejorar las predicciones, y validar la metodología en proyectos reales a gran escala, que permitan trasladar este conocimiento directamente al sector.

Un cambio de paradigma

En un momento en que Europa avanza hacia la neutralidad climática y exige a la construcción estándares más estrictos de sostenibilidad, este tipo de investigaciones se vuelven cruciales. No se trata solo de ahorrar dinero o prolongar la vida de los edificios, sino de repensar la relación entre infraestructuras, medio ambiente y sociedad.

La sal del mar seguirá siendo una amenaza para las estructuras costeras, pero gracias a esta metodología, los edificios podrán resistir mejor el paso del tiempo. Y, sobre todo, podrán hacerlo de manera más respetuosa con el planeta y con las personas que los habitan.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Esta investigación ha tenido repercusión en la prensa escrita. Aquí tenéis algunos enlaces:

https://cadenaser.com/comunitat-valenciana/2025/08/24/la-upv-propone-como-hacer-mas-duraderos-los-edificios-junto-al-mar-radio-valencia/

https://www.larazon.es/comunidad-valenciana/upv-crea-herramienta-que-ayuda-alargar-vida-util-edificios-situados-junto-mar_2025082468aad195fb354e4b3d1cad77.html

https://valenciaplaza.com/arquitectura-patrimonio-valencia-comunitat-valenciana/la-upv-crea-una-herramienta-que-ayuda-a-alargar-la-vida-util-de-los-edificios-situados-junto-al-mar

https://castellondiario.com/edificios-mas-duraderos-frente-al-mar-la-herramienta-pionera-de-la-upv/

https://www.lavanguardia.com/vida/20250824/10997986/crean-herramienta-ayuda-alargar-vida-util-edificios-situados-mar-agenciaslv20250824.html?utm_term=botones_sociales

UPV crea ferramenta per a prolongar la vida d’edificis costaners i optimitzar el seu manteniment

Os dejo también dos cortes de RNE y de La Ser sobre este mismo tema.

 

Optimización del hormigón con nanocristalización catalizada: impermeabilización, protección y durabilidad

Figura 1. Plataformas petrolíferas en el Mar del Norte. Ambiente muy agresivo para el hormigón.

El hormigón es un material esencial en la construcción, pero su durabilidad se ve comprometida por factores como la carbonatación, la corrosión de las armaduras y la infiltración de agua y agentes agresivos. Las soluciones tradicionales de protección, basadas en recubrimientos superficiales, tienen limitaciones, ya que dependen de la adherencia al sustrato y pueden deteriorarse con el tiempo.

La nanocristalización catalizada surge como una alternativa innovadora que actúa desde el interior del hormigón, modificando su estructura capilar para mejorar sus propiedades mecánicas, aumentar su resistencia química y proporcionar una impermeabilización permanente sin alterar su aspecto.

Nanocristalización catalizada: una transformación desde el interior

El proceso de nanocristalización catalizada se basa en la interacción química entre nanosilicatos y el calcio libre presente en la matriz del hormigón. Para lograr una penetración efectiva, se emplea un procedimiento de nanofiltración que reduce el tamaño de las partículas de silicato a un rango comprendido entre 0,1 y 0,7 nanómetros. Así, el producto penetra profundamente en la red capilar y en los poros más finos del hormigón, donde reacciona con la cal libre para formar una estructura de nanocristales de cuarzo.

Figura 2. Recreación de la red nanocristalina generada en poros y capilares

Este proceso se desarrolla en varias etapas:

  1. Penetración por succión capilar: El nanosilicato, al estar en base acuosa, es absorbido por capilaridad. La magnitud de esta absorción depende del diámetro de los poros y la porosidad del hormigón.
  2. Gelidificación controlada: Se emplea un catalizador mineral que evita la reacción prematura con el calcio libre superficial, lo que permite una distribución homogénea del nanosilicato en el interior del hormigón.
  3. Cristalización interna: Durante un periodo de entre 12 y 15 días, los nanosilicatos reaccionan con la cal presente en el hormigón, formando una malla cristalina que sella los capilares y microfisuras.
  4. Efecto estructural: Al finalizar el proceso, la red de nanocristales aporta características similares a una armadura interna, aumentando la cohesión del material sin afectar su transpirabilidad.

Propiedades y beneficios en la construcción

El tratamiento mediante nanocristalización catalizada modifica significativamente las propiedades del hormigón, mejorando su comportamiento frente a diversas condiciones ambientales y químicas.

  • Impermeabilización profunda: A diferencia de los recubrimientos superficiales, este sistema genera una barrera cristalina en el interior del hormigón que impide la entrada de agua, pero no la sella por completo, lo que permite la salida de vapor y evita problemas de presión interna.
  • Incremento de la resistencia mecánica: La conversión de la cal libre en cuarzo aumenta la densidad y compactación del hormigón, y aumenta su resistencia a la compresión en un 32 % según ensayos de laboratorio.
  • Protección anticorrosiva: La restauración del pH por encima de 11,4 previene la oxidación de las armaduras y detiene la progresión de la carbonatación.
  • Durabilidad ampliada: Ensayos han demostrado que la vida útil del hormigón tratado puede multiplicarse entre 2,6 y 3 veces, reduciendo la necesidad de intervenciones y mantenimiento.
  • Sostenibilidad y compatibilidad con normativas: Al ser un tratamiento 100 % mineral, sin compuestos orgánicos volátiles ni disolventes, cumple con las normativas ambientales y de durabilidad estructural.

Aplicaciones en estructuras y proyectos reales

La tecnología de nanocristalización catalizada se ha implementado con éxito en diversos sectores de la construcción, tanto en estructuras nuevas como en rehabilitación de infraestructuras existentes:

  • Edificación: Se ha utilizado en cimentaciones, sótanos y elementos estructurales para prevenir filtraciones y mejorar la cohesión del hormigón. Los ensayos de penetración realizados en hormigón de 50 años han demostrado una reducción significativa de la permeabilidad al agua.
  • Puentes y viaductos: Se ha aplicado en tableros y cimentaciones para mitigar los efectos de la carbonatación y proteger las armaduras contra la acción de cloruros y sales de deshielo.
  • Túneles y muros pantalla: Su capacidad de sellado interno ha permitido eliminar filtraciones sin necesidad de aplicar recubrimientos superficiales.
  • Infraestructura portuaria: La alta resistencia a los cloruros y ambientes marinos agresivos ha reducido la erosión y el deterioro de los hormigones de muelles y diques, lo que ha minimizado los costes de mantenimiento.

Un cambio de paradigma en la protección del hormigón

El uso de la nanocristalización catalizada supone una evolución en la protección del hormigón, ya que aborda los problemas de degradación desde su origen. A diferencia de los tratamientos superficiales, que pueden desprenderse con el tiempo, esta tecnología modifica la estructura interna del material, lo que ofrece una protección e impermeabilización permanentes.

En un contexto donde la durabilidad y la sostenibilidad son prioridades, la aplicación de esta tecnología en la construcción y rehabilitación de estructuras no solo reduce los costes de mantenimiento, sino que también aumenta la vida útil de las edificaciones, alineándose con los nuevos estándares de calidad y eficiencia en la ingeniería civil.

Os dejo una presentación de la empresa sueca Komsol que os puede resultar de interés.

Pincha aquí para descargar

 

Efecto del hielo y las sales fundentes sobre el hormigón

Figura 1. Ejemplo de acción hielo-deshielo junto con sales fundentes. https://www.interempresas.net/ObrasPublicas/Articulos/300170-Requisitos-revestimientos-protectores-larga-durabilidad-empleo-estructuras-hormigon.html

Cuando entramos en invierno, la bajada de temperaturas trae no solo ciclos de hielo y deshielo, sino que también es muy común el uso de sales fundentes para rebajar el punto de congelación del agua o de fundir el hielo si éste se ha formado. Echar sal sobre pavimentos, aceras o calles es habitual con frío y nevadas, pero tiene ciertos efectos perversos que deberíamos analizar.

En un país como España, donde el 18% de la superficie se encuentra a una altitud superior a 1000 m, y donde la altura media geográfica es de unos 660 m, hace que la posibilidad de fenómenos como las nevadas y heladas sean frecuentes. Estos efectos, por ejemplo, se dejan sentir fuertemente en la red de carreteras, pero también en las estructuras y los paramentos de hormigón. En este artículo nos vamos a centrar en los efectos del hielo y de las sales fundentes sobre el hormigón. En otros países, como es el caso del Reino Unido, en un estudio realizado en 1997, indicó que el 10% de todas las estructuras de hormigón armado se han visto afectadas por el ataque hielo-deshielo.

Por cierto, no vamos a hablar aquí sobre el efecto de las temperaturas en invierno en el hormigonado. No olvidemos que se suspenderá el vertido de hormigón siempre que se prevea que dentro de las 48 horas siguientes puede descender la temperatura ambiente por debajo de los 0ºC. Este tema, de gran trascendencia, se tratará en otro artículo.

El agua aumenta su volumen aproximadamente en un 9% cuando pasa de estado líquido a sólido. Como podemos ver en algunos artículos, se trata de una rareza más del líquido elemento, pues lo normal es que las sustancias se contraigan al enfriarse y se dilaten al calentarse. Esta peculiaridad ha facilitado la evolución de la vida en nuestro planeta, tal y como la conocemos. Sin embargo, cuando de lo que hablamos es de hormigón, estos ciclos de hielo y deshielo son perjudiciales. En efecto, los poros saturados, al congelarse, se rompen de forma explosiva, pudiendo provocar desconchados en el hormigón. Sin embargo, con la red capilar del hormigón o si existen fisuras, los daños pueden ser internos, pues estas fisuras crecen con el aumento de volumen provocado por el hielo.

La resistencia del hormigón a la acción del hielo depende de varios factores como son la edad del hormigón, su composición, el tipo de árido, el tamaño y distribución de los poros o la relación de enfriamiento y secado entre ciclos de hielo-deshielo. La resistencia del hormigón frente a este ataque se evalúa con la norma UNE-CENT/TS 12390-9.

El hielo se puede formar de varias formas: por congelación de la humedad existente en la superficie, por la condensación y enfriamiento del vapor de agua atmosférica (niebla y escarcha), por congelación del agua que cae sobre la superficie, por precipitación de agua en sobrefusión o por la nieve caída y no transformada.

Por otra parte, el uso de sales fundentes sobre la superficie helada del hormigón es un proceso endotérmico que provoca una caída de la temperatura superficial mientras se derrite el hielo. Es el conocido fenómeno de descenso crioscópico o depresión del punto de fusión. La velocidad de enfriamiento puede ser de hasta 14ºC por minuto, lo que provoca un choque térmico en la superficie del hormigón. Por este efecto, se forma un gradiente de temperaturas entre el exterior y el interior del hormigón que provoca un estado de tensiones internas que es capaz de producir fisuras en las capas exteriores del hormigón.

A este efecto físico hay que sumar, en el caso del hormigón armado, la presencia de cantidades suficientes de iones de cloruro disueltos que produce la corrosión del acero, incluso en condiciones altamente alcalinas. Esto genera, tal y como vemos en la Figura 2, picaduras de corrosión en puntos localizados de las armaduras donde la capa pasiva original es más débil, debido principalmente a la formación de sales de ácido clorhídico. Este efecto químico de determinadas sales fundentes es similar a las condiciones de durabilidad de las estructuras en ambientes marinos, de la que ya hemos hablado varias veces en este blog. Afortunadamente, existen alternativas a la sal que deberían tenerse muy en cuenta para evitar los impactos negativos, especialmente en estructuras como puentes.

Figura 2. Picaduras típicas provocadas por la presencia de cloruros en el hormigón. https://www.obrasurbanas.es/requisitos-de-los-revestimientos-protectores-de-larga-durabilidad-y-su-empleo-en-estructuras-de-hormigon/

Os dejo a continuación un documento técnico sobre el hormigón sometido a ciclos hielo-deshielo que espero sea de vuestro interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cloruros

Figura 1. Control de polvo y estabilización de caminos con cloruros. https://www.youtube.com/watch?v=kr99E6NkwV4

El polvo que se desprende en vías terrestres no pavimentadas pueden impactar significativamente en la salud, la seguridad y en el coste de su mantenimiento. Este problema se da especialmente en terrenos arcillosos y climas áridos y semiáridos. En estos casos, se puede utilizar cloruros para reducir la cantidad de polvo.

La adición de cloruro disminuyen las fuerzas de atracción entre las arcillas, incrementando notablemente la cohesión aparente. Las propiedades higroscópicas de estos productos mantienen la humedad en la superficie, reduciendo el punto de evaporación, si bien esta sal es fácilmente lavable. Con todo, se reduce la evaporación y es capaz de absorber hasta diez veces su propio peso cuando la humedad ambiental es alta. Dicha humedad puede mantenerse en sus dos terceras partes durante un día de calor seco, lo que justifica su eficacia en reducir la formación de polvo.

Son muchas las sales que se pueden utilizar para la estabilización de suelos, especialmente aquellos arcillosos. Destacan el cloruro de potasio, el cloruro de magnesio, el nitrato de sodio, el cloruro de bario, el carbonato de sodio, el cloruro de calcio y el cloruro de sodio, entre otros. Sin embargo, por razones económicas, es el cloruro de sodio es que más se ha empleado en carreteras, y en otros casos, se han utilizado con mayor o menor éxito en función de las condiciones de cada caso.

Agregar cloruro de sodio a una arcilla reduce su contracción volumétrica, forma una costra superficial y disminuye los cambios en la humedad. Asimismo, mantienen unidas las partículas no arcillosas y que se encuentran en la superficie, se desprenden con menor facilidad cuando sufren los ataques abrasivos del tránsito. El poder coagulante de la sal supone un menor esfuerzo mecánico en la compactación, debido a que el intercambio iónico con los minerales de los finos del suelo produce un efecto cementante.

No obstante, para que los cloruros sean eficaces, la humedad relativa ambiental debe ser superior al 3% y el suelo debe tener minerales que pasen por la malla 200 y que reaccionen favorablemente con la sal.

Lo habitual es aplicar una disolución del cloruro en agua mediante riego al comenzar la temporada seca. La dosificación del cloruro oscila entre 0,5 y 1,0 kg/m2. En zonas próximas al mar, el tratamiento puede sustituirse por un riego con agua de mar.

En el siguiente vídeo se puede ver cómo se puede controlar el polvo con cloruro de calcio.

A continuación, un par de vídeos sobre estabilización de caminos con sal.

Os dejo a continuación una publicación del Instituto Mexicano del Transporte sobre la estabilización de suelos con cloruros.

Pincha aquí para descargar

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Protección de estructuras de hormigón mediante revestimientos

Revestimiento de suelo de resina epoxi líquida

Un revestimiento constituye una barrera que impide el paso y el acceso de los agentes agresivos exteriores en el hormigón. Se trata de capas finas, de unas micras hasta 3 mm de espesor, de diferentes productos, que pueden ser pinturas o micromorteros de diferentes composiciones químicas. Los agentes agresivos de los que el revestimiento debe realizar una protección son, entre otros, los siguientes:

  • El agua, por lo que el revestimiento debe ser impermeable
  • Líquidos agresivos, por lo que el revestimiento debe ser resistente químicamente
  • Cloruros y otros iones, que normalmente vienen disueltos en agua
  • Dióxido de carbono, por lo que el revestimiento debe ser una barrera a dicho gas

 

Se utilizan como revestimiento productos diferentes según el tipo de protección que se quiera realizar. Los productos más habituales son las resinas epoxi, las resinas de brea-epoxi, las emulsiones bituminosas, las pinturas acrílicas, las impregnaciones de siloxanos, los micromorteros de cementos y los micromorteros de epoxi-cemento.

Resinas epoxi

La resina epoxi constituye un revestimiento formado por dos componentes termoendurecibles.  Son muy interesantes como revestimiento del hormigón porque presentan una gran adherencia, buenas resistencias mecánicas, magnífica resistencia química, elevada impermeabilidad a líquidos y gases y una buena resistencia a la abrasión y a los golpes. Las resinas epoxi puras presentan las mejores características, pero debido a la dificultad existente en su aplicación por la elevada viscosidad, se emulsionan con agua o se disuelven con disolventes orgánicos.

Resinas de brea-epoxi

La unión de la brea -que es un producto dúctil y elástico-, con la resina epoxi -que presenta una excesiva rigidez-, produce un revestimiento de mayor flexibilidad y menor coste que la  resina epoxi, si bien con unas características menores en cuanto a la resistencia química y mecánica. Así y todo, resulta un producto adecuado para determinados usos.

Pinturas bituminosas

Las emulsiones bituminosas se componen de betún asfáltico, agua y un agente emulsionante. Son pinturas que se pueden aplicar a brocha, rodillo o proyección mecánica. Estos productos se caracterizan por su gran impermeabilidad al agua, su facilidad de aplicación y colocación, su buen comportamiento en contacto con el terreno y su bajo coste.

Pinturas acrílicas

Se trata de resinas acrílicas emulsionadas en agua o con disolventes orgánicos a fin de mejorar su fluidez y aplicabilidad. Se trata de unas pinturas que se suelen utilizar para evitar la carbonatación del hormigón. Entre sus características principales destaca su excelente impermeabilidad tanto al agua, al dióxido de carbono y a los cloruros, su buen aspecto estético y su permeabilidad al vapor de agua.

Impregnaciones a base de siloxanos

Son impregnaciones que, sin llegar a formar una película continua, se introducen en los poros del hormigón e impiden la entrada de las gotas de agua al cambiar su tensión superficial. Este carácter hidrófugo hacen a estas impregnaciones adecuadas para proteger al hormigón de los ataques por cloruros, pues éstos viajan disueltos en el agua.

Micromorteros de cemento

Son mezclas de cemento, arena fina y resinas sintéticas (normalmente acrílicas). Forman un revestimiento de 2-3 mm impermeables y con una buena resistencia a la abrasión. Dejan una superficie muy cerrada y adecuada para una posterior aplicación de otra pintura de revestimiento. Son adecuados estos revestimientos para hormigones que puedan estar sumergidos de forma no permanente, incluso en entornos donde ataquen los cloruros.

Micromorteros de epoxi-cemento

Son como los anteriores, pero sustituyendo las resinas acrílicas por resinas epoxi. En este caso, además de aditivo, las resinas epoxi actúan como ligante junto al cemento. Ello permite una gran impermeabilidad y resistencia mecánica, y unas resistencias químicas aceptables. Para un ataque químico medio suele bastar una capa de 2 mm. Además, también son recomendables en combinación con posteriores aplicaciones de pinturas de resinas epoxi.