Dúmper sobre orugas

Figura 1. Dúmper sobre orugas Cat Raupentransporter de 30 t. https://www.youtube.com/watch?v=R2a-Eir2pss

El desplazamiento sobre dos carros de orugas supone, para las máquinas de movimiento de tierras, una mayor adherencia al terreno. Es el caso de terrenos embarrados o de baja capacidad portante, donde es necesaria cierta flotabilidad y adherencia y donde los neumáticos no son útiles. Un caso habitual del uso de las orugas son las palas cargadoras, buldóceres, retroexcavadoras, etc.

Las máquinas de acarreo de tierras, como los dúmperes, también pueden montarse sobre orugas. En la Figura 1 se observa un dúmper de gran tamaño, pero también podemos encontrar este tipo de máquinas en trabajos pequeños, donde su diseño compacto permite desplazarse por terrenos accidentados y bordillos (Figura 2).

Figura 2. Dúmper sobre orugas DT05 de Wacker Neuson, para carga útil de 500 kg. https://www.wackerneuson.es/es/productos/dumpers/dumpers-sobre-orugas/

Os dejo algunos vídeos de este tipo de maquinaria, que espero os sean de utilidad.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Estabilización de suelos con ligantes bituminosos

Figura 1. Estabilización de suelos con betún espumado. Fuente: https://www.i-q.net.au/main/research-to-expand-foamed-bitumen-applications

El uso de ligantes hidrocarbonados puede estabilizar suelos granulares con pocos finos y baja plasticidad. Consiste en la mezcla íntima y homogénea, compactada adecuadamente, de terreno, agua, ligante bituminoso y, en su caso, adiciones. El ligante bituminoso mejora las características resistentes del suelo, reduciendo su capacidad de absorción de agua e incrementando su cohesión.

Se trata de una técnica poco empleada por su elevado coste, pero que puede ser interesante, por ejemplo, con arenas de granulometría uniforme, como sería el caso de algunas regiones del norte de Francia, Países Bajos, la Pampa argentina o Arabia Saudí (Kraemer et al., 1999). También se emplea donde el coste de los betunes es asequible. Sería adecuado para suelos con menos del 20% del peso pasando por el tamiz 0,080 UNE, con un índice plástico IP<10, que puedan ser pulverizados económicamente y que estén exentos de cantidades perjudiciales de materia orgánica, arcillas de alta plasticidad o materiales micáceos (García Valcarce, 2003). La fracción cernida por el tamiz 0,40 de UNE cumplirá las condiciones siguientes: LL < 35 e IP < 15.

Dependiendo del tipo de suelo, método constructivo y condiciones meteorológicas, se emplean en este tipo de estabilización betunes fluidificados de viscosidad media, emulsiones bituminosas de rotura lenta y aceites pesados. El mezclado suele ejecutarse “in situ”, agregando agua al suelo para facilitar la mezcla de todos los componentes, aunque también se podría realizar en central. La mezcla debe realizarse de tal forma, y a la velocidad precisa para conseguir un material homogéneo y exento de concentraciones de ligante. Tras la colocación, debe compactarse la mezcla adecuadamente en el tajo.

Esta técnica de estabilización de suelos se encontraba en el artículo 511 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes hasta la entrada en vigor de la O.C. 297/88 que lo suprime. La justificación dada era la de una unidad de obra de escaso empleo, dejando su regulación a los pliegos de prescripciones técnicas particulares. La Orden FOM 891/2004 lo derogó definitivamente este artículo.

Resulta de interés el uso de la espuma de betún (“foamed bitumen”) en la estabilización de suelos. Se trata de una técnica también utilizada en el reciclado de pavimentos “in situ” o en la construcción de mezclas bituminosas en capas de base. El betún espumado se consigue inyectando una pequeña cantidad de agua fría (1 a 2% del peso del asfalto) y aire comprimido a una masa de betún caliente (160º C – 180º C), dentro de una cámara de expansión, generando espuma (Thenoux y Jamet, 2002). Se trata de una técnica relativamente nueva en su uso que permite producir mezclas asfálticas de un modo muy diferente a los sistemas tradicionales.

A continuación os dejo una conferencia sobre estabilización de suelos con emulsiones asfálticas del grupo TDM.

Os dejo a continuación un vídeo de una estabilización usando betún y cemento.

 

También os dejo una conferencia sobre estabilización de asfalto espumado de Sergio Serment.

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

THENOUX, G.; JAMET, A. (2002). Tecnología del asfalto espumado. Revista Ingeniería de Construcción, 17(2):84.92.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cal

Figura 1. Estabilizadora de suelos WR 250 de Wirtgen. http://caltek.com.co/tratamiento-de-suelos-con-cal/

Los trabajos de construcción se ven dificultados por la presencia de arcilla y un alto contenido de agua en un suelo. Una alternativa a la sustitución del suelo es la estabilización mediante cal. El efecto estabilizador de la cal sobre el suelo se obtiene mezclándolo y compactándolo con cal aérea (viva o apagada) y agua. Los suelos más adecuados son los de granulometría fina y notable plasticidad. Se emplea cal con una riqueza en CaO superior al 90%. Dependiendo del caso, se agrega un 4-7 % de cal apagada o del 2-5 % de cal viva sobre el peso seco del suelo. Hay que proteger a los operarios si se emplea la cal viva, evitando el contacto con la piel. La mezcla se puede realizar “in situ” (Figura 1) o en central. Algunos autores (Bouzá, 2003) diferencian entre la mejora y la estabilización de un suelo con cal en función de la ganancia mínima de resistencia a compresión simple sobre el valor inicial del suelo de 350 kPa.

La cal viva (óxido de calcio) seca de forma efectiva la humedad del suelo por hidratación y evaporación, al reaccionar de forma exotérmica. Se puede bajar entre un 2% y un 5% la humedad en función de la cal añadida y las condiciones del suelo. Este proceso es inmediato tras adicional la cal. Otro efecto inmediato es una reacción rápida de floculación e intercambio iónico que modifica la granulometría, la textura y la compacidad del suelo, así como la propiedad de retener el agua. A continuación, se forman nuevos productos químicos mediante una reacción muy lenta de tipo puzolánico, elevándose el pH del suelo a valores en torno al 12,5. La sílice y la alúmina del suelo se combinan con la cal en presencia de agua para formar silicatos y aluminatos cálcicos insolubles, lo que supone una mejora de las características resistentes, así como una mayor estabilidad frente a las heladas.

El proceso de ejecución «in situ» pasa por la distribución uniforme de la cal viva o apagada mediante equipos mecánicos con la dosificación fijada de dos formas posibles (Cabrera et al., 2012):

  • Por vía seca, extendiendo previamente la cal en forma de polvo o granes sobre la superficie de trabajo, antes de mezclarla con el suelo.
  • Por vía húmeda, en forma de lechada de cal hidratada o apagada elaborada previamente por equipos mecánicos.

Estos tratamientos se utilizan cuando es imposible disponer de materiales alternativos, pues su coste puede ser limitante en caso contrario. Su uso habitual es en capas de subbase y base para pavimentos de viales y carreteras, infraestructuras de ferrocarriles y pistas aeroportuarias para aumentar su capacidad portante y reducir su susceptibilidad al agua de suelos arcillosos. Los suelos a tratar con cal no contendrán materia orgánica o vegetal, ni elevados contenidos de sulfatos solubles. En el caso de subbases y bases de firmes, el suelo antes del tratamiento no contendrá partículas de tamaño superior a 80 mm o a la mitad del espesor de la tongada compactada. Además, el rechazo del tamiz 0,080 UNE será inferior al 85% en peso. La efectividad del tratamiento depende del nivel de arcilla presente (al menos, del 7%) y de su capacidad para reaccionar.

La estabilización con cal aumenta tanto el límite líquido como el plástico, así como muy ligeramente su índice de plasticidad en suelos con IP<15. Sin embargo, reduce el índice plástico en los suelos de plasticidad media-alta (IP>15), desactivando total o parcialmente la actividad de las arcillas, consiguiendo de esta forma una menor susceptibilidad al agua. Asimismo, permite densificar suelos con una humedad natural elevada al incrementar la humedad óptima de compactación. No obstante, la estabilización con cal disminuye la densidad máxima Proctor del suelo original. Como contrapartida, se incrementa el esfuerzo cortante con el porcentaje de cal, el tiempo transcurrido, la temperatura de curado y la disgregación del suelo durante la ejecución.

El suelo se desmenuza fácilmente y se vuelve granular con la cal. El aumento del límite plástico y de la humedad óptima de compactación facilitan su puesta en obra. El mezclado se realiza habitualmente en dos etapas, con un tiempo de reacción intermedio de 1 a 2 días. Los equipos modernos de mezclado «in situ» disponen de un mezclador situado en la parte central de la máquina (Figura 2). Esta cámara de mezclado puede tener unas barras de impacto en su zona delantera para disgregar las partículas gruesas, y una o dos compuertas de apertura regulable, y un sistema de difusores para la distribución del agua, lechada o aditivos de líquidos.

Figura 2. Estabilización «in situ» mediante un rotor de fresado y mezcla. https://www.wirtgen-group.com/es-bo/aplicaciones/obras-de-movimiento-de-tierras/estabilizacion/

Los suelos granulares suelen estabilizarse con cemento, pero se puede usar cal, sobre todo si se añaden cenizas volantes. A largo plazo, estas cenizas forman materiales cementantes. Las dosis de cal y cenizas oscilan entre el 3-5 % y el 10-20 %, respectivamente.

En el artículo 512 Suelos estabilizados in situ se establecen las especificaciones para el tratamiento de suelos con cal en el ámbito español de las carreteras. Los suelos estabilizados in situ S-EST1 y S-EST2 se pueden conseguir con cal o con cemento. El S-EST3 se obtiene solo con cemento.

Os dejo a continuación las recomendaciones de la Junta de Andalucía para los pliegos de especificaciones técnicas generales para el tratamiento de los suelos con cal.

Pincha aquí para descargar

Os dejo un vídeo sobre la estabilización de suelos por la vía húmeda de la Asociación Antera.

Podéis ver a continuación varios vídeos donde se puede ver cómo se ejecuta la estabilización con cal.

Referencias:

BAUZÁ, J.D. (2003). Estabilización de suelos con cal. Mezclas con cemento en las infraestructuras del transporte, Madrid, 30 de enero, 37 pp.

CABRERA, F.; NAVARRO, J.J.; ESTAIRE, J.; RUIZ, M.S. (2012). Nuevas prescripciones de estabilización de suelos con cal para rellenos de terraplén en líneas de alta velocidad de ADIF. Revista Vía Libre – Técnica, 5, pp. 1-9.

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de hormigón vibrado

Figura 1. Ejecución de columnas de hormigón vibrado. https://www.keller-na.com/expertise/techniques/vibro-concrete-columns

En suelos sensibles, como la turba, una columna de grava puede ser inadecuada. En este caso se puede sustituir el material granular por hormigón para formas las llamadas columnas de hormigón vibrado (“vibro-concrete columns”, VCC). Suele utilizarse en suelos orgánicos flojos superpuestos a depósitos granulares. También se podría utilizar en terrenos contaminados donde no se desee un flujo de agua. La ejecución estas columnas es similar al de la columna de gravas por vibrodesplazamiento. Se bombea hormigón al terreno a través de una tubería anexa al vibroflotador. Una ventaja del método es que permite la ampliación de la base sobre la que se asienta la columna, lo que mejora la capacidad de carga y reduce los asientos. Una vez completada la columna, se puede introducir armadura de refuerzo.

El diámetro de estas columnas depende de las condiciones del suelo, pero es mayor cuanto más débil sea el suelo. Es habitual que el diámetro del fuste oscile entre 0,4 y 0,6 m, ampliándose a 1 m en la base. La profundidad del tratamiento oscila entre 2,5 y 12 m, pudiendo llegar a 25 m.

La técnica es aplicable a suelos con una resistencia al corte de 15 a 60 kPa, aunque si el espesor de la capa es inferior a 1,0 m, se podría utilizar en suelos de 8 a 15 kPa. Además, no se producen residuos durante la ejecución, debido al desplazamiento del terreno, lo cual es muy interesante en terrenos contaminados.

En la Figura 2 se observa el proceso constructivo de este tipo de inclusiones rígidas.

Figura 2. Ejecución de una columna de vibro-hormigón. Cortesía de Balfour Beatty.

Os dejo una animación de Keller donde se describe el procedimiento constructivo.

También os adjunto un folleto de la empresa Balfour Beatty sobre este tipo de inclusiones rígidas.

Pincha aquí para descargar

Referencias:

BRIANÇON L. (2002). Renforcement des sols par inclusions rigides – Etat de l’art. IREX, Paris, 185 p.

IREX (2012). Projet national ASIRI. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Presses des Ponts. France.

JENCK, O. (2005): Le renforcement des sols compressibles par inclusions rigides verticals. Modélisation physique et numérique.  https://tel.archives-ouvertes.fr/tel-00143331

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Refuerzo del terreno mediante inclusiones rígidas

Un suelo blando puede reforzarse mediante inclusiones rígidas verticales dispuestas en forma de malla que suelen apoyarse sobre un sustrato competente y que no se conectan a la estructura. Sobre las inclusiones se acomoda una capa de reparto para transferir las cargas. Esta capa de transferencia puede realizarse en balasto, materiales tratados con cemento o cal, o por materiales granulares. La transferencia mejora si se disponen uno o varios niveles de geosintéticos. Las inclusiones rígidas limitan los asientos y se mejora la capacidad portante del terreno.

A diferencia de las inclusiones blandas, como pueden ser las columnas de grava, la rigidez de las inclusiones rígidas es mayor a la del terreno natural, no siendo necesario confinarlas lateralmente. Además, sus diámetros son menores, con porcentajes de tratamiento comprendidos entre el 2 y el 15% del volumen del terreno. El material introducido en las inclusiones blandas no presenta cohesión, mientras que, en las rígidas, la cohesión es significativa y permanente. Las inclusiones rígidas son estables sin necesidad del confinamiento lateral que, por ejemplo, necesita una columna de grava.

En la Figura 1 se observa que las inclusiones rígidas, a diferencia de otras cimentaciones, no se conectan directamente con la estructura. En efecto, la técnica distribuye las tensiones entre las inclusiones y el suelo blando a través de la capa de reparto y por el rozamiento negativo originado por los diferentes asientos existentes entre el suelo y las inclusiones (Figura 2). Tanto la geometría como las características geotécnicas de la capa determinan la eficacia de la transmisión de las cargas. Una forma de reducir las tensiones en el terreno y aumentarlas en las inclusiones es colocar geomallas en la capa de reparto. Estas mallas acortan la diferencia de asientos entre la cabeza de las inclusiones y el suelo debido al efecto membrana.

Figura 1. Tipos de cimentación (IREX, 2012)

 

Figura 2. Funcionamiento de las inclusiones rígidas (Jenck, 2005)

Las inclusiones rígidas se clasifican atendiendo a su proceso constructivo y a su mecanismo de transferencia de cargas. Una primera división, formulada por Briançon (2002), permite distinguir las inclusiones prefabricadas de las ejecutadas “in situ” (Figura 3). Las primeras se hincan por golpeo o presión distinguiéndose los pilotes de hormigón, acero y madera. Las segundas se subdividen en pilotes de extracción e inclusiones ejecutadas por medio de un ligante añadido al suelo. Sin embargo, una clasificación más utilizada divide las inclusiones rígidas atendiendo a su procedimiento constructivo en inclusiones por desplazamiento, por extracción y por mezclado.

Figura 3. Principales tipos de inclusiones rígidas. Adaptado de Briançon (2002)

Las inclusiones rígidas producen los siguientes efectos sobre el terreno:

  • Mayor resistencia y menor deformación del suelo tratado. La magnitud depende del espaciamiento entre las inclusiones, de las condiciones del terreno, del empotramiento y de la dosificación del mortero de la inclusión.
  • Descarga de las tensiones al suelo blando debido al efecto arco entre las inclusiones, que puede ser del 60 al 95% de la carga.
  • Disminución de la consolidación de rellenos blandos saturados, al aliviar las inclusiones la carga que le llega al terreno.

Os dejo un vídeo explicativo del procedimiento constructivo de una de las técnicas, en este caso, columnas de módulo controlado. Espero que os sea de interés.

Referencias:

BRIANÇON L. (2002). Renforcement des sols par inclusions rigides – Etat de l’art. IREX, Paris, 185 p.

IREX (2012). Projet national ASIRI. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Presses des Ponts. France.

JENCK, O. (2005): Le renforcement des sols compressibles par inclusions rigides verticals. Modélisation physique et numérique.  https://tel.archives-ouvertes.fr/tel-00143331

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador mixto de neumáticos y cilindro vibrante

Figura 1. Compactador mixto Dynapac CC224HF

Los compactadores mixtos de neumáticos y de cilindro vibratorio («combination rollers«) se usan principalmente en la compactación de firmes asfálticos. No obstante, en obras de tierra presentan la ventaja de combinar la acción profunda del cilindro vibratorio con el sellado superficial producido por el eje trasero formado por 3 o 4 neumáticos. Ambas partes pueden estar articuladas o presentar un bastidor rígido. La tracción suele darse en ambos ejes.

La anchura de compactación suele ser de 1,70 m, con modelos que llegan a 2,30 m. El diámetro del rodillo varía de 1,10 a 1,50 m, repartiéndose el peso en un 40% sobre el cilindro y el resto en las ruedas neumáticas. El peso oscila entre 7 y 16 t. La carga por rueda neumática suele ser de 2 a 3 t, lo que supone una carga lineal unitaria comprendida entre 25 y 30 kp/cm.

Las frecuencias de trabajo oscilan entre 25-40 Hz con amplitudes nominales a elegir, normalmente, entre dos o tres valores inferiores a 1 mm. La velocidad llega a 15 km/h, aunque la de trabajo puede ser de 7 km/h.

Este tipo de compactador mixto puede ser interesante en determinadas obras, pero hay que tener en cuenta que el rendimiento es comparativamente menor que el obtenido por dos máquinas por separado.

En ocasiones (Figura 2), puede ser este compactador híbrido remolcado. Son máquinas de mayor durabilidad, con un bastidor de alta resistencia capaz de lastrar hasta 14 t.

Figura 2. Compactador mixto remolcado. https://www.broons.com/product/combination-roller/

Os paso un vídeo de un compactador mixto de la empresa CASE.

https://www.youtube.com/watch?v=fQ8XSgIlkZE

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rodillos remolcados estáticos «pata de cabra»

Figura 1. Rodillo doble remolcado pata de cabra.

Se trata de un tipo de compactador estático de rodillo de patas apisonadoras. El nombre de «pata de cabra» viene por la similitud a la acción del paso de un rebaño, cuyas patas penetran en el suelo y lo compactan.

Están remolcados por un tractor, y constan de un cilindro de 1,20 a 1,70 m de anchura y un diámetro entre 1,00 y 1,50 m, al cual se le disponen de 90 a 130 patas de unos 15 a 30 cm. Estos salientes están dispuestos al tresbolillo, y sus formas pueden ser truncadas, cilíndricas u otras. El grosor máximo de la tongada, que está ligado la altura de la pata y al espesor de la misma, no debe pasar de unos 30 cm. La presión que transmiten al terreno oscila entre los 1,5 y 3,0 MPa.

Su uso actual es limitado. El peso de cada rodillo es de unas 5 t, pudiéndose remolcar varios a la vez, para mejorar el rendimiento de la compactación. La velocidad de trabajo oscila entre 3 y 10 km/h. Es una máquina muy robusta, y por consiguiente no necesita casi entretenimiento, pero requiere, para asegurar el rendimiento, una gran superficie de trabajo.

Figura 2. Rodillo remolcado pata de cabra. Imagen: V. Yepes (2020)

Os dejo un vídeo descriptivo de este compactador:

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas encapsuladas con geotextil

Figura 1. Esquema de columna encapsulada de geotextil (Murugesan y Rajagopal, 2010)

Algunos suelos, como los depósitos de arcilla blanda, los suelos de turba, los rellenos recientes, las arcillas marinas, etc., plantean problemas en la construcción debido a su baja capacidad portante, su alta compresibilidad, su tendencia al flujo lateral, etc. Estos suelos necesitan un tratamiento para mejorar su comportamiento técnico según los requisitos de diseño de la estructura.

Un tratamiento habitual en suelos arcillosos blandos es la utilización de columnas de grava. Sin embargo, si los suelos son extremadamente blandos, el confinamiento lateral que ofrece el suelo circundante puede ser inadecuado para conformar la columna, lo que provocará asientos superficiales más acusados, disminuyendo de esta forma la eficacia de las columnas de gravas. Una posibilidad de mejorar el rendimiento de las columnas de grava es envolverla con un geosintético adecuado (geomalla o geotextil) de forma tubular (Figura 1).

Las columnas reforzadas por geosintéticos, o columnas encapsuladas con geotextil geotextile encased columns, GECs») son pilotes granulares, normalmente de arena, revestidos con un geotextil de alta resistencia, que se utilizan para la mejora del terreno en suelos extremadamente blandos. La función estructural del encapsulado geosintético transforma el relleno mineral en elementos de soporte. Es un método muy interesante para cimentar terraplenes en suelos con baja capacidad portante. Al poder utilizar los rellenos existentes en la obra, se ahorran  recursos y tiempo.

Este sistema se desarrolló en Alemania a mediados de los años 90. La función del geotextil es garantizar la integridad de los pilotes y proporcionar confinamiento en suelos muy débiles hasta una resistencia al corte no drenada de 15 kPa. Por encima de este valor, el suelo tiene suficiente presión de confinamiento para asegurar la integridad del pilote, pudiéndose colocar arena o grava sin necesidad de geotextil. La clave es el geotextil que soporta el material de relleno, creando una carcasa que se tensa por las tensiones horizontales dirigidas hacia el terreno colindante (Figura 2).

Figura 2. Columna reforzada por geosintéticos. https://www.menardgroupusa.com/solutions/geotextile-encased-columns-for-ground-improvement/#

La técnica consiste en conducir o hacer vibrar un tubo de acero de 80 cm de diámetro en el terreno, seguido por la colocación de un geotextil cilíndrico cerrado inferiormente, con una resistencia a la tracción comprendida entre 200 y 400 kN/m. Este tubo se incrusta unos 0,5 m en el estrato competente. A continuación, se introduce arena o grava para formar una columna y se retira la camisa de acero. El principio básico de esta técnica es aliviar la carga sobre el terreno blando sin alterar sustancialmente la estructura del suelo. El sistema actúa como drenaje y como pilote. La columna transfiere la carga a los estratos portantes, limitando la carga sobre el terreno blando, acotando los asientos. A menudo se coloca en la parte superior de los pilotes una capa de refuerzo para mejorar la distribución de la carga.

A pesar de que es posible introducir grava, esta proporciona una mayor rigidez a la columna y tiene que ser compatible con el material geosintético para evitar su deterioro. El encajonamiento geosintético también controla el diámetro de la columna, minimiza las pérdidas de material y aumenta la rigidez global de la columna. Asimismo, evita la contaminación de la columna granular, preservando así las características de drenaje.

Los efectos que producen estas columnas son los siguientes:

  • Reducción del asentamiento residual en un 50 – 75% respecto al terreno no mejorado
  • Hasta el 90% de la consolidación tiene lugar durante la construcción
  • Puede utilizarse en suelos extremadamente blandos (por ejemplo, resistencia al corte no drenado < 15 kPa)
  • Se puede cargar inmediatamente después de la instalación

En la Figura 3 puede verse el procedimiento constructivo de las columnas reforzadas por geosintéticos. En la fase (1) se instala el tubo; en la fase (2) se coloca la funda de geotextil; en la fase (3) se rellena dicha funda; por último, en la fase (4) se extrae el tubo.

Figura 3. Fases constructivas de una columna reforzada por geosintéticos. https://cofra.com/solutions/elements/geotextile-encased-columns.html

Existen dos posibilidades de métodos constructivos, en función de que se desplace o no el suelo blando. La primera es el método por desplazamiento, en el cual se introduce un tubo de acero con punta cerrada, seguido por la inserción del geotextil y el relleno granular. En este caso, la punta se abre cuando la tubería se levanta. Es un procedimiento útil en suelos muy blandos, con diámetros aproximados de 0,80 m y separación entre columnas de 1,5 a 2,5 m.

La segunda técnica constructiva es el método de sustitución, con excavación del suelo blando que queda dentro de la tubería. Se introduce aquí una camisa abierta y se extrae el material del interior mediante una barrena. Se prefiere este método para suelos con una resistencia a la perforación relativamente alta, o cuando hay que minimizar los efectos de las vibraciones en edificios cercanos o carreteras.

Os dejo algunos vídeos que ilustran este procedimiento constructivo.

Referencias:

ALMEIDA, M.; RICCIO, M.; HOSSEINPOUR, I.; ALEXIEW, D. (2018). Geosynthetic Encased Columns for Soft Soil Improvement. DOI:10.1201/9781315177144.

KEMPFERT, H.G.; JAUP, A.; RAITHEL, M. (1997). Interactive behavior of a flexible reinforced sand column foundation in soft soils. ISSMGE, 14th International Conference on Soil Mechanics and Geotechnical Engineering, Hamburg, Germany, pp. 1757-1760.

MURUGESAN, S.; RAJAGOPAL, K. (2006). Studies on the Behavior of Single and Group of Geosynthetic Encased Stone Columns. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):129-139.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de cal y de cal-cemento

Una forma conocida de estabilizar las arcillas y los limos blandos es mezclarlos «in situ» con cal viva (CaO). Ocurre una reacción puzolánica entre la cal y los minerales de la arcilla que produce silicato de calcio, el cual es duro y resistente, por lo que aumenta la resistencia y una reducción de la plasticidad del material primitivo. Así, la arcilla blanda se convierte en una arcilla firme parecida a una costra seca. De esta forma, por ejemplo, se pueden estabilizar terraplenes de arcilla al entremezclarle capas de cal. El suelo blando que queda fuera de la zona tratada apenas se ve afectado.

La mezcla «in situ» produce una mejora significativa de la resistencia al corte del suelo mediante una serie de efectos positivos, entre los que se incluyen:

  • El calor de la reacción exotérmica de la cal y/o el cemento con el agua del suelo reduce el contenido de humedad del suelo, aumentando así la resistencia.
  • El intercambio de iones de la química de la arcilla de sodio a calcio hace que las partículas se agreguen aumentando la permeabilidad.
  • Efecto cementante del calcio en la cal.
Figura 1. Ejecución de una columna de cal. https://civildigital.com/lime-cement-columns/

Sin embargo, el sistema que vamos a recoger en este artículo consiste en ejecutar columnas de cal lime columns o lime piles«), previa una perforación vertical del terreno. La cal viva, finamente molida, se mezcla con la arcilla blanda utilizando una máquina de columnas de cal (Figura 1). Las columnas de cal, de hecho, constituyen una técnica de mejora del terreno mediante una inclusión resistente, siendo una variante de las columnas de suelo-cemento. Se trata de una técnica de estabilización profunda en vía seca aplicable a suelos blandos para mejorar sus características geomecánicas, aumentar la estabilidad, resistencia al corte, capacidad portante, compresibilidad y controlar la permeabilidad.

El efecto que produce una columna de cal es un aumento en la cohesión promedio a lo largo de una superficie de rotura activa, aunque este efecto de la cal sobre la resistencia del terreno es diferente en los distintos tipos de suelo. Además, el calor generado por la hidratación de la cal viva también reduce el contenido de agua de los suelos arcillosos, lo que da lugar a una consolidación acelerada y un aumento de la resistencia. Las columnas de cal pueden utilizarse para el soporte de cargas, la estabilización de taludes naturales y cortados, y como sistema de contención de excavaciones.

Las columnas de cal son apropiadas para suelos que contengan al menos un 20% de arcilla, y el contenido de limo y arcilla debe ser como mínimo del 35%. Se puede agregar yeso para ayudar a estabilizar los suelos orgánicos con contenidos de humedad de hasta el 180%. Al añadir yeso a la cal, la resistencia no drenada puede ser tres veces mayor que cuando se utiliza la cal sola. Las columnas de cal son especialmente eficaces cuando la temperatura del suelo es elevada, porque el ritmo de endurecimiento de las columnas es más rápido.

En la Figura 2 se observa el procedimiento para construir una columna de cal. Se introduce cal viva a través de la barra kelly de una perforadora en cuyo extremo se encuentra una batidora o mezcladora. Se pueden conseguir fácilmente diámetros de columna superiores a 0,50 m y profundidades de hasta 10 a 15 m. Las columnas mejoran la capacidad portante de la arcilla blanda en función de la separación entre ellas.

Figura 2. Procedimiento para la construcción de columnas de cal. Adaptado de Broms y Boman (1979)
Figura 2. Procedimiento para la construcción de columnas de cal. Adaptado de Broms y Boman (1979)

En la Figura 3 se muestran las fases constructivas de la columna de cal. En primer lugar (I) se introduce la barra mediante una broca batidora. Al llegar a la profundidad especificada (II), la herramienta retorna a la superficie. Por último, al regresar la broca a la superficie (III), la herramienta gira mientras el flujo de aire a presión lleva cal viva hasta el fondo.

Figura 3. Fases constructivas de una columna de cal

Un inconveniente de las columnas de cal es que pueden actuar como drenajes, disminuyendo su capacidad portante con el tiempo debido a la lixiviación por aguas subterráneas ligeramente ácidas. La mezcla de cal y arcilla puede ser más sensible a las heladas que el suelo por sí solo. A veces, el material de la columna aparece como grumos del tamaño de una caja de cerillas, resultado de las variaciones en la reacción química. También puede agrietarse en capas cada 20-50 mm y ser más débil en el centro. Por estas razones, los ensayos de las mezclas de laboratorio no suelen compararse bien con las pruebas de campo.

En las columnas de cal-cemento se añade cemento Portland a la cal. Normalmente las proporciones de cal/cemento en porcentaje por peso son 50/50. La arcilla combinada con cal y cemento en las columnas no es homogénea. Cuando se mezcla con cal y cemento, se forman grumos de arcilla estabilizada. La resistencia al corte en las juntas entre los grumos es menor que dentro de los grumos.

Referencias:

BROMS, B.B.; BOMAN, P. (1979). Lime columns – A new foundation method. Journal of the Geotechnical Engineering Division, 105(4): 539-556.

ROGERS, C.D.F.; GLENDINNING, S. (1997). Improvement of clay soils in situ using lime piles in the UK. Engineering Geology, 47:243-257.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos biológicos como técnica de mejora de terrenos

Figura 1. Bioestabilización mediante vegetación. https://www.skyfilabs.com/project-ideas/soil-bioengineering

La mejora de suelos mediante métodos biológicosbio-mediated soil improvement«), también conocida como biorremediación o biorreparaciónbioremediation«) incluye el empleo de sistemas y procedimientos biológicos para estabilizar y mejorar el terreno en el ámbito geotécnico o para atenuar o reparar las consecuencias de determinados impactos ambientales.

Esta técnica incluye múltiples formas de estabilizar los suelos. Una de ellas es el uso de vegetación para sujetar el terreno con sus raíces, otra implica el uso de organismos que precipitarían enlaces formadores de calcio para aumentar la resistencia mediante un proceso de cementación. Pero veamos estos sistemas.

La bioestabilización supone el empleo de vegetación para estabilizar laderas, especialmente el material superficial (Figura 1). El uso de vegetación presenta las siguientes ventajas (Abramson et al., 2002): amortiguación de la lluvia por el follaje, reducción de la humedad del suelo por la succión de las raíces y la transpiración, refuerzo del suelo por las raíces, reducción del desprendimiento y de la pérdida de materiales sueltos de la superficie por los arbustos y árboles, estabilización por el efecto arco entre el tronco de los árboles adyacentes. Sin embargo, hay inconvenientes, en especial en presas y diques, como el incremento de la filtración de agua en las laderas, aumento de la filtración cuando las raíces se pudren o la sobrecarga de los taludes con el peso añadido por la vegetación. No obstante, los taludes con vegetación son estéticamente agradables y pueden embellecer rápidamente un talud recién ejecutado o excavado.

La descontaminación biológica es otro tipo de tratamiento que utiliza microorganismos como algas, bacterias, hongos y otro tipo de microorganismos para descomponer la materia orgánica (incluidos los hidrocarburos) en un esfuerzo por «limpiar» este tipo de contaminantes. Esto puede hacerse potenciando el crecimiento de los microbios que se comen literalmente los contaminantes para acelerar los procesos naturales de biodegradación, o introduciendo microbios especializados para degradar dichos contaminantes. La biorremediación de hidrocarburos, que implica procesos heterogéneos y complejos, es eficiente, pero puede tardar semanas o incluso meses para completarse.

La biocementaciónbio-cementation«) incluye las reacciones bioquímicas que tienen lugar dentro del suelo y que precipitan carbonato cálcico para modificar algunas propiedades ingenieriles del terreno (Figura 2). Esta calcita cementa las partículas del suelo y obstruye los poros, por lo que mejora la resistencia y reduce la permeabilidad del terreno. La precipitación de calcita inorgánica puede mejorar la rigidez y la resistencia, al tiempo que disminuye la compresibilidad y la permeabilidad de las formaciones de suelo «in situ». Es una técnica que se inició en Australia en el año 2001 y que se ha utilizado con éxito en depósitos de arena licuable, estabilización de taludes y refuerzos del subsuelo, incluso en estructuras en alta mar donde los corales y las arenas y gravas calcáreas están presentes. Dentro de estas técnicas también se contempla la bioobstrucciónbiocloggin«) donde se trata de reducir la conductividad hidráulica de los suelos o las rocas porosas mediante el precipitado de carbonato cálcico por microbios. En estos casos, se han comprobado reducciones entre del 22% al 75% en la permeabilidad inicial del terreno (Yasuhara et al., 2012).

Figura 2. Mecanismos biológicos de precipitación de calcita

Os dejo a continuación una conferencia (en inglés) sobre técnicas biológicas en la mejora de terrenos.

En este otro vídeo se explica la biorremediación de hidrocarburos.

Referencias:

ABRAMSON, L.W., LEE, T.H., SHARMA, S., BOYCE, G.M. (2002). Slope Stability and Stabilization Methods, 2nd ed., John Wiley & Sons, Inc., 717 pp.

UMAR, M.; KASSIM, K.A.; CHIET, K.T.P. (2016). Biological process of soil improvement in civil engineering: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8:767-774.

YASUHARA, H. D.; NEUPANE, D.; HAYASHI, K.; OKAMURA, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-inducted carbonate precipitation. Soils and Foundations, 52 (3):539-549.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.