Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que se interrumpan sus operaciones por el fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en las condiciones establecidas.
El concepto de fiabilidad está relacionado con los de disponibilidad y mantenimiento. En efecto, las máquinas no son infalibles, por lo que, para aumentar su tiempo disponible en las obras, es necesaria una correcta política de reparación y mantenimiento.
La fiabilidad de un sistema formado por un conjunto de componentes depende de la fiabilidad de sus partes constitutivas. Para su estudio, consideraremos los sistemas con componentes acoplados en serie y en paralelo.
En el caso de la maquinaria de movimiento de tierras, una cargadora se encontraría en serie respecto a un conjunto de camiones, puesto que si falla la cargadora o el conjunto de los camiones, el equipo se para. En cambio, los camiones se encuentran en paralelo entre ellos, pues aunque falle uno de ellos, el resto del equipo puede seguir funcionando.
Sistemas con componentes acoplados en serie
El fallo de cualquier unidad de un sistema acoplado en serie supone el fracaso del conjunto. Suponiendo que n elementos funcionan con independencia, y la i-ésima componente tiene una fiabilidad Ri(t), entonces la fiabilidad del sistema completo R(t) viene dada por el producto de las fiabilidades.
Consecuencia de la ley del producto es que la fiabilidad de un sistema con componentes acoplados en serie disminuye con rapidez al aumentar su número.
Con probabilidades de fallo muy pequeñas, el producto de las probabilidades es despreciable:
Sistemas con componentes acoplados en paralelo
Un sistema con componentes acoplados en paralelo solo dejará de funcionar si lo hacen todos los elementos que lo componen. Si n unidades que actúan con independencia se conectan en paralelo y la i-ésima componente presenta una fiabilidad Ri(t), la fiabilidad del sistema completo se obtiene de la siguiente forma:
y en cuanto a las probabilidades de fallo:
La ley del producto establece que la probabilidad de fallo de un sistema con componentes acoplados en paralelo disminuye rápidamente al aumentar su número.
Figura 1. Maquinaria de movimiento de tierras: dúmper articulado. Imagen: V. Yepes
La mecanización del trabajo en cualquier obra civil o de edificación es totalmente necesaria desde la perspectiva técnica, económica, humana e incluso jurídica. Las máquinas, que nacieron con el propósito de liberar al hombre de las tareas más penosas, se han convertido en herramientas para producir más, más barato y con mejor calidad. Han permitido abreviar la realización de labores que en otros tiempos parecían imposibles y, por consiguiente, han conseguido acelerar la acción del hombre sobre su entorno más inmediato. La adjudicación de un contrato de obras suele requerir de la empresa constructora la disposición de la maquinaria adecuada que garantice los plazos, las calidades y la seguridad. Además, determinadas unidades de obra no pueden ejecutarse sin el uso de la maquinaria, tales como las inyecciones, el pilotaje, los dragados, cimentaciones por aire comprimido, etc. En otros casos, la fabricación manual de hormigones, compactaciones de tierras, etc., no podría satisfacer las elevadas exigencias de los pliegos de condiciones técnicas vigentes.
La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.
Con todo, las máquinas suponen fuertes inversiones para las empresas constructoras, que si bien son menores en las obras de edificación, mayores en las obras de carreteras e hidráulicas, son importantísimas en las obras portuarias. El índice de inversión en maquinaria, calculado como la relación entre el valor anual de adquisición de la misma y la obra total anual, oscila entre el 3 y el 13%. Se estima entre el 13% y el 19% el índice de mecanización -valor del parque de maquinaria respecto a la producción anual- de las firmas constructoras.
Aunque existen múltiples criterios para clasificar las máquinas, en las Figuras 2 y 3 se presenta una ordenación de los distintos equipos empleados tanto en edificación como en obra civil.
Figura 2. Clasificación de la maquinaria de edificaciónFigura 3. Clasificación de la maquinaria de obra civil
Otra posible agrupación de la maquinaria es la que utiliza la Hacienda Pública para la clasificación de contratistas:
Grupo 1.- Material de bombeo, aire comprimido, sondeos y cimentaciones.
Grupo 2.- Material de producción y transformación de energía.
Grupo 3.- Maquinaria de movimiento de tierras.
Grupo 4.- Maquinaria de transporte.
Grupo 5.- Maquinaria de elevación.
Grupo 6.- Maquinaria de construcción de firmes.
Grupo 7.- Maquinaria de machaqueo y clasificación de áridos.
Grupo 8.- Maquinaria de hormigonado y edificación.
Grupo 9.- Maquinaria para construcción de ferrocarriles.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza próximamente. Hay plazas limitadas.
Os paso un vídeo explicativo y os doy algo de información tras el vídeo.
Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual, donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.
El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.
Objetivos
Los objetivos de aprendizaje son los siguientes:
Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Lección 1. Composición y clasificación de suelos
– Lección 2. Materiales de terraplén
– Lección 3. Efectos de la compactación y deformaciones
– Lección 4. Porosidad y permeabilidad
– Lección 5. La curva de compactación
– Lección 6. Densidad de los suelos granulares
– Lección 7. Ensayo Proctor
– Lección 8. Sistemas de compactación: compactación normal y seca
– Lección 9. Ensayos de resistencia del suelo
– Lección 10. Fundamentos de las técnicas de compactación
– Lección 11. Clasificación de los equipos de compactación mecánica
– Lección 12. Apisonadoras estáticas de rodillos lisos
– Lección 13. Compactadores estáticos de patas apisonadoras
– Lección 14. Compactadores estáticos de ruedas neumáticas
– Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
– Lección 16. Introducción a la compactación vibratoria
– Lección 18. Compactadores de pequeño tamaño y de tracción manual
– Lección 19. Compactadores de zanja
– Lección 20. Selección del equipo y método de compactación
– Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
– Lección 22. Normas y recomendaciones de trabajo
– Lección 23. El control de la compactación
– Lección 24. Condiciones de seguridad de los compactadores
– Lección 25. Costes y productividad de la compactación
– Lección 26. Compactación de aglomerado asfáltico
– Lección 27. Mejora del terreno mediante vibrocompactación
– Lección 28. Mejora del terreno mediante Terra-Probe
– Lección 29. Método vibroalas para mejora de suelos no cohesivos
– Lección 30. Compactación por resonancia de suelos
– Lección 31. Compactación dinámica
– Lección 32. Compactación dinámica rápida
– Lección 33. Sustitución dinámica
– Lección 34. Compactación con explosivos
– Lección 35. Compactación por impulso eléctrico
– Lección 36. Refuerzo del terreno mediante inclusiones rígidas
– Lección 37. Pilotes de compactación
– Lección 38. Columna de grava mediante vibrodesplazamiento
– Lección 39. Columna de grava mediante vibrosustitución
– Lección 40. Columnas de grava ejecutadas por medios convencionales
– Lección 41. Columnas de grava compactada
– Lección 42. Columnas de arena compactada
– Lección 43. La estabilización de suelos
– Lección 44. Estabilización de suelos con cal
– Lección 45. Estabilización de suelos con cemento
– Lección 46. Estabilización de suelos con ligantes bituminosos
– Lección 47. Problema resuelto sobre rendimientos y costes
– Lección 48. Problema resuelto sobre curva de compactación
– Lección 49. Problema resuelto sobre tramo de prueba
– Lección 50. Problema resuelto sobre control de calidad
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 8 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.
Las dos condiciones esenciales que tiene que cumplir un suelo para que sea utilizable son:
Que sea posible su puesta en obra en las debidas condiciones.
Que la obra sea estable y las deformaciones que se produzcan durante su vida resulten tolerables.
Estas dos condiciones dependen, por un lado, de las características intrínsecas del material y por otro, del estado natural en que se encuentre, influido primordialmente por su contenido de humedad.
Los materiales a utilizar en un terraplén son aquellos fáciles de apisonar y que una vez compactados son resistentes a la deformación y poco sensibles a los cambios de humedad o a las heladas.
En España, el Pliego de Prescripciones Técnicas Generales establece, en su artículo 330 “Terraplenes”, distintos tipos de suelos, en función de su granulometría, plasticidad, capacidad de soporte o resistencia a la deformación, posibilidad de entumecimiento, densidad máxima Proctor y contenidos de materia orgánica. Se dividen en suelos intolerables, tolerables, adecuados y seleccionados.
El Pliego distingue en los terraplenes cuatro zonas: cimiento, núcleo, espaldón y coronación. El cimiento lo define “la parte inferior de un terraplén en contacto con la superficie de apoyo, siendo su espesor mínimo de un metro” y la coronación sería la “la parte superior del relleno tipo terraplén, sobre la que se apoya el firme, con un espesor mínimo de dos tongadas y siempre mayor de cincuenta centímetros”. El espaldón es “la parte exterior de relleno tipo terraplén que, ocasionalmente, formará parte de los taludes del mismo. No se considerarán parte del espaldón los revestimientos tipo vegetal, encachados, protecciones antierosión, etc.” El núcleo es la “parte del terraplén comprendida entre el cimiento y la coronación”. Se nombra explanada al nivel del asiento del firme.
Figura 2. Zonificación bajo la explanada de una carretera
Sin embargo, hay que matizar al respecto que, una vez eliminada la cobertura vegetal, puede existir una zona, en contacto con el firme, —que es la parte superior del terraplén, y, por tanto, debería ser coronación—, pese a “estar por debajo de la superficie original del terreno”, y en segundo lugar, que si hay que hacer excavación adicional por presencia de material inadecuado, se ejecuta un “cajeado de desmonte”, que es una unidad de obra que debe cumplir especificaciones distintas a las exigidas al cimiento, por lo que deberemos diferenciarla. Por tanto, se propone definir el cimiento como “aquella parte del terraplén por debajo de la superficie original del terreno, que no corresponde a coronación ni a cajeado de desmonte”.
Los suelos inadecuados no cumplen las condiciones mínimas exigidas a los tolerables, y no pueden usarse en ninguna zona del terraplén. En núcleos y cimientos pueden emplearse los tolerables, adecuados o seleccionados. Los núcleos sujetos a inundación se formarán solo con suelos granulares (adecuados o seleccionados). En coronación deberán utilizarse suelos adecuados o seleccionados, aunque se pueden admitir los tolerables mejorados o estabilizados con cemento o cal.
Figura 3. Uso de suelos en función de la zonificación del terraplén, según PG-3
A efectos del artículo 330 del PG-3, los rellenos tipo terraplén estarán constituidos por materiales que cumplan alguna de las dos condiciones granulométricas siguientes:
Cernido, o material que pasa por el tamiz de 20 mm mayor del 70%
Cernido por el tamiz 0,080 mm mayor o igual al 35%
Se considerarán como suelos seleccionados aquellos que cumplen las siguientes condiciones:
Contenido en materia orgánica inferior al cero con dos por ciento (MO < 0,2%), según UNE 103204.
Contenido en sales solubles en agua, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
Tamaño máximo no superior a cien milímetros (Dmax # 100 mm).
Cernido por el tamiz 0,40 UNE menor o igual que el quince por ciento (# 0,40 ≤ 15%) o que en caso contrario cumpla todas y cada una de las condiciones siguientes:
Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
Cernido por el tamiz 0,40 UNE, menor del setenta y cinco por ciento (# 0,40 < 75%).
Cernido por el tamiz 0,080 UNE inferior al veinticinco por ciento (# 0,080 < 25%).
Límite líquido menor de treinta (LL < 30), según UNE 103103.
Índice de plasticidad menor de diez (IP < 10), según UNE 103103 y UNE 103104.
Se considerarán como suelos adecuados los que, no pudiendo ser clasificados como suelos seleccionados, cumplan las condiciones siguientes:
Contenido en materia orgánica inferior al uno por ciento (MO < 1%), según UNE 103204.
Contenido en sales solubles, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
Tamaño máximo no superior a cien milímetros (Dmax ≤ 100 mm).
Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
Cernido por el tamiz 0,080 UNE inferior al treinta y cinco por ciento (# 0,080 < 35%).
Límite líquido inferior a cuarenta (LL < 40), según UNE 103103.
Si el límite líquido es superior a treinta (LL > 30) el índice de plasticidad será superior a cuatro (IP > 4), según UNE 103103 y UNE 103104.
Se considerarán como suelos tolerables los que, no pudiendo ser clasificados como suelos seleccionados ni adecuados, cumplen las condiciones siguientes:
Contenido en materia orgánica inferior al dos por ciento (MO < 2%), según UNE 103204.
Contenido en yeso inferior al cinco por ciento (yeso < 5%), según NLT 115.
Contenido en otras sales solubles distintas del yeso inferior al uno por ciento (SS < 1%), según NLT 114.
Límite líquido inferior a sesenta y cinco (LL < 65), según UNE 103103.
Si el límite líquido es superior a cuarenta (LL > 40) el índice de plasticidad será mayor del setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP > 0,73 (LL-20)).
Asiento en ensayo de colapso inferior al uno por ciento (1%), según NLT 254, para muestra remoldeada según el ensayo Proctor normal UNE 103500, y presión de ensayo de dos décimas de megapascal (0,2 MPa).
Hinchamiento libre según UNE 103601 inferior al tres por ciento (3%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.
Se considerarán como suelos marginales los que no pudiendo ser clasificados como suelos seleccionados, ni adecuados, ni tampoco como suelos tolerables, por el incumplimiento de alguna de las condiciones indicadas para estos, cumplan las siguientes condiciones:
Contenido en materia orgánica inferior al cinco por ciento (MO < 5%), según UNE 103204.
Hinchamiento libre según UNE 103601 inferior al cinco por ciento (5%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.
Si el límite líquido es superior a noventa (LL > 90) el índice de plasticidad será inferior al setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP < 0,73 (LL-20)).
Se considerarán suelos inadecuados:
Los que no se puedan incluir en las categorías anteriores.
Las turbas y otros suelos que contengan materiales perecederos u orgánicos tales como tocones, ramas, etc.
Los que puedan resultar insalubres para las actividades que sobre los mismos se desarrollen.
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
Figura 1. Rodillo compactador vibratoria hidráulico de un solo tambor LSD216H. http://changlin.es/3-2-6-hydraulic-road-roller.html
Son los equipos más versátiles usados en obras de tierra, con una gran polivalencia. Permite su uso en la compactación de tierras, gravas, arenas, aglomerados asfálticos, etc. Con preferencia son adecuados para terrenos granulares, aunque dependiendo del peso su aplicación puede llegar a suelos plásticos. Sus cargas son menores que los remolcados, pero son maniobrables, permitiendo el trabajo en ambos sentidos de marcha.
El elemento vibrante lo constituye un tambor en cuyo interior gira un eje provisto de masas excéntricas. El cilindro está montado en el eje delantero sobre un bastidor que se une mediante una articulación central al resto de la máquina, lo que le permite giros de hasta 45º con la dirección de avance, y de hasta 15º en ambos sentidos en vertical. El radio de giro puede llegar a 3,00 m en algunos modelos.
Consta, en su eje trasero, de dos neumáticos de gran agarre. Allí descansa el peso de la cabina, órganos de dirección y motor.
El ancho del rodillo oscila entre 1,70 y 2,50 m, suponiendo una amplitud de máquina que, incluido el bastidor, entre 2,00 y 2,80 m. El diámetro del cilindro varía de 1,30 a 1,50 m.
El peso de estos equipos varía entre 8 y 18 toneladas. Normalmente trabajan con dos intervalos de frecuencia: de 25-30 Hz la primera y de 32-38 Hz la segunda, siendo las amplitudes nominales de 1,2-2,0 mm y 0,4-0,8 mm, respectivamente.
Aunque pueden desplazarse a 20 km/h, en trabajo pueden llegar a 8 km/h. Algunos modelos incorporan tracción también al cilindro vibrante, con lo cual se pueden vencer pendientes incluso del 50%.
Os dejo a continuación algunos vídeos respecto a este compactador.
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
Figura 1. Ralph Roscoe Proctor (1894-1962) https://www.eng.hokudai.ac.jp/labo/geomech/ISSMGE%20TC202/proctor.html
El peso específico seco es un índice que evalúa la eficiencia de un proceso de compactación, pero debido al diferente comportamiento de los distintos rellenos, suele utilizarse el denominado grado de compactación o porcentaje alcanzado respecto a un peso unitario patrón, obtenido con cada suelo en un ensayo normalizado.
El ingeniero Ralph Roscoe Proctor inició en 1929 una serie de trabajos, publicados en 1933, en los cuales se constató la relación entre humedad-peso específico seco y la influencia de la energía de compactación. Propuso un ensayo normalizado con el cual obtener la curva de ensayo Proctor correspondiente a una determinada energía, comunicada a una muestra del terreno mediante la caída desde altura fija de una pesa y un determinado número de veces. Por cierto, a pesar de que la palabra Proctor es llana y en castellano debería acentuarse, por respeto al apellido del autor, se mantiene este sin modificarlo. Esta es la tradición que han seguido los libros de texto españoles en carreteras en el ámbito universitario.
Con posterioridad, el Corps of Engineers de la U. S. Army propuso el Proctor Modificado, con una aplicación de energía unas cuatro veces y media superior al Proctor Normal. El ensayo Proctor Modificado consume una energía de 0,75 kWh/m3, mientras que el Proctor Normal equivale a 0,16 kWh/m3. Estos ensayos se encuentran normalizados en España por las normas UNE 103-500-94 y UNE 103-501-94 (ASTM D-698 o ASTM D-1557, en normas americanas).
Para realizar el ensayo, además del equipamiento de laboratorio común a muchos ensayos como son una báscula, una estufa de secado o pequeño material (bandejas, mazo de goma, palas, etc.), se requiere un equipamiento específico tal y como muestra la Figura 2.
Hay que hacer notar que el procedimiento para realizar tanto el Proctor Normal como el Proctor Modificado es el mismo, siendo sus diferencias principales los parámetros básicos del ensayo. En particular, las diferencias relevantes son el tipo de maza y molde de las probetas.
Figura 2. Molde del ensayo del Proctor Modificado
El experimento consiste en introducir capas sucesivas, con una humedad conocida, en el interior de un cilindro y golpear cada una con idéntico número de golpes mediante una maza que cae desde una altura normalizada. Se trata de medir el peso específico seco de la muestra y construir una curva para cada humedad diferente tomada. Son suficientes en general cuatro o cinco operaciones para trazar dicha curva y determinar el peso específico máximo y su humedad óptima correspondiente. No hay una relación definida entre las densidades máximas obtenidas en los ensayos Proctor Normal y Modificado, aunque a modo orientativo podemos decir que en éste último la densidad oscila entre el 5 y 10% de incremento según sean suelos granulares a cohesivos. Se debe considerar que las curvas Proctor obtenidas reutilizando el terreno ofrecen pesos específicos máximos algo superiores a las que se obtienen con muestras de terrenos nuevas.
Figura 3. Curva de compactación del Proctor Modificado. http://www2.caminos.upm.es/departamentos/ict/lcweb/ensayos_suelos/proctor_modificado.html
El ensayo Proctor origina una compactación por impacto, en tanto que en obra no siempre son habituales los compactadores de este estilo. Así existen otros ensayos en laboratorio, como NLT-311/96 que determina la densidad máxima y humedad óptima de compactación, mediante martillo vibrante, de materiales granulares con o sin productos de adición. Sería adecuado este ensayo cuando se utilizasen en obra rodillos vibratorios.
Las normas PG3 fijan como límites inferiores de la densidad máxima Proctor Normal 1,45 t/m3 para los suelos tolerables y 1,75 t/m3 para los suelos adecuados y seleccionados. En el lenguaje coloquial a veces se confunden pesos específicos con densidades, aunque son conceptos distintos. La unidad de masa común en laboratorio de 1 g/cm3 se debe multiplicar por la aceleración de 9,81 para convertirlo en kN/m3, que es la unidad correcta en el Sistema Internacional. A efectos prácticos suelen usarse indistintamente dichos conceptos, aunque es recomendable el uso del Sistema Internacional.
Raras veces de admite un peso específico seco inferior al 95% del máximo Proctor Normal obtenido en laboratorio, ya que un material suelto, sin apisonar, presenta un valor próximo al 85%. La normativa limita (ver Tabla 1) los valores para carreteras en función de la Intensidad Media Diaria (IMD) de vehículos pesados. De esta forma, para la zahorra artificial y tráficos T00 y T2, se exige un mínimo del 100% PM; para zahorra artificial y tráficos T3, T4 y arcenes, un mínimo del 98% PM. En cambio, para la zahorra natural, que suele colocarse en las capas inferiores (subbase), la densidad mínima es del 98% PM.
Es importante indicar que a veces es posible superar el 100% del Proctor correspondiente sin que por ello se pueda afirmar que la capa está suficientemente compactada. Ello es posible, entre otras posibles causas, cuando la capa ensayada presenta gran cantidad de gruesos cuyo elevado peso específico respecto al promedio del resto de la capa hace subir el valor del peso específico in situ. Tengamos presente que el ensayo en laboratorio se realiza sobre la fracción de suelo inferior a 20 mm. En estos casos es necesario realizar una corrección.
El proyecto (o Director de las obras) debe definir el ensayo de referencia: el ensayo Proctor Normal o Proctor Modificado. En la mayoría de los casos, el ensayo de referencia es el Proctor Modificado, pues puede reproducir con mayor fidelidad las condiciones de compactación de la obra, que emplea compactadores más pesados debido al aumento de la carga por eje experimentado por los vehículos. Sin embargo, en suelos expansivos se recomienda el Proctor Normal. Este ensayo también es más útil en compactaciones menores, como son las correspondientes a relleno de zanjas o ejecución de caminos.
Os dejo un vídeo elaborado por los alumnos de Ingeniería Civil de la Universidad de Granada donde nos cuentas cómo realizar el ensayo Proctor.
Aquí tenéis una explicación del profesor Agustín Rodríguez, que igual os puede complementar ideas.
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
Figura 1. https://www.noticiasmaquinaria.com/nuevos-modelos-de-la-serie-de-rodillos-tandem-de-hamm-en-conexpo/
Existe una amplia variedad de equipos capaces de compactar, pero la naturaleza del terreno y su humedad condicionarán la máquina y el método empleados. La elección también depende de la función que cumpla el relleno compactado.
La compactación en obra se basa en hacer circular cargas elevadas sobre capas de suelo el número de veces necesario para alcanzar la densidad especificada. Los esfuerzos transmitidos son máximos bajo la aplicación de la carga y disminuyen con la profundidad. Los medios mecánicos usados para este menester combinan, en general, cuatro esfuerzos elementales: vertical estático, de amasado, de impacto y vibratorio.
El esfuerzo estático vertical produce, fundamentalmente, tensiones verticales que comprimen el suelo.
El esfuerzo de amasado provoca tensiones en al menos dos direcciones.
El esfuerzo de impacto alcanza una mayor profundidad que el estático, al propagar una onda de presión hacia abajo.
El esfuerzo vibratorio supone una sucesión rápida de impactos, lo que reduce el rozamiento interno entre las partículas y favorece la densificación.
El tipo de esfuerzo aplicado influye en la estructura de las partículas del suelo. Estas se encontrarán menos «floculadas», es decir, más orientadas y ordenadas, en orden creciente según el esfuerzo estático, vibratorio, de impacto y de amasado. La orientación de las partículas aumenta con las deformaciones de corte a las que ha sido sometido el terreno, y este será más resistente si la energía de compactación se utiliza para disminuir huecos y no para desarrollar deformaciones de corte.
La norma UNE-EN ISO 6165:2006 define al compactador como la «máquina autopropulsada o remolcada sobre ruedas, rulo o masa diseñada para aumentar la densidad de los materiales por: peso estático, impacto, vibración, amasado (presión dinámica) o combinación de estos efectos».
Figura 2. http://www.wikivia.org/wikivia/index.php?title=Equipos_de_compactaci%C3%B3n
Estos equipos, que junto a las motoniveladoras pueden considerarse máquinas de acabado de movimiento de tierras, se emplean para otros materiales, tales como aglomerados asfálticos, grava-cemento, hormigón seco u otros.
Los equipos de compactación pueden clasificarse de varias formas. Atendiendo al modo en que se trasladan, se dividen en:
Compactadores remolcados.
Compactadores de conducción manual.
Compactadores autopropulsados.
Atendiendo al principio básico de trabajo, estos equipos se clasifican en:
Apisonadoras estáticas.
Rodillos vibratorios.
Compactadores de impactos.
A su vez, los compactadores pueden utilizar como herramienta de trabajo, en diversas combinaciones:
Rodillo liso.
Rodillo de patas apisonadoras o de tacos.
Ruedas neumáticas.
Bandeja vibrante.
Martinetes.
Pisones.
Atendiendo a su arquitectura, estos equipos pueden ser:
Tipo triciclo.
Tipo tándem.
De chasis articulado.
Monocilíndrico.
Mixto.
De esta forma, podemos tener un rodillo vibratorio autopropulsado articulado con rodillos lisos, o bien un compactador autopropulsado estático tipo tándem de ruedas neumáticas. Las combinaciones son variadas.
Os dejo un vídeo explicativo que he preparado, en el que explico brevemente estas ideas básicas.
Otros vídeos explicativos son los siguientes:
https://www.youtube.com/watch?v=I7bH3PVbKE4
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.
Figura 1. Rodillo de tiro vibrante pata de cabra. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756845554179
Son de características similares a los lisos en cuanto a dimensiones, peso y vibración, y se montan incluso en el mismo bastidor. Las formas de las patas varían según los modelos. Se utilizan fundamentalmente en arcillas, limos arcillosos, arcilla limosa y grava con aglutinantes arcillosos, es decir, suelos cohesivos y muy cohesivos, especialmente en terrenos con humedad excesiva. No obstante, este tipo de compactador está casi en desuso, fundamentalmente por su baja velocidad de trabajo (2 km/h) y el gran número de pasadas (6-8 como mínimo).
Figura 2. Rodillo de tiro pata de cabra vibrante. https://www.facebook.com/maquinariaescobal/photos/pcb.1645756895554174/1645756838887513
A continuación, os dejo un vídeo explicativo de este compactador remolcado.
Referencias:
ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.
YEPES, V. (1995). Equipos y métodos de compactación. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-797. 102 pp. Depósito Legal: V-1639-1995.
Consisten en un bastidor en forma de marco sobre el que se apoya el cilindro mediante amortiguadores, y en el que también se sitúa el motor que genera las vibraciones. Ahora bien, algunos modelos aprovechan la energía vibrante del tractor remolcador para evitar que la vibración perjudique al motor situado sobre el rodillo. Son máquinas aún utilizadas que precisan de un tractor, son difíciles de maniobrar, tienen grandes radios de giro y solo permiten el trabajo en un solo sentido.
Figura 1. Compactador remolcado vibrante de rodillo liso Bomag BW6. https://exarmyuk.files.wordpress.com/2015/09/dsc03804-20150908-153057.jpg
Se puede estimar el esfuerzo necesario en el gancho del tractor T como:
donde:
P = Peso del rodillo remolcado en kg.
% = Pendiente a superar por el rodillo.
e = Espesor de la tongada a compactar en cm.
Sus pesos oscilan entre 3 y 15 t, con una anchura de compactación de unos 2,00 m y un diámetro de cilindro de hasta 1,80 m. Son normales frecuencias entre 25 y 30 Hz y amplitudes nominales del orden de los 2 mm. Su velocidad de trabajo se sitúa entre 2,0 y 5,0 km/h.
Este tipo de rodillo se utiliza cada vez menos, salvo en los pedraplenes más pesados. Tratándose de suelos, las tongadas óptimas para un rodillo de 3-4 t son de 20 a 30 cm. Los rodillos de 10-12 t pueden compactar tongadas de 50-60 cm. En el caso de pedraplenes, se llega a utilizar los de mayor tonelaje sobre tongadas de 60-80 cm, que en ocasiones pueden alcanzar 100-150 cm, aunque en este caso la efectividad es más bien escasa.
A continuación, os dejo algunos vídeos del funcionamiento de este compactador.
Los equipos de compactación presentan un elevado índice de accidentabilidad, materializado en atropellos, colisiones y vuelcos, debido fundamentalmente a la sencillez de manejo, monotonía del trabajo, continuo desplazamiento sobre el mismo circuito y posición relativamente elevada del centro de gravedad de la máquina, lo que los hace muy inestables al tratar de salvar pequeños desniveles.
Figura 1. Peligro por desnivel en compactación. https://www.equipmentworld.com/workforce/safety/article/14953939/how-to-avoid-deadly-roller-compactor-rollovers-on-jobsites-with-slopes-or-embankments
Entre los riesgos directos podemos citar las caídas de los operarios de las máquinas (por ejemplo, a una zanja), la caída del compactador sobre los miembros inferiores, con riesgo de aplastamiento, golpes o cortes, y la quemadura por contacto con partes calientes de la máquina. También se pueden recibir golpes o daño por los fragmentos que se disparan al compactar, irritación de los ojos o de las vías respiratorias por el polvo, sordera por ruido a niveles altos, incendios y explosiones por averías y defectos de la máquina, golpes y atropellos por vehículos dentro de la obra o durante trabajos en vías abiertas y accidentes por falta de dirección o señalización de las maniobras.
Figura 2. Accidente de un compactador. https://reinadelaselva.pe/noticias/6511/rodillo-compactador-casi-ocasiona-accidente-en-pedro-ruiz
Normalmente, los riesgos que surgen al manipular los compactadores tienen su origen en la falta de dispositivos de protección de los equipos, en no seguir el manual de instrucciones del aparato y en las distracciones de los trabajadores.
Como normas generales, aplicables a cualquier tipo de máquina, antes de arrancar se comprobarán los niveles y controles, que no existen personas en las cercanías, que la máquina tiene extintor y desconectador de batería para combatir incendios, se eliminará el polvo del parabrisas, se organizará el tráfico, se repararán las pistas, se prohibirá el transporte de personas y se aumentará al máximo la precaución en las maniobras de marcha atrás. Al finalizar el trabajo, se descenderá el equipo al suelo, se detendrá el motor y se estacionará la máquina en el lugar adecuado.
Como normas particulares para evitar situaciones de riesgo, se recomienda la rotación del personal, controlar los períodos de permanencia en su manejo, emplear personal cualificado, dotar al conductor de medios de protección personal y controlar el mantenimiento de la maquinaria.
Figura 3. Accidente provocado por el volcado de un compactador. http://radiolavozbaguagrande.blogspot.com/2012/06/rodillo-compactador-se-voltea-y-chofer.html
En este último aspecto, referido al mantenimiento, se pueden dar las siguientes recomendaciones según el tipo de máquina:
Apisonadores:
Limpiar el filtro de aire una vez al día y examinarlo por si presenta escapes.
Procurar que no entre aire sin filtrar en el motor, ya que perdería compresión y sufriría un daño irreparable.
Limpiar las lumbreras e inspeccionar el silenciador.
Examinar la mezcla de combustible y aceite.
Inspeccionar periódicamente el filtro del combustible.
Apretar los pernos de arado de la zapata e inspeccionar todas las tuercas que sujetan el silenciador.
Utilizar personal cualificado.
Placas vibrantes:
Limpiar el filtro de aire diariamente.
Examinar y cambiar el aceite del motor según las recomendaciones de cada modelo.
Examinar y cambiar el aceite del excitador.
Examinar la tensión de la correa.
Levantar las máquinas con grúas.
Mantener la base de la plancha limpia y libre de tierra adherida.
Rodillo:
Examinar y cambiar el aceite del motor según las recomendaciones de cada modelo.
Figura 4. Accidente de pequeño rodillo. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CR.1943-5495.0000144
Os dejo algunos vídeos sobre seguridad en los compactadores.