Esto me suena… Cómo se han construido los arcos a lo largo de la historia y el “Ciudadano García”

Puente de Cangas de Onís, sobre el Sella (Asturias). Imagen: V. Yepes

La labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora. Hoy he tenido la oportunidad de conversar con el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre arcos y estructuras. El programa se ha emitido dentro del espacio “Esto me suena. Las tardes del Ciudadano García”, en Radio Nacional de España.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Os dejo a continuación el post por si queréis escucharlo. Se grabó en directo, y suena tal cual se hizo. Espero que os guste.

¿Cómo afectan los costes al mantenimiento de un puente cuando se consideran aspectos sociales?

https://www.ailladearousa.com

Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 .

Descargar (PDF, 1.87MB)

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes mediante autocimbra bajo tablero

Viaductos en la nueva autovía de Mascara (Argelia). Imagen: A. Azorín

La cimbra autolanzable bajo tablero constituye, hoy en día, el proceso constructivo de autocimbra más habitual. Entre sus ventajas se encuentra la facilidad a la hora de variar el peralte o adaptarse a acuerdos verticales y curvas en planta; además, se libera la parte superior, lo que permite la introducción de ferralla prefabricada y el resto de materiales. Alguno de sus inconvenientes pasan por necesitar cierta altura libre mínima (7-12 m) bajo cabeza de pilas y que son más deformables que las cimbras autolanzables sobre tablero.

Os dejo a continuación un pequeño vídeo explicativo de este tipo de procedimiento constructivo. Espero que os sea de interés.

En el siguiente vídeo de Mecanotubo se puede ver, con todo detalle, una animación en 3D que describe con claridad el procedimiento.

A continuación podemos ver un vídeo realizado por voxelestudios del proceso constructivo del tablero de los viaductos de Contreras, que con autocimbras se ejecutaron tramos de luces de 66 m.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de puentes mediante cimbra autolanzable sobre tablero

A.T. AVE NORTE-NOROESTE: NUDO VENTA BAÑOS 01. http://www.ar2v.com

Las cimbras autolanzables, también llamadas autocimbras o cimbras de avance, se utilizan para el hormigonado de tableros de puentes o viaductos vano a vano. Son capaces de trasladarse a lo largo del puente por sus propios medios (“cimbras-máquina”). En el caso de las cimbras autolanzables sobre tablero, se solucionan algunos problemas como los gálibos estrictos o la posibilidad de utilizar la cimbra como carril de rodadura de un pórtico grúa que lleve los materiales y medios auxiliares. Sin embargo es una estructura más pesada y compleja, de mayor coste y dificultad de montaje y maniobra, por lo que no es tan habitual su uso como en el caso de autocimbras bajo tablero.

A continuación os dejo un Polimedia explicativo sobre este medio auxiliar, que espero que os sea de interés.

Os dejo un vídeo sobre una cimbra autolanzable de una luz de 90 m.

Referencias:

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

Análisis de ciclo de vida de puentes óptimos de vigas artesa

Acaban de publicarnos un artículo en la revista internacional Sustainability sobre análisis de ciclo de vida de puentes óptimos de vigas. La evaluación del impacto ambiental se realiza a lo largo del ciclo de vida de puentes de hormigón postesado de vigas artesa que previamente han sido optimizados mediante una metaheurística de algoritmos meméticos. Os dejo a continuación la referencia de la revista. Además os podéis descargar y distribuir el artículo sin problema, pues está editado en abierto:

http://www.mdpi.com/2071-1050/10/3/685/html

Referencia:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685

Descargar (PDF, 2.69MB)

Construcción de puentes mediante lanzador de vigas

http://www.mexpresa.com

Cuando no es posible el uso de grúas, se puede recurrir a los lanzadores de vigas, vigas de lanzamiento o cimbras autolanzables. Se trata de un procedimiento excepcional debido a su compleja puesta en obra y a su baja productividad. Se emplean si el ritmo de llegada de las vigas a obra es pequeño, por ejemplo un par de vigas al día. Las vigas de lanzamiento requieren personal especializado en su manejo y montaje debido a que los movimientos son complejos y los esfuerzos generados pueden comprometer la estabilidad del conjunto. Estos problemas se complican cuando la rasante vertical del puente presenta acuerdos de radios menores a 12000 m, en cuyo caso la viga se apoya en tres puntos, con sus consiguientes esfuerzos hiperestáticos.

Lanzador de vanos completos. http://www.weiku.com

Las vigas de lanzamiento cubren luces entre 35 y 75 m, con pesos entre 600 kN y 4500 kN y pendientes máximas para el lanzamiento del 5%. Constan de dos vigas reticuladas unidas en sus extremidades sobre las que rueda el tren de los cabrestantes, compuesto por dos carros para elevar la viga a lanzar y un tercero para el desplazamiento longitudinal de la viga y el armazón. Las vigas prefabricadas se transportan desde el acopio al lanzador mediante carros elefante. Téngase en cuenta que los carros pueden moverse a velocidades de 5 km/h mientras que el lanzador solo alcanza los 3 m/minuto.

Os paso a continuación una pequeña presentación que he preparado para explicar este procedimiento constructivo de puentes. También os paso algún vídeo más al respecto que espero os resulten interesantes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La sostenibilidad en el ámbito de la construcción

La Comisión Mundial sobre el Medio Ambiente y el Desarrollo “World Commission on Environment and Development” (WCED) propuso mantener a largo plazo los recursos necesarios para satisfacer las necesidades futuras (Butlin, 1989). Además, se señaló que para conseguir un desarrollo sostenible se debía mantener un equilibrio entre los pilares económicos, ambientales y sociales. Desde entonces, los desafíos para conseguir un desarrollo sostenible se han llevado al campo de la construcción en diferentes líneas de investigación. La construcción constituye uno de los principales sectores emisores de gases de efecto invernadero (Liu et al., 2013). La industria de la construcción, junto con sus industrias auxiliares, pasa por ser uno de los mayores consumidores de recursos naturales, tanto renovables como no renovables, que está alterando negativamente el medio ambiente. Agota 2/5 partes de los áridos y 1/4 de la madera, y consume el 40 % de la energía total y el 16 % de agua al año (Lippiatt, 1999; Chong et al., 2009). El consumo de materiales crece constantemente, con más de 23 mil millones de toneladas de hormigón producido anualmente (Schokker, 2010; WBCSD, 2006). En 2010, de acuerdo con la International Cement Review, la producción mundial de cemento se elevó a alrededor de 3,3 millones de toneladas/año, lo que significa un aumento más del 100% en casi 10 años. La fabricación de cemento Portland genera grandes cantidades de CO2 debido a las altas demandas de energía necesarias para la fabricación y calcinación de la piedra caliza. La producción mundial de cemento llegó a 1,6 mil millones de toneladas/año en 2001, lo que corresponde a aproximadamente el 7 % de la cantidad mundial de dióxido de carbono liberado a la atmósfera (Bremner, 2001). Otros estudios indican que la contribución de la industria cementera a las emisiones de gases de efecto invernadero supera el 5% del total (Worrell et al., 2001). En Australia, para mantener la demanda en la construcción, se necesitan cada año aproximadamente 30 millones de toneladas de productos, más del 56 % de esta cantidad es hormigón, y el 6%, acero (Walker-Morison et al., 2007). En 2001, España tuvo la mayor tasa de consumo de hormigón en Europa, con 1,76 m3 de hormigón per cápita por año (ECO-SERVE, 2004). En 2007, la producción de clinker alcanzó alrededor de 55 millones de toneladas en España. Sin embargo, este número se redujo a 14,1 millones de toneladas en 2013 como consecuencia de la crisis financiera (Oficemen, 2016).

Existen recomendaciones para reducir el impacto ambiental de las estructuras de hormigón (fib, 2012). La citada guía considera el ciclo completo de las fases del ciclo de vida, de la cuna a la tumba. La correcta selección de las materias primas, así como los aditivos y adiciones, constituye una de las claves para reducir el impacto ambiental. Otra forma de reducir los impactos pasa por el uso de procesos más respetuosos con el medio ambiente en la producción y el transporte del hormigón. En esta guía también se habla de optimizar estructuras basándose en indicadores ambientales y de desempeño. Por último, concluye que las estructuras deben optimizarse comparando diferentes alternativas y teniendo en cuenta los indicadores ambientales, especialmente las emisiones de CO2, pues pasa por ser uno de los factores más importantes para evaluar el impacto ambiental. Además, fib (2012) indica cómo la consideración del ciclo de vida completo de una estructura antes de iniciar su construcción puede conseguir reducciones significativas de CO2.

Por tanto, la sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento. Las investigaciones se centran en proporcionar recomendaciones para seleccionar materiales estructurales basados en indicadores económicos, ambientales y de constructibilidad (Zhong & Wu, 2015), utilizando hormigón y acero reciclado (Collins, 2010, Yellishetty et al., 2011), empleando materiales novedosos como cementos con baja huella de carbono y adiciones como substitutos del clínker (García-Segura et al., 2014a; Gartner, 2004), evaluando las emisiones del ciclo de vida de las estructuras de hormigón (Barandica et al., 2013; Tae et al., 2011), reduciendo las emisiones de CO2 de la construcción (2003), optimizando el proceso de producción de cemento (Castañón et al., 2015), estimando la energía consumida en los proyectos de construcción (Wang y Shen, 2013; Wang et al., 2012) e identificando la mejor planificación del mantenimiento (Liu y Frangopol, 2005, Yang et al., 2006), entre otros. En las referencias también hemos dejado alguno de nuestros trabajos en este sentido.

Referencias:

  • Barandica, J.M.; Fernández-Sánchez, G.; Berzosa, Á.; Delgado, J.A.; Acosta, F.J. (2013). Applying life cycle thinking to reduce greenhouse gas emissions from road projects. Journal of Cleaner Production, 57, 79–91.
  • Bremner, T.W. (2001). Environmental aspects of concrete: problems and solutions. In: Proceedings of first all-Russian conference on concrete and reinforced concrete, Moscow, Russia.
  • Butlin, J. (1989). Our common future. By World commission on environment and development. (London, Oxford University Press, 1987, pp.383). Journal of International Development, 1(2), 284–287.
  • Castañón, A.M.; García-Granda, S.; Guerrero, A.; Lorenzo, M.P.; Angulo, S. (2015). Energy and environmental savings via optimisation of the production process at a Spanish cement factory. Journal of Cleaner Production, 98, 47–52.
  • Chong, W.K.; Kumar, S.; Haas, C.T.; Beheiry, S.M.A.; Coplen, L.; Oey, M. (2009). Understanding and interpreting baseline perceptions of sustainability in construction among civil engineers in the United States. Journal of Management in Engineering, 25(3):143–154.
  • Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.
  • ECO-SERVE. (2004). Baseline report on sustainable aggregate and concrete industries in Europe. European Commission, Hellerup.
  • fib. International Federation for Structural Concrete. Task Group 3.8, T. for green concrete structures. (2012). Guidelines for green concrete structures. International Federation for Structural Concrete. Task Group 3.8, Technologies for green concrete structures.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498.
  • Lippiatt, B.C. (1999). Selecting cost effective green building products: BEES approach. Journal of Construction Engineering and Management, 125:448–455.
  • Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.
  • Liu, S.; Tao, R.; Tam, C.M. (2013). Optimizing cost and CO2 emission for construction projects using particle swarm optimization. Habitat International, 37:155–162.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Oficemen. (2012). Annual report of Spanish cement sector 2016. Annual report of Spanish cement sector 2016. Retrieved from https://www.oficemen.com/reportajePag.asp?id_rep=1619
  • Schokker A.J. (2010). The sustainable concrete guide: strategies and examples. 1 ed. U.S.G.C. Council; 2010. Michigan: U.S. Green Concrete Council.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5), 05015020.
  • Sierra, L.A.; Pellicer, E.; Yepes, V. (2017a). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53.
  • Sierra, L.A.; Yepes, V.; Pellicer, E. (2017b). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review ,67:61-72. .
  • Tae, S.; Baek, C.; Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253–260.
  • Walker-Morison, A.; Grant, T.; McAlister, S. (2007). The environmental impact of building materials. Environment design guide. PRO 7.
  • Wang, E.; Shen, Z. (2013). A hybrid Data Quality Indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. Journal of Cleaner Production, 43, 166–173.
  • World Business Council for Sustainable Development (WBCSD) (2006). Cement Industry Energy and CO2 Performance: Getting the Numbers Right; Geneva: World Business Council for Sustainable Development, (WBCSD).
  • Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26, 303–329.
  • Yang, S.I.; Frangopol, D.M.; Kawakami, Y.; Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91(6), 698–705.
  • Yellishetty, M.; Mudd, G.M.; Ranjith, P.G.; Tharumarajah, A. (2011). Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Science & Policy, 14(6), 650–663.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; González-Vidosa, F.; Alcalá, J.; Villalba, P. (2012). CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. Journal of Computing in Civil Engineering, 26(3), 378–386.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015b). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.
  • Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.
  • Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.
  • Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140, 1037-1048.
  • Zhong, Y.; Wu, P. (2015). Economic sustainability, environmental sustainability and constructability indicators related to concrete- and steel-projects. Journal of Cleaner Production, 108, 748–756.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más de 10 años investigando la optimización de estructuras de hormigón

Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW”. Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.

Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).

En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:

  • ¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
  • ¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
  • ¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
  • ¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
  • ¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
  • ¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
  • ¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
  • ¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
  • ¿Es posible valorar el coste de la seguridad integral de una estructura?
  • ¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
  • ¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?

 

Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencias:

PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688.

PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated AnnealingEngineering Structures30(3): 821-830.

 

Los puentes de sección en cajón de hormigón postesado

Figura 1.- Esquema de un puente de hormigón postesado de sección en cajón para carreteras

Una viga de sección en cajón unicelular consta de una losa superior, dos almas y una losa inferior (Figura 1). La losa superior materializa la plataforma del puente, actúa como cabeza de compresión frente a momentos flectores positivos y sirve de alojamiento del pretensado necesario para resistir los momentos negativos. Las almas sostienen la losa superior, transmiten las cargas de cortante a los apoyos del puente y pueden alojar los cables de pretensado cuando estos se desplazan a lo largo del puente. Por último, la losa inferior une las secciones inferiores de las almas, aloja el pretensado para resistir los momentos positivos, sirve de cabeza de compresión ante momentos negativos y cierra el circuito de torsión de la estructura.

Según Schlaich y Scheef (1982), la sección en cajón es la tipología de superestructura más ampliamente utilizada en el proyecto y construcción de puentes. El Puente de Sclayn, sobre el río Maas, fue el primer puente continuo pretensado de sección en cajón. El puente, con dos tramos de 62,7 m, fue construido por Magnel en 1948. La sección en cajón no solo se puede encontrar en los puentes viga, sino en otras tipologías tipo arco, pórtico, atirantados y colgantes. El número de puentes continuos con esta sección ha aumentado recientemente (Ates, 2011) debido a su resistencia tanto a momentos flectores positivos como negativos, así como a la torsión. Además, otra característica importante es el peso propio reducido frente a otras tipologías. En cuanto a los métodos de construcción, los puentes de sección en cajón se pueden construir “in situ” o bien prefabricarse en dovelas que posterormente se izan y pretensan (Sennah y Kennedy, 2002). En la Figura 2 se muestra un puente en cajón situado sobre el nuevo cauce del río Turia, cuyo autor es Javier Manterola y que fue uno de los primeros puentes que tuve la oportunidad de construir durante mi etapa profesional en Dragados y Construcciones, S.A.

Figura 2.- Imagen aérea de la Estructura E-10, sobre el nuevo cauce del Turia, de Javier Manterola (1991). Uno de los primeros puentes que tuve la oportunidad de construir en mi etapa profesional en Dragados y Construcciones, S.A.

La investigación en el ámbito de los puentes en cajón ha tratado de mejorar su diseño (Yepes, 2017). Al principio, los trabajos se centraron en mejorar el comportamiento estructural (Chang y Gang, 1990; Ishac y Smith, 1985; Luo et al., 2002; Mentrasti, 1991; Razaqpur y Li, 1991; Shushkewich, 1988). Estos trabajos se centraron en el análisis del cortante y la distorsión de la sección. Posteriormente, Ates (2011) estudió el comportamiento de un puente viga continuo durante la etapa de construcción, incluyendo efectos dependientes del tiempo. Moon et al. (2005) también se centraron en la etapa de construcción, estudiando las grietas que aparecieron en la losa inferior de un puente prefabricado, que ocurrieron por una deformación excesiva durante el tesado provisional de las dovelas.

Otros autores investigaron el efecto de las condiciones de durabilidad en la resistencia. Liu et al. (2009) propusieron detectar los daños desarrollando técnicas de monitorización y evaluando el estado del puente. Guo et al. (2010) evaluaron la fiabilidad para estudiar la fluencia, la retracción y la corrosión a lo largo del tiempo de un puente mixto de vigas en cajón expuesto a un ambiente de cloruros. Lee et al. (2012) propusieron un sistema de gestión del ciclo de vida de puentes en cajón que integrase el diseño y la construcción. Fernandes et al. (2012) utilizaron métodos magnéticos para detectar la corrosión en los cables de pretensado de puentes prefabricados. Saad-Eldeen et al. (2013) estudiaron el momento flector último en vigas afectadas por corrosión. Los resultados se utilizaron para proponer un módulo tangente equivalente que tiene en cuenta la reducción total del área de la sección transversal debido a este tipo de degradación.

También existen algunas recomendaciones para el predimensionamiento de los puentes en cajón (Schlaich y Scheff, 1982; Fomento, 2000; SETRA, 2003). Sin embargo, consta relativamente muy poca investigación que haya abordado su diseño eficiente. Schlaich y Scheff (1982) indican que en el caso de puentes de sección en cajón “la solución óptima, siempre y exclusivamente una evaluación subjetiva, solo puede ser encontrada a través de la comparación de muchas soluciones alternativas”. La eficiencia, entendida como la máxima seguridad posible con un mínimo de inversión, constituye un objetivo común en el diseño estructural. Este tipo de problema presenta tal cantidad de variables, cada uno de las cuales puede adoptar una amplia gama de valores discretos, que hace que el espacio de soluciones sea tan inmenso que es muy difícil abordar la optimización sin emplear la inteligencia artificial. Además de esto, la preocupación por el medio ambiente, la importancia de la durabilidad y el desarrollo de nuevos materiales pueden modificar el diseño del puente. Los métodos de optimización ofrecen una alternativa eficaz a los diseños basados en la experiencia (García-Segura et al., 2014a; 2014b; 2015; 2017a; 2017b; García-Segura y Yepes, 2016; Yepes et al., 2017). Así, estas técnicas se han utilizado para abordar la optimización de sistemas estructurales reales. Por último, destacar la aplicación de las técnicas de decisión multicriterio a la hora de proyectar este tipo de puentes (Penadés-Plà et al., 2016).

Referencias:

  • Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8), 3809–3820.
  • Chang, S.T.; Gang, J. Z. (1990). Analysis of cantilever decks of thin-walled box girder bridges. Journal of Structural Engineering, 116(9), 2410–2418.
  • Fernandes, B.; Titus, M.; Nims, D.K.; Ghorbanpoor, A.; Devabhaktuni, V. (2012). Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges. Journal of Bridge Engineering, 17(6), 984–988.
  • Fomento M. (2000). New overpasses: general concepts. Madrid, Spain: Ministerio de Fomento.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • Guo, T.; Sause, R.; Frangopol, D.M.; Li, A. (2010). Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage, and Corrosion. Journal of Bridge Engineering, 16(1), 29-43.
  • Ishac, I.I.; Smith, T.R.G. (1985). Approximations for Moments in Box Girders. Journal of Structural Engineering, 111(11), 2333–2342.
  • Liu, C.; DeWolf, J.T.; Kim, J.H. (2009). Development of a baseline for structural health monitoring for a curved post-tensioned concrete box–girder bridge. Engineering Structures, 31(12), 3107–3115.
  • Luo, Q.Z.; Li, Q.S.; Tang, J. (2002). Shear lag in box girder bridges. Journal of Bridge Engineering, 7(5), 308.
  • Mentrasti, L. (1991). Torsion of box girders with deformable cross sections. Journal of Engineering Mechanics, 117(10), 2179–2200.
  • Moon, D.Y.; Sim, J.; Oh, H. (2005). Practical crack control during the construction of precast segmental box girder bridges. Computers & Structures, 83(31-32), 2584–2593.
  • Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
  • Razaqpur, A.G.; Li, H. (1991). Thin‐walled multicell box‐girder finite element. Journal of Structural Engineering, 117(10), 2953-2971.
  • Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. (2013). Effect of corrosion severity on the ultimate strength of a steel box girder. Engineering Structures, 49, 560–571.
  • Schlaich, J.; Scheff, H. (1982). Concrete Box-girder Bridges. International Association for Bridge and Structural Engineering. Zürich, Switzerland.
  • Sennah, K.M.; Kennedy, J.B. (2002). Literature review in analysis of box-girder bridges. Journal of Bridge Engineering, 7(2), 134–143.
  • SETRA (2003). Ponts en béton précontraint construits par encorbellements successifs: guide de concéption. M.E.T.L.T.M.
  • Shushkewich, K.W. (1988). Approximate analysis of concrete box girder bridges. Journal of Structural Engineering, 114(7), 1644–1657.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.