La consolidación por vacío o atmosférica es un sistema patentado por Menard (“Menard Vacuum“) que permite la consolidación y precarga de suelos saturados impermeables blandos y muy blandos como arcillas, limos, turbas, etc. (Figura 1). Es un procedimiento que se utiliza desde finales de los 80 en depuradoras, terraplenes, aeropuertos, centrales eléctricas, etc.
Figura 1. Vista de la consolidación por vacío de suelos. http://menard.com.mx/menard-vacuum%E2%84%A2
El sistema consiste en la instalación de una red de drenes horizontales y verticales bajo una membrana impermeable que permite, mediante bombeo al vacío del agua intersticial y del aire del terreno, un vacío en el terreno que equivale a una carga de 60 a 80 kPa (unos 3-4 m de arena). El agua se evacua por medio de zanjas perimetrales de confinamiento a las que se ancla la membrana. La profundidad del tratamiento se limita al espesor del depósito blando y la capacidad de la maquinaria, aunque los rangos habituales suelen ser de 10 a 35 m de profundidad, llegándose incluso a los 45 m. Los asientos residuales son poco significativos tras el tratamiento.
El vacío crea una consolidación isotrópica en poco tiempo, con la ventaja de eliminar la precarga sobre suelos potencialmente inestables (Figura 2). La consolidación se consigue al aumentar la presión efectiva sin modificar la presión total en el suelo. Además, no se rebaja el nivel freático, pues se mantiene la saturación del terreno por medio de las zanjas perimetrales. Frente a la precarga, es un procedimiento más rápido y económico.
Otra ventaja de la precarga con vacío es que la consolidación ocurre en la superficie donde se aplica. En algunos casos el suelo se retrae horizontalmente, pero no se produce un desplazamiento horizontal del manto cuando se carga, cosa que ocurre con la precarga y drenes verticales.
Figura 2. Esquema de instalación del sistema de vacío (cortesía de Menard).
No obstante, el procedimiento no es efectivo si existen capas de arena profundas en el depósito blando. Si estas capas son más superficiales, se pueden aislar mediante, por ejemplo, muros pantalla. Tampoco funciona bien el sistema en áreas extensas, por lo que normalmente se subdivide la extensión en zonas más pequeñas, pero que deben aislarse con pantallas impermeables. El procedimiento requiere, además, un control cuidadoso para detectar pérdidas de vacío por escapes.
El tratamiento por vacío suele aplicarse durante 4-6 meses (tiempo menor a la precarga). Durante este tiempo no se permiten actividades sobre el terreno para evitar perforar la membrana impermeable. Sí se autoriza el paso de la maquinaria y el almacenamiento de materiales, así como trabajar en las zonas adyacentes.
Figura 3. Consolidación por vacío. https://ceteau.com/es/products/consolidaci%C3%B3n-por-vac%C3%ADo/
Os dejo un vídeo que he grabado para explicar este procedimiento de mejora del terreno. Espero que os guste.
Os paso un vídeo de Menard sobre este procedimiento de consolidación atmosférica.
Este es otro vídeo donde veréis una animación del sistema.
Otro vídeo de mejora de suelos mediante geodrenes al vacío.
Aquí os dejo un folleto de Menard sobre la consolidación atmosférica.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.
El método vibroalas, “Vibro-Wing” en inglés, constituye un procedimiento de mejora de suelos granulares mediante compactación por vibración desarrollado en Suecia. La sonda consiste en una varilla de acero de hasta 15 m de longitud con unas placas radiales soldadas, a modo de alas, de 0,80 a 1,00 m de largo, separadas unos 0,50 m entre sí. El vibrador de la varilla se opera desde el exterior con maquinaria convencional. Se obtiene una alta densidad relativa en arenas medias y finas. El método se emplea en cimentaciones, puertos, rellenos hidráulicos, presas, cimentación de maquinaria y de estructuras especiales.
Figura 1. Varilla vibrante con alas. https://www.fellenius.net/
La sonda se introduce en el terreno con un vibrador de alta capacidad y luego se retira lentamente con una vibración continua. El vibrador pesa unas 7 t y vibra a una frecuencia aproximada de 20 Hz. Se tarda aproximadamente 1 minuto en la hinca y 5 minutos en la extracción. El terreno granular, normalmente arenas, se compacta tanto durante la hinca como en la extracción de la sonda. Por tanto, el rendimiento supera a la compactación dinámica o la vibrocompactación. Una limitación del Vibro-Wing es la dificultad de extraer la sonda en suelos bien compactados.
El tratamiento se realiza en puntos espaciados entre 1,50 a 5,00 m de una malla triangular. La capa superior del terreno, entre 1,00 y 1,50 m, no alcanza la densidad requerida, por lo que se utiliza un compactador vibratorio de 8 a 10 toneladas para terminar la mejora. No obstante, la duración y el espaciamiento de los puntos de compactación se suelen determinar mediante ensayos de campo. Durante la vibración, la presión intersticial entre los poros de las partículas aumenta, lo cual mejora la densificación. Esta presión puede llegar incluso a la licuación del terreno alrededor de la sonda.
Figura 2. Esquema de maquinaria empleada y de las vibroalas
La mayor ventaja del Vibro-Wing es su rendimiento y bajo coste en comparación con otros métodos de compactación profunda. Sin embargo, no es aplicable si el contenido de finos supera el 5-10% en terrenos con arenas gruesas o gravas. Este método no es eficiente en limos o arcillas debido a que requiere un tiempo excesivo para la consolidación del terreno.
Por otra parte, aunque se podrían compactar arenas finas hasta una profundidad de 40 m, solo sería necesario compactar hasta unos 20-25 m. En efecto, la compresibilidad de los suelos no cohesivos disminuye con la profundidad, siendo el asiento insignificante por debajo de esta distancia para la mayoría de las estructuras convencionales. Además, el riesgo de licuación debido a un sismo se reduce con la profundidad. Por tanto, normalmente no es necesario sobrepasar los 15 m de compactación, incluso con suelos con densidades relativas bajas.
Os dejo a continuación un artículo de Broms y Hansson sobre este método.
BROMS, B.B. (1991)- Deep Compaction of Granular Soils. In: Fang HY. (eds) Foundation Engineering Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5271-7_23
MASSARCH, K.R.; FELLENIUS, B.H. (2005). Deep vibratory compaction of granular soils.Chapter 19 in Ground Improvement-Case Histories, Elsevier publishers, B. Indranatna and C. Jian, Editors, pp. 633 – 658.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.
Figura 1. Vibrosustitución. https://www.trevispa.com/
Un terreno se considera que es malo o inadecuado si no cumple con determinadas condiciones o propiedades que lo hagan apto para los requerimientos de un proyecto. Por ejemplo, para el caso de un terraplén, el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3), clasifica los materiales que se pueden utilizar como suelos inadecuados, marginales, tolerables o seleccionados. Pero estos requerimientos varían en función del tipo de proyecto del que estemos hablando (edificación, puentes, presas, carreteras, etc.).
Cuando un terreno es inadecuado, se pueden tomar distintas decisiones al respecto (Nicholson, 2015):
Abandonar el proyecto. Esta solución se considera adecuada cuando es posible encontrar otra ubicación a nuestro proyecto o bien cuando es inviable desde el punto de vista económico, social o ambiental.
Extraer y reemplazar el terreno inadecuado. Es una práctica habitual que puede ser inapropiada cuando el coste de la retirada del terreno y la aportación de los materiales seleccionados no es competitivo, no se encuentran disponibles o existen restricciones medioambientales.
Redimensionar o cambiar el proyecto para que sea compatible con las características del terreno. Es el caso del uso de pilotes para trasladar las cargas a un estrato competente.
Modificar el suelo o la roca para mejorar sus propiedades o su comportamiento a través de técnicas de mejora de terrenos.
Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata de incrementar la capacidad portante, reducir la deformabilidad, disminuir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que aplicables a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora. Con todo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en los tratamientos con inyecciones (Ministerio de Fomento, 2002).
Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.
Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.
Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)
También se pueden organizar las técnicas de mejora del terreno en función de su temporalidad (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.
Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)
En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo el refuerzo y la mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.
Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)
El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:
Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.
Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.
Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)
También es posible clasificar las técnicas de mejora del terreno atendiendo a la fase en la que se encuentra un proyecto (Nicholson, 2015):
a) Mejoras previas a la construcción. Se trata de métodos eficientes en cuanto a coste, y por tanto, deseables si son posibles. Se trata de mejorar el emplazamiento de la obra como parte de la planificación de las tareas definidas en el proyecto. Como ejemplos tenemos la compactación, la preconsolidación, el rebajamiento del nivel freático o las inyecciones.
b) Mejoras durante la construcción. Estas técnicas se realizan a la vez que el proyecto y pueden quedar como parte permanente del mismo. Sería el caso de las columnas de grava, tratamientos superficiales del terreno (compactación superficial, estabilización con cal o cemento, etc.), congelación de suelos, geosintéticos, anclajes, claveteado del terreno, etc.
c) Mejora tras la construcción. Se trata normalmente de técnicas de reparación, normalmente caras y que suponen la última alternativa para resolver un problema como pudiera ser la estabilización de una ladera o problemas de filtración de agua. Entre estas técnicas se encontrarían el rebajamiento del nivel freático, micropilotes de refuerzo, etc.
Os dejo a continuación un vídeo explicativo de las clasificaciones de las técnicas de mejora del terreno.
Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
NICHOLSON, P.G. (2015). Soil improvement and ground modification methods. Elsevier, Butterworth-Heinemann, 472 pp.
OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
Son similares a los compactadores de rodillos lisos en sus características geométricas, de frecuencias, amplitudes y velocidades, pudiéndose en muchos modelos intercambiarse los equipos. Llevan de 130 a 165 patas por cilindro, adoptando la forma de tacos de 100 mm de altura, ocupando aproximadamente un tercio de la superficie del tambor. Son adecuados para suelos plásticos y granulares, recomendándose los modelos de 16-20 t, con tracción al tambor. Es conveniente que las patas penetren y no se apoye la parte lisa del tambor en la capa. Para ello los espesores de capa adecuados no deberían ser superiores a la altura de las patas.
Os dejo algún vídeo para que veáis cómo trabaja este compactador.
En un artículo anterior tuvimos ocasión de hablar en detalle de los aspectos básicos del control de calidad en la compactación de un suelo. Pero, ¿qué pasa si existe una desviación entre los resultados que esperábamos y los realmente obtenidos? Es un tema que suscita fuertes discusiones, sobre todo por su repercusión económica y funcional. Mi opinión es que hay que ser muy cauteloso con la aceptación de unidades de obra con mermas de calidad, pero a veces se admiten excepciones que deben estar documentadas y razonadas. Una posibilidad es imponer una penalización económica lo suficientemente fuerte como para desaconsejar al contratista que entre en esa zona cercana a la aceptación, pero ligeramente por debajo de las especificaciones.
A veces, el incumplimiento de las especificaciones que afecten a una parte determinada de la obra de terraplén puede dar lugar a penalizaciones en forma de deducción en la relación valorada, siempre que, a criterio del Director Facultativo, estos defectos no impliquen una pérdida significativa de la funcionalidad y seguridad de la obra o parte de la obra y no sea posible subsanarlos posteriormente. Esta posibilidad no debe implicar nunca una aceptación sin más de la merma de calidad, sino que solo es aplicable en casos excepcionales.
A modo de ejemplo, y sin que ello suponga que esta penalización sea la más adecuada para todos los casos, el artículo 32.31 del Pliego de Condiciones Técnicas Generales 1988, del Ayuntamiento de Madrid propone las siguientes fórmulas, que podrán ser modificadas o complementadas en el Pliego de Condiciones Técnicas Particulares:
P1 = 0,04 ·ΔC · P (por defecto de compactación)
P2 = 0,20 · N · P (por cambio de calidad en el material)
siendo:
P1 y P2 deducción unitaria por penalización €/m3
P precio unitario del terraplén €/m3
ΔC defecto en % del grado de compactación en relación con el especificado.
De Gsrdzl – CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9651626
El grado de compactación de los suelos granulares no suele comprobarse con la habitual curva de compactación. Como estos suelos son relativamente permeables, incluso cuando están compactados, no se encuentran afectados de forma significativa por su contenido de agua durante el proceso de compactación. Ello explica que no esté bien definido el máximo de la curva de compactación en las gravas y arenas limpias. Con un esfuerzo de compactación dado, la densidad seca obtenida es alta cuando se encuentra totalmente seco y alta cuando está completamente saturado, dándose densidades algo más bajas con cantidades de agua intermedias. Ello se debe al fenómeno de apelmazamiento, donde pequeñas tensiones capilares en el suelo parcialmente saturado tiende a resistir el esfuerzo de compactación. Este apelmazamiento no se presenta en arenas secas y desaparece cuando la arena está saturada.
Para estos suelos, donde el concepto de curva de compactación no es aplicable, el criterio de compactación normalmente aplicado es el índice de densidad (ID) definido como:
donde
emax = índice de huecos del suelo en su estado más suelto.
e = índice de huecos del suelo ensayado.
emin = índice de huecos del suelo en su estado más denso.
Se puede juzgar si una arena se encuentra en estado denso o suelto basándose en su índice de densidad:
Se puede definir como compactibilidad (F):
En un terreno granular bien graduado como SW o GW, emax-emin es elevado y emin es pequeño, luego F es grande. Estos suelos se compactan con facilidad. En suelos uniformes como ciertos tipos de SP y GP, emax-emin es pequeño y emin es grande, por tanto, F es pequeño y el suelo es compactable con mayor dificultad.
Figura 1. Compactador vibratorio de rodillo liso. https://construction.trimble.com
En la ejecución de los terraplenes son objeto de control los suelos utilizados, la extensión, la compactación y la geometría. La vigilancia de la compactación consistirá en la comprobación de que el producto final cumple las especificaciones. Ya vimos que no solo la densidad, sino otras condiciones como la deformación o el asiento máximo bajo carga pueden medir si se ha logrado o no dicho objetivo.
La medida del porcentaje de compactación, o lo que es lo mismo, de la densidad “in situ” del suelo, puede hacerse a través de la extracción de una muestra del terreno, o bien mediante el uso de aparatos nucleares, más rápidos y con menores errores debidos al operador.
Otros procedimientos suponen evaluar la deformabilidad del terreno, mediante el módulo de deformación o medidas de deflexiones del suelo al paso de cargas.
El control de calidad de esta unidad de obra puede realizarse mediante una comprobación del producto terminado, o bien por una verificación del proceso, teniendo ambos sistemas sus ventajas e inconvenientes.
Durante mucho tiempo, la filosofía subyacente en las relaciones cliente-proveedor se han basado en la desconfianza y las partes se consideraban adversarios. Resulta de interés lo que Juran y Gryna (1995) decían al respecto: “… algunos compradores veían a sus proveedores como criminales potenciales que podían tratar de que sus productos defectuosos pasaran la inspección al ser recibidos”.
En la actualidad, se va asumiendo la necesidad de que la relación entre compradores y proveedores -dirección técnica y contratista-, se base en el respeto mutuo y la cooperación, pues de esta forma se benefician las dos partes. El intercambio de información de todo tipo y la colaboración en la resolución de problemas son aspectos fundamentales en la consecución de componentes de calidad. En este sentido, el proveedor no solo suministra productos de calidad, sino que, además, facilita la información que evidencia que su Sistema de Calidad (por ejemplo, basado en ISO 9001) es eficiente. Con ello se garantiza y se asegura la calidad ganándose la confianza del comprador.
Control del producto terminado o de recepción
Es el clásico procedimiento contractual, en el cual sólo se comprueba la densidad final alcanzada en una serie de puntos. Se establecen lotes de control y el muestreo se hace de forma aleatoria. En este tipo de verificación, el constructor puede establecer el sistema de trabajo que considere adecuado, siempre que luego cumpla con las especificaciones.
El sistema está indicado cuando tanto los materiales como los métodos de compactación no son demasiado homogéneos. Ello suele coincidir con ritmos de obra de medios a bajos, permitiendo la realización de un número elevado de determinaciones de densidad.
Existen dos grandes grupos o tendencias en cuanto al control de calidad por “resultado” (remitimos a bibliografía específica la descripción de estos procedimientos de control de calidad):
1) Control por peso específico:
1.1.- Métodos directos:
1.1.1.- Clásicos: Arena, membrana, aceite, grandes catas, etc.
El PG3 resume en tres los ensayos de referencia, con las siguientes especificaciones:
Ensayo de compactación Proctor:
El Proyecto, o en su defecto el Director de las Obras, señalará, entre el Proctor normal (PN) o el Proctor modificado (PM), el ensayo a considerar como Proctor de referencia (PR). En caso de omisión se considerará como ensayo de referencia el PM.
En este sistema de control, se clasificarán los materiales a utilizar en grupos cuyas características sean similares. A estos efectos se consideran similares aquellos materiales en los que se cumpla, en un mínimo de 3 muestras ensayadas, lo siguiente:
Pertenencia al mismo tipo de clasificación definida por el PG3.
Rangos de variación de la densidad seca máxima en el PR no superiores al 3%.
Rangos de variación de la humedad óptima en el PR no superiores al 2%.
Dentro de cada grupo se establecerán los correspondientes valores medios de la densidad seca máxima y de la humedad óptima que servirán de referencia para efectuar el análisis de los resultados del control. Se determinará asimismo la zona de validez que se indica después.
El volumen de cada uno de esos grupos será mayor de 20.000 m3. En caso contrario se recurrirá a otro procedimiento de control.
En el caso de que los materiales procedentes de una misma zona de extracción no puedan agruparse de la forma anteriormente descrita ni sea posible separarlos para su aprovechamiento, no será aplicable el método de control de producto terminado mediante ensayos Proctor, debiéndose recurrir al empleo intensivo del ensayo de carga con placa según NLT 357, con alguno complementario como el de huella según NLT 256, o el método de control de procedimiento, según determine el Director de las Obras.
Ensayo de carga con placa:
Para determinar el módulo de deformación del relleno tipo terraplén se utilizará el ensayo de carga con placa. Las dimensiones de dicha placa serán tales que su diámetro o lado sea al menos 5 veces superior al tamaño máximo del material utilizado. En ningún caso la superficie de la placa será inferior a 700 cm2. El ensayo se realizará según la metodología NLT 357 aplicando la presión, por escalones, en dos ciclos consecutivos de carga.
En caso de necesidad, el Proyecto podrá fijar otras condiciones de ensayo que las de la norma indicada, en cuyo caso deberá establecer los valores correspondientes a exigir para el módulo de deformación del segundo ciclo de carga Ev2, y para la relación K entre módulos de segundo y primer ciclos de carga.
Ensayo de la huella
En el caso de realizar el ensayo de la huella se utilizará la norma NLT 256, en la que se indica el control de asientos, sobre 10 puntos separados 1 m, antes y después del paso del camión normalizado.
El ensayo de huella se efectuará correlacionado con el ensayo de placa de carga NLT 357 y por tanto los valores de huella admisibles serán aquellos que garanticen el resultado de la placa de carga. Los mismos serán establecidos por el Director de las Obras a propuesta del Contratista apoyada por los correspondientes ensayos de contraste.
En todo caso los valores de huella admisible no serán superiores a los siguientes:
En cimiento, núcleo y espaldones: 5 mm.
En coronación: 3 mm.
El artículo 330 del PG3 establece las siguientes definiciones relativas al plan de control de calidad:
Definición de lote:
Dentro del tajo a controlar se define como “lote”, que se aceptará o rechazará en conjunto, al menor que resulte de aplicar a una sola tongada de terraplén los siguientes criterios:
Una longitud de carretera (una sola calzada en el caso de calzadas separadas) igual a 500 m.
En el caso de la coronación una superficie de 3.500 m2 y en el resto de las zonas, una superficie de 5.000 m2 si el terraplén es de menos de 5 m de altura y de 10.000 m2 en caso contrario. Descontando siempre en el conjunto de estas superficies unas franjas de 2 m de ancho en los bordes de la calzada y los rellenos localizados según lo definido en el artículo 332, “Rellenos localizados” del PG3.
La fracción construida diariamente.
La fracción construida con el mismo material, del mismo préstamo y con el mismo equipo y procedimiento de compactación.
Nunca se escogerá un lote compuesto de fracciones correspondientes a días ni tongadas distintas, siendo por tanto entero el número de lotes escogido por cada día y tongada.
Muestras y ensayos a realizar en cada lote:
Dentro de la zona definida por el lote se escogen las siguientes muestras independientes:
Muestra de superficie: Conjunto de 5 puntos, tomados en forma aleatoria de la superficie definida como lote. En cada uno de estos puntos se determinará su humedad y densidad.
Muestra de borde: En cada una de las bandas de borde se fijará un punto por cada 100 m o fracción. Estas muestras son independientes de las anteriores e independientes entre sí. En cada uno de estos puntos se determinará su humedad y densidad.
Determinación de deformaciones: En coronación se hará un ensayo de carga con placa según NLT 357 por cada uno de los lotes definidos con anterioridad. En el resto de las zonas el Director de las Obras podrá elegir entre hacer un ensayo de placa de carga por cada lote o bien hacer otro tipo de ensayo en cada lote, como puede ser el de huella, de forma que estando convenientemente correlacionadas se exijan unos valores que garanticen los resultados del ensayo de placa de carga, aspecto este que se comprobará, al menos, cada 5 lotes.
La determinación de deformaciones habrá de realizarse siempre sobre material en las condiciones de densidad y grado de saturación exigidas, aspecto que, en caso de duda, y en cualquier caso que el Director de las Obras así lo indique, habrá de comprobarse. Incluso se podrá obligar a eliminar la costra superior de material desecado antes de realizar el ensayo.
Para medir la densidad seca “in situ” podrán emplearse procedimientos de sustitución (método de la arena UNE 103503, método del densímetro, etc.), o preferentemente métodos de alto rendimiento como los métodos nucleares con isótopos radiactivos. En todo caso, antes de utilizar estos últimos, se calibrarán sus resultados con las determinaciones dadas por los procedimientos de sustitución. Esta calibración habrá de ser realizada para cada uno de los grupos de materiales definidos anteriormente y se comprobará al menos una vez por cada 10 lotes ensayados. De forma análoga se procederá con los ensayos de humedad, por secado según UNE 103300 y nucleares.
Para espesores de tongada superiores a 30 cm se garantizará que la densidad y humedad medidas se corresponden con las del fondo de la tongada.
Para la aceptación de la compactación de una muestra el valor medio de la densidad de la muestra habrá de cumplir las condiciones mínimas impuestas en el PG3. Además, al menos el 60 % de los puntos representativos de cada uno de los ensayos individuales en un diagrama humedad-densidad seca, han de encontrarse dentro de la zona de validez que a continuación se define, y el resto de los puntos no podrán tener una densidad inferior en más 30 kg/m3 a las admisibles según lo indicado en el PG3, en el Proyecto o por el Director de las Obras.
La zona de validez es la situada por encima de la curva Proctor de referencia, normal o modificado según el caso, y entre las líneas de isosaturación correspondientes a los límites impuestos al grado de saturación, en el Proyecto o en su defecto en el PG3.
Dichas líneas límite, salvo indicación en contra del Proyecto, serán aquellas que pasen por los puntos de la curva Proctor de referencia correspondientes a humedades de -2 % y +1 % de la óptima. En el caso de suelos expansivos o colapsables los puntos de la curva Proctor de referencia serán los correspondientes a humedades de -1 % y +3 % de la óptima de referencia.
Figura 2. Control de compactación. http://www.geoconstruye.com
La humedad de las capas compactadas no será causa de rechazo, salvo cuando, por causa justificada, se utilicen suelos con características expansivas. En este caso, si no está previsto en el pliego de prescripciones técnicas, estos suelos deberán ser objeto de un estudio cuidadoso en laboratorio en el que se determinarán los valores de humedad y densidad a obtener en obra y los márgenes de tolerancia.”
Vemos que se trata de controles muestrales, de los que se pretenden inferir las características de la totalidad de la superficie ensayada. La inferencia estadística pretende obtener información de las muestras para conocer los parámetros poblacionales, cuantificando el riesgo de error en términos de probabilidad.
El lote es el conjunto del que se toma la muestra y sobre el que hay que tomar la decisión de aceptar o rechazar. Cada lote deberá haberse producido bajo condiciones homogéneas y durante un período de tiempo determinado.
Llegados a este punto es necesario hacer la siguiente consideración, basada en los fundamentos estadísticos de los planes de muestreo: no es justo realizar tamaños de muestra proporcionales a los tamaños del lote, ya que se varían las probabilidades de aceptar el lote, y ello puede ser utilizado injustamente en beneficio propio por la parte que toma la decisión. De esta forma, si quien decide el tamaño del lote es el contratista, tenderá a lotes de pequeño tamaño -y por tanto reducidos tamaños de muestra-, pues así, la casi totalidad de los lotes serán aceptados incluso -injustamente- los de baja calidad. Si, por el contrario, quien decide el tamaño es la administración, tenderá a pedir lotes de gran tamaño pues, así, se aceptarán solamente los muy buenos aunque también lotes de buena calidad serán -injustamente- rechazados. Por tanto, no es lo mismo determinar lotes de 1.000 m2 y una muestra de una unidad, que lotes de 5.000 m2 y muestras de 5 unidades, o lotes de 10.000 m2 y muestras de 10 unidades.
La muestra aleatoria simple es aquella que se toma de tal forma que todos los conjuntos de n determinaciones del lote tienen la misma probabilidad de constituir la muestra o, lo que es equivalente, que todas las determinaciones que se puedan tomar del lote tienen la misma probabilidad de formar parte de la muestra. Se deben evitar ir a los sitios “peores”, o a los que el operador que realiza los ensayos le parecen “representativos”.
Conviene tener en cuenta que un punto de porcentaje no es una cosa nimia, puesto que un material completamente suelto tiene ya una densidad del orden del 85% de la de referencia.
Los pesos específicos “in situ” y las diferencias entre humedades “in situ” y la óptima siguen una distribución normal. Para situaciones generales es corriente un coeficiente de variación inferior al 3% respecto al peso unitario e inferior al 1,5% respecto a la diferencia entre la población de humedades y la óptima. Es interesante el concepto de “homogeneidad” aplicado por la norma Suiza (SNV 640585a) en cuanto al peso específico aparente húmedo que establece un coeficiente de variación máximo del 5% para dicha variable.
Control del proceso
Con objeto de limitar el número de ensayos, que puede ser prohibitivo en algunos casos, se trata de aumentar el nivel de fiabilidad del producto introduciendo especificaciones en la forma de ejecutar la unidad de obra. Así, según el tipo de suelo, se pueden fijar unas máquinas a utilizar, unos espesores máximos de capa y delimitar el número mínimo de pasadas necesarias. Otro método sería establecer todos estos parámetros en función de los resultados obtenidos para un material en un tramo de prueba.
Su uso está indicado para fuertes ritmos de producción con materiales y sistemas de ejecución homogéneos. La rapidez de ejecución impide la realización de ensayos de producto terminado en número suficiente, y a veces hay que tomar decisiones con rapidez y agilidad, sin merma en la calidad.
El control del “proceso” requiere un conocimiento previo del comportamiento de cada material, un control exhaustivo de la capacidad de trabajo de las máquinas y un método de trabajo estrictamente controlado.
Este tipo de control, combinado con el de producto final, presenta ventajas evidentes, pero supone cierto “compromiso” por parte de la Administración contratante en el proceso de ejecución, que a veces es difícil de establecer de forma contractual. A estas dificultades administrativas se sumarían los problemas técnicos debido al clima, lo que entorpece la elaboración de procedimientos específicos de control que sean homogéneos. No obstante, es un tipo de control que se lleva a cabo en distintos países, destacando el modelo francés. A pesar de sus ventajas, este procedimiento apenas se emplea en nuestro país.
La prevención conlleva el reconocimiento de que la calidad debe generarse durante el proceso y no ser inspeccionada cuando el producto está acabado. Es mejor adelantarse a los acontecimientos en vez de reaccionar constantemente cuando los fallos se producen. Incluso desde el punto de vista de la eficiencia económica, es más barato dedicar parte de los recursos a la prevención que asumir sin más los costes de la no calidad.
Los nucleodensímetros como aparatos de medida
El empleo de ensayos tradicionales como el método de la arena han sido desplazados por el empleo de nucleodensímetros ya que éstos permiten la obtención de la densidad y la humedad de un forma casi instantánea. Son equipos que poseen una fuente radiactiva en el extremo de la sonda que se introduce en el terreno y dos detectores de radiación. La fuente se compone de Cesio 137, el cual emite fotones gamma. Estos fotones, antes de llegar a los detectores, chocan con los electrones de los átomos del suelo. Una alta densidad implica un alto número de choques, siendo menor el número de fotones que llegan a los detectores. La fuente radiactiva también posee Americio-241: Berilio, que emite neutrones. El detector de neutrones localiza la cantidad de los mismos que, debido a la presencia de átomos de hidrógeno del agua del suelo, son termalizados. Este mecanismo permite la obtención de la humedad.
Los nucleodensímetros tienen dos modos de obtener las densidades: transmisión directa (la sonda penetra en el material) y retrodispersión (en caso contrario). El modo de transmisión directa se debe emplear siempre que sea posible introducir la sonda en el material que se desea ensayar. El operador realiza un orificio en el suelo ayudándose de una pica y un mazo. La profundidad a la que debe introducirse la sonda deber ser igual o ligeramente inferior al espesor de la capa que se ensaya, para obtener una medición representativa de toda la capa.
El modo retrodispersión sólo debe utilizarse cuando la dureza de la capa impide la penetración de la sonda, como sucede en el hormigón en las mezclas bituminosas. En este caso sólo se mide la densidad de material situado hasta unos 8 cm por debajo de la superficie, perdiéndose la representatividad.
La prevención conlleva el reconocimiento de que la calidad debe generarse durante el proceso y no ser inspeccionada cuando el producto está acabado. Es mejor adelantarse a los acontecimientos en vez de reaccionar constantemente cuando los fallos se producen. Incluso desde el punto de vista de la eficiencia económica, es más barato dedicar parte de los recursos a la prevención que asumir sin más los costes de la no calidad.
A continuación dejo un vídeo sobre lo que es el densímetro nuclear.
Os dejo a continuación un vídeo sobre seguridad nuclear en el uso de medidores industriales nucleares, nucleodensímetros.
Referencias:
ABECASIS, J.; ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
JURAN, J.M.; GRYNA, F.M. (1995). Análisis y planeación de la calidad: del desarrollo del producto al uso. McGraw Hill, 633 pp.
Figura 1. Apisonadora estática de rodillo liso tipo triciclo. Imagen: V. Yepes
Las apisonadoras estáticas son los compactadores más antiguos, constituidas por rodillos metálicos lisos revestidos mediante una gruesa chapa de acero. Se caracterizan por la presión estática que ejercen sobre el terreno, considerándose un área de contacto que depende del diámetro de los cilindros, del peso de la máquina y del tipo de suelo. Sin embargo, el efecto de la compactación estática alcanza muy poca profundidad, por lo que no son eficientes. Es por ello que hoy en día no se fabrican compactadores estáticos de rodillos, sino que son los vibratorios los que, en ausencia de vibración, se usan de forma estática para determinadas aplicaciones, como puede ser el planchado o sellado de la última capa compactada de suelo en una jornada o en las primeras pasadas de compactación de aglomerados asfálticos.
La densificación del suelo que provocan los rodillos lisos se reduce considerablemente a medida que éste profundiza en la tongada que se compacta y dicho efecto de compactación se produce de arriba hacia abajo.
En la compactación de suelos, estas máquinas serían adecuadas para arenas y gravas bien graduadas, limos y arcillas de baja plasticidad, en tongadas de 10-20 cm y 4-8 pasadas, pero no lo son en arenas uniformes, arenas limosas y arcillas blandas. Cuando se utiliza en arcillas y limos plásticos, es común que al cabo de cierto número de pasadas lleguen a presentarse fracturas o grietas en la parte superior de la tongada, debido a la rigidez que esta zona adquiere por excesiva compactación en comparación con la zona inferior de la misma capa. En este caso, queda la capa inferior con una rigidez y una compacidad más baja.
Existen dos tipos básicos: triciclo y tándem, pues no es habitual el uso del rodillo liso remolcado. Sus velocidades varían hasta 10-12 km/h.
Tipo triciclo
Figura 2. Apisonadora estática tipo triciclo
Consta de un cilindro delantero dividido normalmente en dos mitades con giro independiente para facilitar los cambios de dirección, y dos cilindros traseros en el eje motor de gran diámetro. Los rodillos delantero y traseros se encuentran solapados, con una anchura de compactación de unos 2 m. La distribución por eje del peso, es generalmente del 70% hacia el eje motriz (trasero) y el 30% hacia el eje direccional (delantero). La energía de trabajo se puede variar lastrándolo con agua. Sus pesos oscilan entre 7 y 20 t. Los motores diésel que los propulsan tienen una potencia media de 40 kW. La velocidad máxima de estas apisonadoras está entre 8 y 10 km/h.
El rodillo triciclo se utiliza en compactación de caminos de macadán, bacheos e incrustación de gravilla en tratamientos superficiales, no utilizándose ya en compactación de aglomerados y, menos aún, de terraplenes.
Tipo tándem
Figura 3. Apisonadora estática de rodillo liso tipo tándem. Imagen: V. Yepes
Lo componen dos cilindros, el delantero de dirección, y el trasero tractor, aunque a veces ambos son tractores. El movimiento direccional se obtiene con un ángulo entre los ejes de los dos rodillos. El ancho de compactación suele ser inferior a los 1,60 m. El peso normal oscila entre 5 y 15 t. La potencia de su motor diésel varía entre 25 y 125 kW. La velocidad máxima de estas apisonadoras está entre 8 y 15 km/h.
Las apisonadoras estáticas de rodillo liso son secundarias en las obras de tierra, ya que la presión transmitida al terreno es muy superficial debido a la reducida área de contacto -generatriz del cilindro. Se crea una costra rígida en superficie, por lo que muchas veces sirve la máquina para el sellado y cierre de una tongada. Otra de sus limitaciones, es que la carga transmitida siempre es constante, no adaptándose a la capacidad resistente que va adquiriendo el suelo con cada una de las pasadas.
El rodillo tándem ha quedado casi exclusivamente relegado al aglomerado, empleándose en algunos casos como compactador y en otros, simplemente como alisador, ya que con frecuencia la fase principal de compactación del aglomerado la realiza el compactador de neumáticos.
Un aspecto de gran interés práctico en la compactación es conocer cómo se distribuyen las presiones bajo la superficie por la que pasa el compactador. Si en vez de considerar las tensiones y deformaciones uniformemente distribuidas por todo el material, tal y como hemos visto en los ensayos descritos en entradas anteriores, nos centramos en lo que ocurre bajo la superficie donde se aplica la carga, comprobaremos que los efectos de la carga únicamente se soportan por una porción del suelo bajo ella.
Boussinesq desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas (en 1885 obtuvo una solución para los esfuerzos debidos a una carga aplicada en dirección normal a la superficie de un semiespacio elástico semi-infinito). Se forma un bulbo de presiones bajo la placa, de forma que la presión a determinada profundidad es proporcional a la presión de contacto (Figura 2).
Figura 2. Distribuciones de presiones según Boussinesq
Asimismo, la forma y el tamaño de la placa influyen en el bulbo de presiones. A igualdad de carga y superficie, una placa cuadrada produce mayores presiones a medida que aumenta la profundidad. También se observa que, para una presión de contacto dada, cuanto más ancha es la placa de carga, mayor es la profundidad alcanzada para la misma compresión. Ello explica que un compactador de neumáticos (Figura 1) -cuya huella se aproxima a un círculo- es más eficaz en cuanto a penetración que un compactador de cilindro liso (Figura 3), estando cargados por igual, y a igual superficie total de contacto.
Figura 3. Compactador de rodillo liso
Tanto las tensiones como las deformaciones disminuyen rápidamente con la profundidad de la tongada a compactar. Así en un neumático de una anchura D, con una presión de contacto con la superficie de PC, transmite a 0,5 D solo 0,6 PC, a una distancia D transmite 0,3 PC y al llegar a 2D únicamente nos llega 0,09 PC. El tamaño del bulbo nos indica qué partes de la masa del suelo serán afectadas por la carga aplicada de forma significativa, tanto en profundidad como en extensión lateral. La Tabla 1 proporciona los valores aproximados de la profundidad y ancho de los bulbos de presión de 0,2q y 0,1q.
Tabla 1. Bulbos de presión bajo el terreno
Como existe una presión por debajo de la cual las deformaciones dejan de ser permanentes (se puede tomar como idea unos 0,2 MPa), por ser de tipo elástico, es fácil comprender que la presión en superficie, al ir disminuyendo, encontrará una línea divisoria por debajo de la cual no es posible compactar el terreno.
Debido a que para cada carga, existe una deformación remanente límite, independiente del número de ciclos, se obtendrá una profundidad límite de capa para cada compactador y para cada peso unitario especificado. Se puede calcular dicho espesor límite interpolando entre varios valores de deformación límite y grosor de capa, para un compactador prefijado. Las relaciones entre los pesos unitarios iniciales, especificada y las deformaciones son las descritas mediante la siguiente ecuación, basada en que el peso unitario de cada capa crece en la misma relación que disminuye la altura:donde:
La influencia del tiempo de actuación de la sobrecarga se observa con facilidad en un ensayo edométrico, tal y como hemos visto en una entrada anterior. Si se aplica una carga constante, la deformación aumenta con el tiempo pero tiende asintóticamente a una deformación unitaria, tal y como se ve en la Figura 2. Al mismo tiempo, se puede comprobar la pérdida de humedad por las paredes de la probeta.
Si la prueba se repite aplicando la misma carga con una probeta mayor, se comprueba que se llega a idéntica deformación unitaria, pero éstas al principio son más lentas, tardando más en salir el agua.
Figura 2. Variación de la deformación del suelo con el tiempo de aplicación de la carga
En cuanto a la influencia de la velocidad de aplicación de la sobrecarga y las deformaciones obtenidas se constata cómo la máxima se retrasa respecto a la aplicación efectiva de la máxima presión, debido a los fenómenos descritos con anterioridad. En este caso la carga se aplica de forma creciente hasta llegar a su máximo, disminuyéndola de forma análoga.
A su vez, si dicho esfuerzo se aplica con rapidez, la deformación máxima alcanzada será menor. Sin embargo, al incrementar la velocidad de traslación se puede dar un mayor número de pases por hora de trabajo, existiendo una velocidad idónea, compromiso entre ambos efectos contradictorios. Por consiguiente, y a efectos prácticos, se consideran dos vías para aumentar el efecto de la compactación: o bien incrementar la carga aplicada, o disminuir la velocidad del compactador. Estas circunstancias serán importantes en los terrenos finos, y menos en terrenos granulares.