Sea un sistema de drenes abiertos tipo zanja, construido en un acuífero homogéneo e isotrópico, que comprende todo el espesor del nivel freático, espaciados una distancia D uno de otro, tal y como se puede observar en la Figura 1.
El problema habitual consiste en determinar el espaciamiento que debe dársele a los drenes para mantener el espesor del nivel freático bajo un valor H en todos sus puntos, suponiendo que existe una alimentación vertical de caudal q constante por unidad de superficie.
A continuación os dejo un nomograma elaborado junto con el profesor Pedro Martínez-Pagán, donde se puede realizar la estimación de este tipo de drenes abiertos tipo zanja.
CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
Se utilizan los escudos o cajones de blindaje cuando se busca no solo un sostenimiento del terreno, sino una buena protección a los trabajadores. Se trata de dos paneles unidos por codales de longitud regulable (Figura 1). La longitud de la plancha oscila entre los 2,00 y 6,00 m. Además, no es apta para entibar con presencia transversal de servicios.
Los blindajes se ensamblan en obra, fuera de la zanja, con anchuras regulables en función de la zanja. Cuando se trata de zanjas profundas, se colocan unos blindajes encima de otros, unidos mediante guías. Los cajones de blindajes se pueden emplear hasta 4 m de profundidad, incluso en terrenos no cohesivos. A mayor profundidad los cajones se extraen con dificultad, pues se originan grandes esfuerzos sobre los codales y pueden aparecer descompensaciones del terreno totalmente desaconsejables. A partir de ahí, y hasta 6 m, deberían utilizarse cámaras con tablestacas.
Se distinguen dos tipos de sistemas de colocación de cajones de entibación: el método de descenso directo y el método de descenso escalonado.
El método de descenso directo, también llamado método de ajuste, consiste en introducir la entibación hasta el fondo en la zanja ya excavada. Esto es posible con paredes estables, verticales y con una excavación que presente la misma anchura que la entibación (ver Figura 2). El espacio entre la cara exterior del blindaje y el frente de excavación debe ser el mínimo posible, debiéndose rellenar para evitar los movimientos laterales del cajón. Estos escudos se montan en obra con una simple retroexcavadora o con una grúa pequeña.
El método de descenso escalonado, también llamado de “corte y bajada”, se utiliza para la colocación de cajones provistos de bordes cortantes. Consiste en empujar cada panel con la cuchara de una pala excavadora a uno y otro lado de la entibación, alternando el descenso con la excavación y retirada del suelo. El avance en el descenso no debe exceder 0,50 m del borde inferior de la plancha.
En el siguiente vídeo se muestra cómo se monta el sistema mediante el método de “corte y bajada”.
Las zanjas constituyen excavaciones abiertas y asentadas en el terreno, accesibles a los operarios, y realizadas con medios manuales o mecánicos. La excavación debe hacerse con sumo cuidado para que la alteración de las características mecánicas del suelo sea la mínima inevitable. Su anchura no suele ser mayor a 2 m ni su profundidad superior a 7 m, en cuyo caso se consideraría la excavación un vaciado.
La apertura de una zanja tiene dos fases: una de excavación y otra de entibación, pudiendo presentarse o no esta última en función de las características del terreno, y el tiempo estimado en el que la zanja va a estar abierta. Cuando la excavación de la zanja se realice por medios mecánicos, además, será necesario que el terreno admita talud en corte vertical para esa profundidad y que la separación entre el tajo de la máquina y la entibación no sea mayor de vez y media la profundidad de la zanja en ese punto. Los productos de excavación de la zanja, aprovechables para su relleno posterior, se podrán depositar en caballeros situados a un solo lado de la zanja, y a una separación del borde de la misma de un mínimo de 0,60 m. De emplearse entibación, distancias entre 0,50 y 0,90 m suelen ser suficientes para facilitar la circulación del personal de montaje y reducir la posibilidad de caída de piedras sobre la tubería.
Si bien las zanjas pueden abrirse manualmente, hoy en día la excavación se realiza con maquinaria, fundamentalmente con palas retroexcavadoras de tipo universal y con zanjadoras, máquinas diseñadas exclusivamente para excavar zanjas (Figura 1). De algunos de estos tipos ya hemos hablado en entradas anteriores: zanjadora de brazo inclinable, zanjadora de ruedas de cangilones, incluso cortadora de disco con picas para zanjas estrechas. Estas máquinas proporcionan buenos rendimientos, siempre que se den las condiciones adecuadas. Así, las zanjadoras, cuyos rendimientos son realmente elevados, presentan el inconveniente de que para su utilización es preciso que el terreno sea adecuado, es decir, cuando es tierra franca o terreno de tránsito y no hay demasiados obstáculos. Las retroexcavadoras, aunque obtienen menores rendimientos que las zanjadoras, se pueden utilizar en terrenos más variados, permitiendo su utilización en la carga, descarga y colocación de los tubos y superando mejor los obstáculos del terreno. En las ciudades, generalmente no se presentan los problemas anteriores, pero aparece el problema de la gran cantidad de conducciones en el subsuelo correspondientes a distintos servicios. Ello implica excavar manualmente las zonas de cruce con la zanja y utilizar maquinaria en el resto de zonas.
La anchura mínima del fondo de la zanja depende del espacio que necesitan los operarios para colocar los tubos, por lo que se considera una anchura mínima de 0,60 m. En los puntos donde deba colocarse una junta, se realizan unos ensanchamientos de la zanja cuyas dimensiones dependen del tipo de junta y de la manipulación necesaria para su montaje. La norma UNE-EN 1610 indica el ancho mínimo de la zanja en función del diámetro nominal de la tubería y de la profundidad de zanja.
La calidad del fondo de la zanja es fundamental para la buena conservación de las canalizaciones, puesto que la presencia en ella de zonas de distinta dureza hace que la tubería no quede en buenas condiciones de sustentación. Por lo anterior, es conveniente no efectuar nunca excavación de más, así como limpiar el fondo de piedras, realizando el refino final cuidadosamente. Por otra parte, si aparecen materiales de rigidez excesiva, como rocas o cimentaciones en desuso, se deberá excavar por debajo de la rasante y realizar un relleno posterior de unos 10-15 cm perfectamente compactado. Además, no se recomienda utilizar como relleno materiales con alto contenido de componentes orgánicos, ni instalar las tuberías en suelos orgánicos sin tomar precauciones especiales (empleo de geotextiles, etc.)
La profundidad de la zanja debe indicarse en el proyecto, pero en cualquier caso, y habida cuenta tanto del efecto de las cargas del tráfico como de las posibles heladas, la separación entre la generatriz superior del tubo y la superficie del terreno debe de tener un valor mínimo de 0,60 m.
En general, se evitará la entrada de aguas superficiales a las excavaciones, achicándolas lo antes posible cuando se produzcan, y adoptando las soluciones previstas para el saneamiento de las profundas. Debe intentarse que la zanja esté abierta el menor tiempo posible para evitar los peligros de desprendimientos, inundaciones y meteorización del terreno, así como las posibles alteraciones que puede sufrir la tubería ya montada debido a los agentes atmosféricos. Es por ello que es conveniente establecer un programa de ejecución que coordine, por tramos de longitud adecuada, las fases de apertura de zanja, montaje y terraplén. Si fuera preciso mantener la zanja abierta durante algún tiempo, es conveniente, para evitar la meteorización, dejar por lo menos 0,20 m sin excavar, realizando esta excavación poco antes del montaje.
La estabilidad de las paredes de la zanja puede conseguirse dándoles el talud adecuado, pero en algunos casos en que esto no es posible, bien por el coste económico de la excavación, bien por la imposibilidad física de espacio, es preciso la entibación. Las zanjas son especialmente peligrosas para los operarios, por lo que, como regla general, no se debe excavar sin entibación una profundidad mayor a 1,20 m. Si se entiba, la zanja se realiza con paredes verticales, debiendo ser la entibación tanto más compleja cuanto mayor sea la inestabilidad del terreno. Hay que tener presente que existe una altura crítica de una excavación sin entibación. Se realizará la excavación por franjas horizontales de altura no mayor a la separación entre codales más 30 cm, que se entibará a medida que se excava. Además, debe tenerse en cuenta en el diseño de la entibación, que se debe permitir la colocación y el montaje de la tubería. Por último, indicar que mientras se efectúe la consolidación definitiva de las paredes y fondo de la excavación, se conservarán las contenciones, apuntalamientos y apeos realizados para la sujeción de las construcciones y/o terrenos adyacentes, así como de vallas y/o cerramientos.
Os dejo algunos vídeos sobre la excavación de zanjas. Espero que os sean de interés.
https://www.youtube.com/watch?v=sLWhMq6pBF0
Referencias:
AENOR (2000). UNE-EN 805.Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes.
AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.
Podemos definir la instalación de una tubería como el conjunto de acciones que hay que realizar para colocarla en su posición definitiva, garantizando el cumplimiento de la función hidráulica y mecánica para la que ha sido diseñada. Una vez realizada la excavación a la profundidad y anchura necesarias, hay que asegurar que el fondo de la excavación se encuentra exento de elementos gruesos, se debe rasantear y nivelar y, en condiciones especiales como un nivel freático alto, se deben colocar geotextiles, material granular y otros elementos.
El relleno de zanja tiene como misión la de garantizar la solidez en la zona de los riñones y los laterales del tubo. La calidad del material de relleno, así como su correcta ejecución, son aspectos que influir en el comportamiento y funcionalidad a lo largo del tiempo de la tubería instalada. La tubería, aunque se haya fabricado y dimensionado correctamente, puede fallar si no se instala adecuadamente, pues debe soportar los esfuerzos de todo tipo.
Según las Normas UNE EN 805 y UNE EN 1610, en una zanja para instalación de tuberías se distinguen las siguientes partes (Figura 2):
Cama de apoyo: es el relleno que se extiende en el fondo de la zanja para eliminar desigualdades en su base.
Asiento: parte del relleno que proporciona a la tubería el ángulo de apoyo previsto en proyecto.
Apoyo: conjunto formado por la cama de apoyo y el asiento del tubo.
Relleno lateral: es la zona del relleno lateral de la tubería, comprendida entre el asiento y la generatriz superior de la tubería.
Relleno inicial: son los 30 cm de relleno sobre la clave de la tubería.
Recubrimiento: zona de relleno alrededor y hasta 30 cm sobre la generatriz superior del tubo.
Relleno principal: es la altura de relleno por encima del relleno inicial, hasta alcanzar la rasante del terreno, incluyendo la posible calzada.
Altura de relleno: zona que cubre el tubo, desde su generatriz superior hasta la superficie de rodadura de la calzada.
El apoyo debe realizarse de forma que los tubos reposen a lo largo de toda su caña. En caso necesario, deberá excavarse alojamiento en la capa de apoyo para acomodar a las uniones. El tendido de la cama de arena o material granular debidamente compactado es imprescindible para que la tubería no descanse sobre salientes o piedras que pudieran existir en la base de la zanja. Si el fondo no satisface las condiciones de apoyo de los tubos, deberá sobreexcavarse y rellenar con un material seleccionado adecuado, colocado siguiendo correctamente el perfil longitudinal, y compactado. Solo se puede prescindir de la cama cuando el material del terreno natural de la zanja tenga la calidad y granulometría adecuadas (arenas, zahorras naturales, etc.) según la normativa. También se debe cuidar el ángulo de apoyo previsto en proyecto, soportándose mejor las cargas externas cuando mayor sea el ángulo de apoyo. Para ello es preciso retacar el material de relleno que proporciona el apoyo en la zona inferior de la tubería, asegurando que se consigue el ángulo de apoyo buscado.
La altura del relleno será tal que se impida la congelación de los tubos; si ello no fuera posible, deberán emplearse otros dispositivos alternativos de protección antihielo. El relleno de la zanja, desde la cama de apoyo hasta 30 cm sobre la clave del tubo, se debe hacer por tongadas de 15-20 cm, compactadas hasta alcanzar el grado de compactación considerado en proyecto, no menor del 95% del Proctor Normal. Debe compactarse por debajo de la tubería y a ambos lados simultáneamente, para impedir movimientos de la tubería. El resto del relleno hasta alcanzar la superficie del terreno natural se debe hacer por tongadas de 30 cm como máximo, con un grado de compactación del 100% del Proctor Normal.
En la compactación del relleno de la zanja, desde la cama hasta 30 cm sobre la generatriz superior del tubo, se deben usar pisones vibradores mecánicos ligeros (peso máximo en funcionamiento de 0,30 kN), o placas vibratorias ligeras (peso máximo en régimen de funcionamiento de 1 kN), y con los espesores adecuados de las capas de tierra a compactar. También se pueden utilizar compactadores específicos como la rueda compactadora de zanjas. Las características del material de relleno serán las siguientes:
Que no existan componentes de piedra de granulometría mayor de 50 mm.
Para tuberías de diámetro nominal entre 200 y 600 mm, la granulometría máxima será de 30 mm.
El material tendrá capacidad portante suficiente y no será cohesivo.
Una compactación del 92% del Proctor Normal, por ejemplo, debe garantizar una rigidez de 3 N/mm2.
En el relleno sobre la clave del tubo no se deben utilizar elementos de compactación pesados hasta alcanzar una altura de, al menos, 1 m.
El relleno de las zanjas se debe realizar en dos etapas. La primera es un relleno parcial antes de las pruebas en obra, y la segunda etapa corresponde al terraplenado definitivo después de dichas pruebas.
El material utilizado para el relleno parcial debe situarse uniformemente en la zanja. Hasta una altura de 30 cm por encima de la clave del tubo, el material de relleno debe colocarse en capas de 15 cm muy bien consolidadas lateralmente y asegurando la ausencia de coqueras bajo los riñones del tubo. Las juntas deben quedar libres hasta el relleno definitivo tras las pruebas de obra.
Siempre que el terreno natural tenga la calidad adecuada, se empleará en el relleno el mismo material procedente de la excavación debidamente seleccionado, evitando la caída de piedras u otros objetos que pudieran dañar al golpear los tubos durante el vertido. Cuando las pruebas de presión en obra sean satisfactorias, se procederá al relleno de las juntas descubiertas para completar el relleno de la zona del tubo, cuidando el relleno y retacado en los riñones de manera que no queden coqueras al objeto de que el tubo quede perfectamente apoyado en el ángulo de apoyo previsto en proyecto.
Para terminar el relleno hasta la rasante del suelo, se pueden utilizar materiales ordinarios en los que se hayan eliminado los terrones y piedras gruesas. Este relleno será completado por capas de alrededor de 30 cm de espesor, niveladas y cuidadosamente apisonadas, utilizando pisones mecánicos ligeros o placas vibratorias ligeras.
Los compactadores pesados se permiten a partir de una altura de relleno igual o mayor a 1 m sobre la generatriz superior de la tubería. En tanto las obras no hayan terminado se deberán evitar cargas mayores (por ejemplo, tránsito de vehículos pesados, incluidos los de obra). Estas sobrecargas no están contempladas normalmente en los cálculos de proyecto.
Si por necesidades de obra deben pasar camiones de obra u otro tráfico no previsto o no calculados e proyecto, se deberán realizar cálculos complementarios para comprobar que las tuberías de proyecto son válidas para esas hipótesis de cargas.
Os dejo a continuación algunos vídeos que espero sean de vuestro interés.
Referencias:
AENOR (2000). UNE-EN 805.Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes.
AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
Llamada en cierta bibliografía excavadora “ladder ditcher”, consiste en una serie de cangilones o cuchillas montados generalmente sobre orugas, que excavan en la dirección del eje de avance de la máquina y vierte las tierras, sobre una cinta transportadora dispuesta en dirección transversal a la excavadora. La tierra excavada se deposita en un cordón lateral o se carga en las unidades de transporte.
Sus elementos esenciales son:
El brazo de cangilones, móvil mediante cilindros hidráulicos hasta una inclinación máxima de 55º respecto a la horizontal, que tienen montados cangilones con cuchillas para terrenos no rocosos, dientes cónicos o picas en terrenos rocosos y dientes cuadrados en terrenos congelados.
Nivelador de fondo, con el que se consiguen zanjas de fondo limpio, llevando una zapata en su estructura que impide a la máquina excavar a más profundidad de la requerida.
Transportador de descarga, situado transversalmente al eje longitudinal, y consiste en una cinta transportadora con altura de descarga regulable.
La máquina empieza excavando sin moverse, descendiendo el brazo de cangilones hasta la profundidad deseada, posteriormente avanza y mantiene una velocidad compatible con la naturaleza del terreno, al igual que la velocidad de los cangilones.
De las zanjadoras, el de tipo de brazo inclinable es el que permite cavar la trinchera más ancha. Con cangilones normales, esta anchura llega hasta 0,90 m y con los dientes desbordantes, alcanza 1,45 m. El radio de las curvas que pueden abordarse sin levantar el brazo es de unos 25 a 50 m. En zanjas estrechas no se usa esta máquina.
Una de las zanjadoras más grandes del mundo se ha empleado en Villena para acelerar las obras del post-trasvase Júcar-Vinalopó. Es una máquina de 180 t, con una longitud de 4 m de ancho y 9 m de largo. Con esta máquina se pueden abrir de 100 a 120 m de zanja al día.
Os dejo a continuación varios vídeos que explican el funcionamiento de esta máquina.
Referencias:
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
El empuje de las tierras sobre un tubo instalado en zanja influye decisivamente en su dimensionamiento. Su magnitud depende tanto de las características geométricas de la zanja y del tubo como de las características propias del terreno. A continuación os dejo un enlace a una página donde podéis entender cómo varía el coeficiente de carga de las tierras sobre un tubo instalado en zanja, en función de las características del terreno, las dimensiones del tubo y la geometría de la propia zanja. Para ello se debe seleccionar: el ancho de la zanja (hasta un máximo de 5 m), la altura de relleno (hasta un máximo de 10 m), el ángulo de rozamiento interno del relleno y el ángulo de rozamiento del relleno contra la zanja (ambos en grados sexagesimales, hasta 50º). No se admiten valores negativos.
Se puede definir una obra de zanja en zona urbana como el conjunto de operaciones de obra civil necesarias para albergar y disponer canalizaciones de servicios públicos en suelo de dominio público.
La apertura de zanjas en medio urbano es, quizás, una de las operaciones más habituales de obra civil. Son obras de corta duración, de ámbito reducido y de frecuentes interferencias de todo tipo: otras canalizaciones, tráfico, etc. La sociedad urbana cada vez es más sensible a las molestias que supone la apertura de zanjas en ciudades que generan colapsos circulatorios, ruido y suciedad. Estas zanjas sirven para todo tipo de canalizaciones: alcantarillado, agua potable, telecomunicaciones, electricidad y gas, entre otras muchas.
Se consideran zanjas superficiales las quepresentan menos de 0,50 m de profundidad respecto a la rasante del firme, considerándose como profundas las de más de 1,00 de profundidad. Aunque lo habitual es la ejecución de zanjas intermedias.
Una buena alternativa al procedimiento convencional de apertura de zanjas es la tecnología sin zanjas o trenchless, pero cuya descripción se escapa al objeto de este post.
Aconsejo la lectura del artículo de Vicente Belenguer “Recomendaciones técnicas sobre ejecución de zanjas en ámbito urbano”, cuya lectura la podemos ver directamente del número387 de la revista Cimbra. Os recomiendo encarecidamente su lectura.
Os paso a continuación algunos vídeos sobre este tipo de obras urbanas y sus molestias. En el primer vídeo podéis ver una zanjadora de disco con picas. En el segundo, una noticia sobre obras molestas.
La instalación propiamente dicha de las tuberías o los conductos se realiza en varias fases. Primero se perfora un taladro piloto; a continuación se ensancha dicha perforación de forma concéntrica en sentido contrario al de la perforación piloto. En ese momento la máquina tira y la tubería se engancha al escariador para alojarla en su posición definitiva.
La perforación piloto constituye la siguiente fase del proceso tras los estudios previos y el emplazamiento de la maquinaria. Se trata de perforar con un cabezal direccionable con un varillaje especial que admite cambios de orientación. Su diámetro dependerá de la maquinaria utilizada y está relacionada con el tamaño de las barras de perforación y de las brocas de perforación. Los aspectos más relevantes a considerar son las posibles obstrucciones y los radios de curvaturas. Un sistema de navegación guía la cabeza de perforación. Lo habitual es que el varillaje permita la entrada de lodos, que pueden inyectarse a presión para mejorar la perforación. Los lodos arrastran el detritus hacia el exterior. En el caso de terrenos duros se puede utilizar un motor de lodos (mud-motor) que acciona el cabezal de perforación.
Tras la perforación piloto se realiza la operación de ensanche, normalmente en sentido inverso, tirando de un escariador. El agrandamiento puede hacerse de una vez o en fases sucesivas hasta alcanzar el diámetro necesario. Es habitual que el diámetro final sea el doble del de la tubería a instalar. Un aspecto clave es el terreno y su estabilidad, pues va a condicionar el uso del ensanchador. Así, en terrenos blandos se emplean ensanchadores tipo flycutter o barriles, mientras que en terrenos duros o roca se necesitan ensanchadores especiales con protecciones de carburo de tunsgteno. Existen escariadores cortadores, que corta trozos pequeños de material que se mezclan con el fluido de perforación; el escariador compactador, donde los recortes se compactan; y los mixtos, donde los recortes se compactan y se mueven.
Por último, la tubería se alinea y se fija justo detrás del ensanchador y se introduce, de una sola vez, en el interior de la perforación tirando de ella. Para facilitar la operación los lodos lubrican las paredes de la perforación para reducir el rozamiento. Cuando se recoge el varillaje, la instalación ya está terminada.
Las recomendaciones generales para la ejecución de PHD pasarían por normalizar los métodos de trabajos para aumentar rendimientos y reducir costes, establecer sistemas de control que garanticen la seguridad y la calidad de los trabajos y establecer un sistema capaz de rechazar, corregir o aceptar las desviaciones que se puedan dar.
A continuación os dejo un vídeo explicativo al respecto del procedimiento constructivo del PHD.
Referencias:
IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.
Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.
Al igual que ocurre con cualquier procedimiento constructivo, la PHD tiene sus etapas de planificación, ejecución y control (Pellicer et al., 2014). El proceso de instalación de una tubería o canalización mediante PHD comienza con un estudio previo con el objeto de elegir la mejor máquina y útiles para un caso concreto. Se incluye la topografía de la zona y un estudio geotécnico que determine el tipo de terreno. No menos importante es detectar con precisión los servicios existentes en el subsuelo mediante un georadar e incluso analizar rutas alternativas. A continuación se debe adecuar la zona de trabajo para el emplazamiento de los equipos, tanto en el inicio de la perforación como en la salida. No se debe subestimar la planificación. Por cada día de trabajo de campo debería dedicarse un mínimo de dos días de planificación.
La etapa de estudios previos debería centrarse en dos aspectos que se consideran fundamentales:
1. La naturaleza intrínseca del proceso de construcción que implica:
El corte de las formaciones del suelo y su incorporación a los fluidos de perforación
El mantenimiento continuo y estable de las paredes de la perforación
El transporte del detritus suspendido en la mezcla para permitir la instalación de la tubería
2. El trazado de la perforación, que deberá centrarse en el obstáculo a cruzar, considerando especialmente las condiciones geotécnicas e hidrológicas (ver Figura), así como identificar el radio de curvatura de las barras de perforación y los esfuerzos máximos admisibles.
Os dejo a continuación un vídeo explicativo que espero sea de vuestro interés.
Referencias:
IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.
Pellicer, E., Yepes, V., Teixeira, J.C., Moura, H.P., and Catalá, J. (2014). Construction Management. Wiley Blackwell, 316 pp.
Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.
La Perforación Horizontal Dirigida PHD (HDD, de su acrónimo en inglés Horizontal Directional Drilling) para colocar nuevas tuberías sin zanja surgió de la fusión de las tecnologías empleadas en la captación de agua y del petróleo. Resulta sorprendente descubrir que Leonardo da Vinci inventó, en el siglo XV, la primera máquina de perforación horizontal que servía para introducir tuberías de madera. La primera instalación con PHD se realizó en 1971 con una tubería de acero de 180 mm para cruzar el río Pájaro cerca de Watsonville, California. Hoy es una técnica que se ha generalizado para franquear obstáculos como ríos, carreteras y zonas complicadas de atravesar mediante una excavación convencional. También se utiliza en las obras municipales para las conducciones de agua potable, gas natural, fibra óptica, cableados eléctricos, alcantarillado y similares cuando hay que cruzar edificios o calles.
Lubrecht (2012) analiza las ventajas medioambientales de las técnicas PHD usadas en la descontaminación de suelos. Sin embargo, Ariaratnam y Proszek (2006) recuerdan los desorbitantes costes legales por daños a terceros en los que están incurriendo contratistas negligentes, tanto de PHD como de excavación tradicional. Ello obliga a sistemas muy precisos para detectar obstáculos y otras conducciones para evitar accidentes y explosiones (Jaganathan et al., 2011).
El movimiento de perforación habitualmente se realiza en un plano horizontal que contiene longitudinalmente a la línea de perforación, formada por la cabeza y la sarta de perforación. Al principio, con la técnica PHD en desarrollo, sólo se instalaban tuberías a presión y conductos de cables, sin que la inclinación fuera un parámetro crítico. Hoy las perforadoras cuentan con sistemas de guiado de alta precisión que permiten colocar tuberías de gravedad.
Se podría decir que la PHD es una técnica a medio camino entre la perforación de topo de percusión (impact moling) y el microtunelado. PHD proporciona un creciente número de opciones de instalación, pues la trayectoria de la perforación se puede cambiar en cualquier momento para sortear obstáculos superficiales o subterráneos. Las instalaciones habituales utilizan diámetros de 50 a 1200 mm y longitudes de hasta 2000 m. Si bien Allouche et al. (2000) indican que el 72% de las tuberías instaladas con PHD son de diámetros menores o iguales a 100 mm. Los materiales de las tuberías suelen ser de polietileno de alta densidad (PEAD), cloruro de polivinilo (PVC), acero y hierro dúctil. La fuerza de tiro se emplea para clasificar los sistemas PHD, pues está relacionado con el tamaño de máquina necesario, el diámetro del conducto a instalar y la longitud de perforación. Ariaratnam y Allouche (2000) proporcionan un buen compendio de recomendaciones y buenas prácticas relacionadas con esta técnica.
Os dejo a continuación un vídeo explicativo que introduce la técnica de la Perforación Horizontal Dirigida.
Referencias:
Allouche, E., Ariaratnam, S., and Lueke, J. (2000). Horizontal Directional Drilling: Profile of an Emerging Industry. Journal of Construction Engineering and Management, Volume 126, No. 1, pp. 68–76.
Ariaratnam, S. T., and Allouche, E. N. (2000). Suggested practices for installations using horizontal directional drilling. Practice Periodical on Structural Design and Construction, Volume 5, No. 4, pp. 142-149.
Ariaratnam, S. T., and Proszek, J. (2006). Legal consequences of damages to underground facilities by horizontal directional drilling. Journal of Professional Issues in Engineering Education and Practice, Volume 132, No. 4, pp. 342-354.
IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.
Jaganathan, A. P., Shah, J. N., Allouche, E. N., Kieba, M., and Ziolkowski, C. J. (2011). Modeling of an obstacle detection sensor for horizontal directional drilling (HDD) operations. Automation in Construction, Volume 20, No. 8, pp. 1079-1086.
Lubrecht, M. D. (2012). Horizontal directional drilling: A green and sustainable technology for site remediation. Environmental Science & Technology, Volume 46, No. 5, pp. 2484-2489.
Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.