Esta semana tuvimos una esplendida conferencia sobre construcción de túneles realizada por ASEMAQ en la Escuela de Ingenieros de Caminos de Valencia. Esta conferencia se incluye dentro de los actos conmemorativos del 50 aniversario de la Escuela.
El estado del Arte en la construcción de túneles y labores mineras fue recogido en el siglo XVI por el alemán Georg Bauer, conocido como Georgius Agrícola, en su obra De Re Metálica #túnelespic.twitter.com/MLxxQFh5jb
Entre 1869 y 1887 Barlow y Greathead patentaron la primera #tuneladora que utilizaba aire comprimido para estabilizar el frente en la semisección superior y al parecer propuso transportar los productos excavados hidráulicamente transformándolos previamente en lodos pic.twitter.com/u7CfYS3JJ7
En el año 1.883 el coronel Beamont construyó una máquina que excavó bajo el Canal de la Mancha 1.939 m con un rendimiento medio de 400 m al mes. pic.twitter.com/f9BSsjx08B
En entradas anteriores ya hemos hecho mención a la ingeniería primitiva, la desarrollada en Mesopotamia o en la Grecia Clásica. Mención especial merecen los desarrollos alcanzados en la Antigua China, que en el siglo I ya tenía 57 millones de habitantes, superando a Roma, aunque ambos imperios apenas llegaran a conocerse entre ellos. Por tanto, hoy vamos a dar dos pinceladas a las realizaciones de la milenaria China, sabiendo que dejamos muchísima información por el camino. Los cuatro grandes inventos chinos fueron el papel, la brújula, la pólvora y la imprenta.
Una de las más grandes realizaciones de todos los tiempos fue la Gran Muralla China, con más de 4 km de muro en total. Esta muralla tiene unos 10 m de altura, 8 m de espesor en la base y 5 m en la parte superior, por donde discurre un camino pavimentado. Su construcción requirió un elevado número de personas. Los bloques de piedra se traían con rodillos a las zonas previamente excavadas para su colocación. Su construcción se complicaba en zonas con fuertes vientos o en otras de clima desértico. Los materiales empleados fueron los disponibles en cada sitio: piedra caliza, granito o ladrillo cocido. Especialmente eficaz a los impactos de armas de asedio fueron las tapias de arcilla y arena cubiertas con varias paredes de ladrillo. Para hacerse una idea, en el reinado de Qin Shi Huang, que empezó a gobernar en el 221 a.C., se construyeron caminos y vías. Nada menos que 6.800 km durante sus 20 años de imperio, lo cual es muy llamativo si tenemos en cuenta que los romanos, 300 años después, tuvieron un total de 5.984 km, casi mil menos.
También China tuvo canales desde hace miles de años. El sistema de irrigación de Dujiangyan comenzó en el siglo III a.C., basándose su construcción en un canal que tuvo que atravesar una montaña, lo cual no fue una tarea fácil teniendo en cuenta los procedimientos constructivos de la época. Para salvar dicho problema, se recurrió al calentamiento y enfriamiento repetido de la roca, lo cual fractura la roca y permitía su excavación. Para evitar la acumulación de limo en el sistema de irrigación, se construyó un dique en el centro del río, cimentados en unos enormes gaviones hechos de bambú. Además, fueron los primeros constructores de puentes, con características únicas. Algunos de sus puentes más antiguos fueron de suspensión, con cables hechos de fibra de bambú. Aunque sin basarse en teorías científicas, los antiguos constructores chinos empleaban un método que está relacionado con los “drenes de arena”. En sus suelos aluviales blandos hincaban pilotes de madera que extraían, a continuación, por rotación. Los agujeros eran rellenados con cal viva bien compactada. Estos pozos de cal absorbían el agua que los rodeaba, produciendo, de este modo, una consolidación acelerada del suelo, siendo estos los principios del empleo de las técnicas de mejora del terreno.
Una viga constituye una pieza lineal apoyada que resiste fundamentalmente a flexión. Estas estructuras presentan un canto e inercia crecientes con luz, puesto que la flexión es directamente proporcional al cuadrado de la luz. Los puentes viga, por tanto, se basan en secciones de máxima inercia y de mínimo peso (secciones en doble T, cajones, etc.).
Aunque morfológicamente el puente viga puede parecer el sistema más simple y directo de atravesar un río, su mecanismo resistente, la flexión, es más complejo y difícil de intuir que el esfuerzo axil, ya sea de tracción o compresión, predominante en otras tipologías estructurales, como los arcos (ver un post anterior).
Las primeras intuiciones sobre el mecanismo de la flexión en una viga surgen en el Renacimiento con Leonardo da Vinci, aunque fue Galileo el primero que intentó dar una explicación científica al comportamiento de una viga. Sin embargo, fue Coulomb (1736-1806) el primero que propuso las condiciones de equilibrio de las secciones de la viga y Navier (1785-1836) el que resolvió en 1824 completamente el problema basándose en la proporcionalidad de tensiones y deformaciones (ley de Hooke) y en la hipótesis de la conservación de las secciones planas. Continuadores de Navier fueron Saint-Venant y Bresse que hicieron importantes aportaciones a la resistencia de materiales y al cálculo de las estructuras hiperestáticas. Sin embargo, no fue hasta 1954 el año en que Livesley inició el método matricial del cálculo de estructuras empleado hoy masivamente con el empleo de los ordenadores personales.
La modelización para el cálculo de un puente viga puede seguir un análisis como estructura lineal. Sin embargo, el tablero del puente es una superficie y, por tanto, deber estudiarse adecuadamente el efecto del reparto de las cargas. En los puentes oblicuos se requiere incluso un estudio tridimensional de tensiones. Es habitual, en consecuencia, utilizar modelos de cálculo bidimensionales basados en la losa ortótropa (rigideces distintas en las dos direcciones). Es habitual el empleo del modelo del emparrillado, el de láminas plegadas, el de bandas o de elementos finitos.
En cuanto a las soluciones estructurales, estas han pasado, según crecía la luz a salvar por el puente, por la losa maciza, la losa aligerada, el tablero de vigas de alma llena, las vigas en celosía o trianguladas y las vigas cajón. Con las triangulaciones se llega a la máxima reducción de material, constituyendo los puentes viga que cubren las luces mayores. Sin embargo, en las vigas cajón se consigue la máxima eficacia resistente por su excelente comportamiento tanto a flexión como a torsión.
Las vigas pueden estar simplemente apoyadas en sus extremos, o bien ser vigas continuas, es decir, apoyadas en varios puntos. Los puentes viga biapoyados constituyen estructuras isostáticas, de cálculo sencillo, que han sido empleados para cubrir pequeñas y medianas luces. Los puentes en viga continua son estructuras hiperestáticas, que permiten reducir considerablemente la flexión de cálculo, debido al cambio de signo de estos esfuerzos en los apoyos y en el centro del vano.
Los puentes continuos presentan ciertas ventajas frente a los simplemente apoyados. Se requiere un menor número de apoyos y de juntas (superficie de rodadura sin interrupciones), los cantos son menores y, asimismo, la deflexión y la vibración son menores. Sin embargo, los asientos diferenciales pueden afectar a la estructura. Otro inconveniente, aunque menor, es la mayor complejidad en el análisis del puente continuo, sin embargo, es una dificultad relativa con los potentes medios de cálculo actuales. Además, en los puentes prefabricados, es habitual un sistema constructivo evolutivo que pasa del isostatismo al hiperestatismo al unir las piezas prefabricadas a una losa de hormigón y además se da una continuidad longitudinal. En estos casos deben contemplarse las redistribuciones de esfuerzos en el tiempo por la fluencia y retracción del hormigón, y si, además, la sección evoluciona, aparecen también redistribuciones internas de tensiones. Estas redistribuciones no son despreciables y deben considerarse en el cálculo, en el proyecto y en la construcción.
Una tercera opción lo constituyen las vigas Gerber o en cantilever, que introducen articulaciones en una viga continua con tal de hacerla isostática. En este último caso se suman las ventajas de las vigas continuas (cambio de signo en los momentos) y las vigas biapoyadas (no se ven afectadas por asientos del terreno).
Los puentes viga se han construido con materiales tan diversos como la madera, el acero, el hormigón armado y el hormigón pretensado. Los puentes de vigas en celosía y trianguladas en madera se desarrollaron en el siglo XIX sobre todo en Estados Unidos con la extensión del ferrocarril. Se llegó con vigas Town de madera a luces de 70 m en el puente de Blenheim en 1853. En 1840 Howe patentó la primera viga mixta de madera y hierro; sin embargo, pronto se impusieron las vigas puramente metálicas.
Hacia 1830 la producción industrial de hierro comienza a desarrollarse con el ferrocarril, y con ello se recurrió a este nuevo material en forma de vigas trianguladas o de vigas de alma llena. En esta última categoría destaca el puente Britannia, sobre el Menai (Gales), finalizado en 1850 por Stephenson, con dos tramos centrales de 140 m de luz.
A finales del siglo XIX el acero sustituyó completamente al hierro y, por supuesto, a la fundición. Los puentes viga de acero se impusieron rápidamente por su ligereza. Para luces medias, y por encima de los 75 m, las soluciones metálicas entran en competencia con el hormigón pretensado. La luz de 300 metros del vano central de puente de Niteroi (Río de Janeiro, Brasil) se puede considerar límite en puentes metálicos en viga continua con sección en cajón, porque la solución más adecuada para estas luces es la atirantada. Otras tipologías, como los puentes atirantados o los colgantes, quedan fuera de la clasificación de los puentes viga.
Tampoco se entrará en la descripción de los puentes viga de hormigón armado, pues estos quedan relegados a las pequeñas obras de fábrica (menos de 15 m de luz), estando ampliamente superada su tecnología con el hormigón pretensado para luces mayores. Sin embargo, el puente viga de hormigón armado de mayor luz del mundo es la pasarela de Irvy sobre el Sena (París), con 134,5 m de luz, construida en 1930; su tipología corresponde con una viga triangulada. Para otros post dejamos los aspectos constructivos de estos puentes.
Vamos a intentar divulgar, en unas breves notas, algunas ideas sobre los puentes renacentistas. Este post sigue a otros anteriores que trataron sobre la ingeniería en el Renacimiento, el diseño de los arcos a lo largo de la historia o el concepto de puente. Espero que os guste, a sabiendas de que me dejaré muchísimas cosas por el camino.
Empecemos, pues. El Renacimiento imprime a todas las ramas del saber un impulso renovador aún no extinguido. A lo largo los siglos XV y XVI empieza a cambiar la profesión que desembocará en el ingeniero. Las cortes europeas exigen profesionales que se ocupen más allá de las máquinas de guerra y se ocupen de la dirección de proyectos técnicos como los caminos, los puentes, las obras hidráulicas, etc. Además, se da un fuerte impulso hacia la creación de un soporte científico que avale la ingeniería: “ars sine scientia nihil est”, cita, por cierto, del arquitecto Jean Mignot. De hecho, los ingenieros del Renacimiento juzgan fundamental la asociación de su profesión con las matemáticas (Millán, 2004). Un hito fundamental fue el tratado de Leon Battista Alberti, De reaedificatoria, escrita en latín entre 1443 y 1452, que pretende imitar y culminar la obra de Vitruvio. El trabajo de Alberti se publicó en 1485, y un año después el de Vitruvio, en aquellos primeros años de la imprenta. Leonardo da Vinci (1452-1519) empezó a formular los principios de la naciente teoría estructural y Andrea Palladio (1518-1580) introdujo el concepto de cercha o entramado. Sin embargo, hay que esperar al siglo XVII para encontrarnos con las figuras de Galileo, Hooke o Mariotte para empezar a cimentar la teoría de las estructuras que se desarrollaría en los siglos posteriores.
La ingeniería de corte típicamente medieval cambió en la Italia del siglo XV (García-Tapia, 1987). En España este cambio de mentalidad fue más tardío, no pudiéndose hablar con propiedad de una ingeniería clasicista hasta la segunda mitad del siglo XVI, con la aparición de los ingenieros teóricos y de los arquitectos-ingenieros. Sin embargo, las circunstancias históricas y sociales del siglo XVII abortaron tempranamente este Renacimiento en la ingeniería. Las numerosas obras locales emprendidas entonces estuvieron a cargo de maestros de obras que difícilmente podrían catalogarse como ingenieros en el sentido actual.
El descubrimiento de las ruinas clásicas romanas, olvidadas en el Medievo, y el hallazgo, por el estudioso Poggio Bracciolini, de un manuscrito de Vitruvio en la biblioteca del monasterio de San Gall en el año 1415 marcan, según García-Tapia (1987) los dos acontecimientos que contribuyeron a la ingeniería del Renacimiento. Fue la invención de la imprenta la que catapultó la difusión del libro de Vitruvio. En él se definía el ideal de arquitecto-ingeniero humanista, con conocimientos en diversas artes, además de definir los procedimientos constructivos de la antigüedad clásica y los tipos de máquina empleados por los romanos del siglo I. García-Tapia (1987:25) describe instrumentos, ingenios y máquinas empleados en las obras públicas renacentistas.
Las técnicas constructivas de los siglos XV y XVI no cambian sustancialmente respecto a las empleadas en la Baja Edad Media. Sin embargo, la estética cambia completamente, volviéndose a las formas regulares de la época clásica. Así, los arcos de medio punto vuelven a utilizarse en los puentes, siendo ejemplos canónicos los de Rialto en Venecia (1590), Pont Neuf de París (1578-1604), o el Puente della Trinitá en Florencia (1570). La consideración renacentista del puente como obra de arte se tradujo en una mayor decoración y en la incorporación de esculturas, en una búsqueda por el equilibrio y elegancia de las formas.
Los transportes con carruajes se desarrollaron tras la Edad Media, lo cual implicó la desaparición de los incómodos puentes apuntados posteriores al siglo XV y la aparición de bóvedas rebajadas. Sin embargo, el rebajamiento aumentaba los empujes sobre las pilas, lo que obligaba a aumentar la prudencia durante la construcción. Se empezaron a utilizar con frecuencia arcos segmentales y a líneas “anse de panier” (arco de varios centros). El más atrevido fue el Puente della Trinitáen Florencia, con un rebajamiento de 1/7 que no volvió a repetirse hasta el siglo XVIII (Grattesat, 1981).
El Renacimiento irrumpió en el mundo de la ingeniería de los puentes con un precedente excepcional, ciertamente anacrónico, rompedor con la tipología de los puentes medievales del momento. Se trata del Ponte Vecchio, construido en Florencia en 1345, obra de Tadeo Gaddi.
Los puentes españoles de la segunda mitad del siglo XVI, presentan, según indica González Tascón (2008), cierto arcaísmo que se manifiesta en el diseño de los tajamares y espolones, que frecuentemente llegan hasta la calzada en forma de apartaderos. Esto se debe, en parte, a que los maestros canteros se habían curtido en la reparación de puentes romanos y medievales. Ejemplos de este tipo de puentes se pueden encontrar en los de Almaraz o Montoro. Sin embargo, las nuevas tendencias europeas evitan este diseño pesado, como es el caso del puente de Segovia (Madrid), diseñado en parte por Juan de Herrera, o el de Ariza en Úbeda (Jaén), obra de Andrés de Vandelvira.
No me quiero despedir sin hablar, aunque sea un poco, del puente de Segovia de Madrid, aunque sea como pequeño homenaje a Juan de Herrera y el Renacimiento español. Una provisión de Felipe II en el año 1574 da inicio en Madrid, sobre el Manzanares, el puente de Segovia, cuyas obras concluyeron en 1584. La estructura superaba el ámbito local para agrupar el tráfico proveniente de Castilla, por un lado, y de Toledo, Andalucía y Extremadura. El proyecto inicial fue del Maestro Mayor de Obras, Gaspar de la Vega, con arcos decrecientes y perfil medieval en lomo de asno. Sin embargo, cuando a la muerte del primero se hizo cargo Juan de Herrera de la obra, con los encepados de los cimientos ya construidos, decide una rasante horizontal conseguida al recrecer los tímpanos sobre los arcos laterales. De esta forma resultaba innecesario el crecimiento de las luces de los arcos extremos hacia el centro, dándole una impronta moderna al puente. Se trata, por tanto, de un puente de fábrica de sillería con 9 bóvedas de cañón, de una luz entre 9,4 y 12 m, con espesores de pilas entre 5 y 6,7 m. La longitud total es de 185 m y la anchura original del tablero de 12 m. La máxima altura sobre la rasante es de 11,4 m. Se proyectaron tajamares triangulares aguas arriba y semicirculares aguas abajo, rematándose con sombreretes que alcanzan la cota correspondiente al trasdós de la clave de los arcos. En palabras de Arenas (2002) “el puente de Herrera es, más que un puente, una masa ordenada de piedra granítica, …, cuyas formas y proporciones transmiten una imagen de serenidad y equilibrio tan logrados que resulta, en su tremenda austeridad granítica, de una belleza innegable”.
Referencias:
ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.
GARCÍA TAPIA, N. (1987). Ingeniería civil española en el Renacimiento, en Cuatro conferencias sobre historia de la ingeniería de obras públicas en España. CEDEX, Madrid, pp. 7-42.
GONZÁLEZ-TASCÓN, I. (2008). Las vías terrestres y marítimas en la España medieval, en: Ministerio de Fomento, Ars Mechanicae, Ingeniería medieval en España, pp. 21-67.
MILLÁN, A. (2004). Leon Battista Alberti, la ingeniería y las matemáticas del Renacimiento. Suma, 47:93-97.
YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Universitat Politècnica de València. Inédito.
Seguimos con este artículo un repaso histórico de los arcos. Como en su día se dijo, este es un “invento diabólico” que revolucionó en su momento el arte de construir. Vamos, pues a seguir con esta labor divulgadora, a sabiendas que nos dejamos muchas cosas por el camino.
Desde la Roma clásica al Renacimiento, los arcos y los estribos se diseñaban con reglas de buena práctica y con criterios geométricos. Los constructores, desconocedores de las nociones de las fuerzas y sus líneas de acción, tuvieron que utilizar reglas en forma de proporciones o bien hacer modelos. Estos criterios empíricos no deberían ser tan absurdos pues, como indica Huerta (1996), la prueba es que muchas estructuras construidas en la época “pre-científica” -donde se incluyen todas las catedrales góticas-, fueron concebidas de esta forma.
Los secretos del oficio, guardados celosamente por los gremios y transmitidos oralmente, en un lenguaje hermético y oscurantista, empiezan a difundirse con los tratados de Arquitectura a partir del Renacimiento. Diego de Sagredo, Alberti o Palladio encabezan un listado de tratadistas que divulgan el pensamiento arquitectónico renacentista.
Alberti[1] es el primer autor que establece, en 1452, las reglas para conseguir la estabilidad y constructibilidad de un puente de fábrica. Su tratado de arquitectura, De re aedificatoria, fue un compendio del saber constructivo de su época (Huerta, 2000:514). Sin embargo la edición en latín se publicó en 1485 –antes que la primera edición de Vitruvio[2]– y en España no se tradujo hasta 1582. La intuición mecánica de Alberti le sugiere que la forma del arco es la base para valorar su modo de trabajar: “El arco poco curvo es seguro para su propio peso, pero si se carga conviene componer muy bien su trasdós”, o bien: “El arco muy curvado será en sí mismo débil, cuanto más se carga menos problemas tendrá en su trasdós”. Cuanto más apuntado es un arco, es decir, cuanta mayor sensación visual da de no caer, más resistencia se le confiere.
Palladio[3], en su tratado I Quattro Libri dell’Architettura, de 1570, recoge el dimensionamiento de ejemplos de puentes romanos, dándolos como reglas prácticas.
Leonardo da Vinci[4] fue el primero que intentó estudiar los arcos desde el punto de vista mecánico, como muestran numerosos dibujos del Códice de Madrid, aunque sus análisis desconocían la ley del paralelogramo de fuerzas, fundamental en cualquier estudio estático, que no se resolvió hasta 1586 por Stevenin[5] (Heyman, 1999:92), si bien se formula en su forma actual en 1724 por Varignon[6] en su obra Nouvelle mécanicque.
La primera explicación científica del arco tuvo que esperar a Hooke[7], quien en 1676 apuntó que funcionaba justo al revés que un cable colgado, si bien no halló la ecuación matemática de dicha curva. En 1697 Gregory[8], de forma independiente a Hooke, formula la condición de estabilidad del arco cuando menciona la catenaria como directriz óptima. En 1695, La Hire[9] idealiza las dovelas en bolas de billar y observa que la forma resultante es como si engarzaran en un cable perfectamente elástico y sin peso, definiéndose su forma como antifunicular[10], lo contrario del cuelgue natural. Por tanto, el trazado de un arco ideal pasaría por conocer el estado de carga al que está sometido, donde el peso propio del arco es uno de los componentes principales, lo cual implica un proceso iterativo para establecer la forma definitiva.
Couplet, ofreció en 1730 una solución completa al problema, estableciendo el modo de colapso del arco por formación de un mecanismo de cuatro barras; pero fue Coulomb[11] en 1773 quien retomó el problema prácticamente de nuevo, dando una solución sintética a todos los modos de colapso posibles. A finales de la década de 1830, Moseley y Méry desarrollan casi simultáneamente el concepto de línea de empujes, que debe situarse dentro del espesor del arco. En 1833 Navier[12] enuncia la regla del tercio central, por donde debía circular la línea de presiones para evitar las tracciones. Poncelet[13], en 1835, desarrolla un método gráfico que ahorra considerablemente los tiempos de cálculo. Rankine[14] fue el primero en dar una aplicación práctica a la línea de empujes, siendo Barlow y Fuller los encargados de desarrollar la parte gráfica. En 1879 Castigliano[15]abre un nuevo enfoque analítico con planteamientos energéticos, sistematizándose a partir de ese momento el análisis de los arcos de fábrica. Ese mismo año Winkler propuso de forma explícita la aplicación de la teoría elástica para determinar la posición de la línea de empujes.
Sin embargo, el cálculo elástico, a pesar de su racionalidad, plantea sistemas de ecuaciones que son muy sensibles a las pequeñas variaciones en las condiciones de equilibrio (ver Huerta, 2005:78). Los procedimientos desarrollados por Heyman (1966) aplicando la teoría del análisis límite, validando el siguiente supuesto: si existe una configuración de equilibrio, es decir, una línea de empujes contenida dentro del arco, éste no se hundirá. Como consecuencia, la labor del calculista no es buscar el estado de equilibrio real del arco, sino encontrar estados razonables de equilibrio para la estructura estudiada (Heyman, 1967). Este ha sido el enfoque implícito en los diseños geométricos de los maestros de la antigüedad, tal y como indica Huerta (2005:81), justificando la validez de dichos planteamientos. Una recopilación del desarrollo histórico de la teoría del arco de fábrica puede seguirse en Huerta (1999, 2005).
[1] Leon Battista Alberti (1404-1472), fue arquitecto, matemático, humanista y poeta italiano.
[2] El texto fue descubierto en 1414 por Bracciolini. La edición princeps de la obra vitruviana fue publicada en latín por Giovani Suplicio da Verole en 1486, y en su epístola al cardenal Rafael Riario, se llama a esta obra divinum opus Vitruvi (Blánquez, 2007:XVII). En italiano no se imprimió hasta 1521 y en castellano hasta 1582.
[3] Andrea di Pietro della Góndola, más conocido como Andrea Palladio (1508-1580) fue un reconocido arquitecto italiano del Manierismo, que influyó notablemente en el Neoclasicismo. Una importante aportación a la ingeniería estructural fue la introducción del concepto de cercha o entramado.
[4] Leonardo di ser Piero da Vinci (1452-1519), nacido en Florencia, fue pintor y polímata, genial arquetipo del humanismo renacentista.
[5] Simón Stevenin (1548-1620), fue matemático holandés, ingeniero militar e hidráulico, entre otros oficios.
[6] Pierre Varignon (1654-1722), matemático francés precursor del cálculo infinitesimal, desarrolló la estática de estructuras.
[7] Robert Hooke, científico inglés (1635-1703). Formuló su famosa ley en la que describe cómo un cuerpo elástico se estira de forma proporcional a la fuerza que se ejerce sobre él. En esta época, para reclamar la paternidad de un descubrimiento, los hombres de ciencia enviaban anagramas a sus colegas para, después, cuando las circunstancias eran propicias, les hacían llegar o publicaban el mensaje que los anagramas escondías. Eso fue lo que ocurrió con la descripción que hizo Hooke en 1676 sobre el funcionamiento estructural del arco.
[8] David Gregory (1661-1708), profesor escocés de matemáticas y astronomía en la Universidad de Edimburgo.
[9] Philippe de La Hire, matemático, astrónomo y gnomonicista francés (1640-1719). La obra donde trata el arco es: Traité de mécanique: ou l’on explique tout ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique (1695).
[10] Del latín, funicŭlus, cuerda. Arenas (1996:10) define la antifunicularidad como una afinidad geométrica entre las ordenadas de la directriz de la bóveda y la ley de momentos flectores que produce el sistema de cargas sobre una viga virtual de la misma luz que el arco.
[11] Charles Agustin de Coulomb, físico e ingeniero militar francés (1736-1806), conocido por su famosa ley sobre atracción de cargas eléctricas. Elaboró en el campo estructural la actual teoría de la flexión y una primera teoría de la torsión (1787). También fueron importantes sus ideas sobre la deformación tangencial y el rozamiento.
[12] Claude Louis Marie Henri Navier, ingeniero y físico francés (1785-1836), trabajó en las matemáticas aplicadas a la ingeniería, la elasticidad y la mecánica de fluidos.
[13] Jean Victor Poncelet (1788-1867) fue un matemático e ingeniero francés que recuperó la geometría proyectiva.
[14] William John Macquorn Rankine, ingeniero y físico escocés (1820-1872), conocido también por sus trabajos en termodinámica.
[15] Carlo Alberto Castigliano, ingeniero italiano (1847-1884), elaboró nuevos métodos de análisis para sistemas elásticos.
REFERENCIAS
HEYMAN, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2: 249-279.
HEYMAN, J. (1967). On the shell solutions of masonry domes. International Journal of Solids and Structures, 3: 227-241.
HEYMAN, J. (1999). Teoría, historia y restauración de estructuras de fábrica. CEHOPU, 2ª edición, Madrid.
HUERTA, S. (1996). La teoría del arco de fábrica: desarrollo histórico. Obra Pública, 38:18-29.
HUERTA, S. (2000): Estética y geometría: el proyecto de puentes de fábrica en los siglos XV al XVII, en Graciani, A.; Huerta, S.; Rabasa, E.; Tabales, M. (eds.): Actas del Tercer Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Sevilla, 513-526.
HUERTA, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496):73-89.
Con este post vamos a seguir divulgando procesos constructivos históricos, en este caso, con el arco. En otros posts anteriores ya comentamos el origen del arco y su diseño. Espero que os gusten estas pinceladas de procedimientos de construcción ya históricos. Os dejo algunas referencias bibliográficas (Yepes, 2010) y enlaces a otras páginas web para que podáis ampliar la información, que es necesariamente breve para el formato de este post.
Los romanos construyeron con arcos de medio punto. Esta disposición geométrica era de composición cómoda, pues resultaba muy sencillo trazar la directriz y relativamente fácil construir la cimbra —normalmente compuesta por al menos dos arcos de círculo de madera sólidamente triangulados—. Las cimbras se construían con cerchas o armaduras de madera, unidas por correas sobre las que se clavaban tablas o listones para formar el forro o superficie de apoyo para las dovelas. El perfilado de la superficie de asiento se terminaba por medio de una ligera capa de mortero, yeso o barro (Moreno, 1985).
La cimbra, por tanto, es el elemento esencial para dar la forma al arco. Esta estructura auxiliar se apoya directamente sobre el suelo mediante unos soportes, bien sobre unos huecos —mechinales— o en unas piedras salientes —canes— que solían dejarse a la altura del arranque de las bóvedas para ahorrar madera (Adam, 2002). Con esta última solución, los constructores añadían un valor ornamental a las cornisas dispuestas a nivel de la última hilada horizontal. Para economizar materiales, a veces los constructores ensamblaban algunas bóvedas por tongadas paralelas yuxtapuestas, sin cruzar las juntas. Ello permitía levantar cada uno de los arcos contiguos separadamente con la misma cimbra, que se desplazaba lateralmente. Incluso se podían separar los arcos paralelos, y haciendo de cimbra los arcos ya construidos, colocar posteriormente unas losas de complemento. En otras ocasiones, se podían disponer varias roscas de dovelas, así se conseguía que, una vez colocada la primera, esta resistía el peso de las demás, con lo cual se podía aligerar la cimbra.
El trabajo de construir una cimbra comenzaba con la elección del tipo de árboles que presentaran un porte y una madera adecuada. En la Hispania romana era frecuenta el uso del roble, del castaño, del fresno, del olmo, la haya, el abeto y el álamo. Tras el talado del árbol, se retiraban las ramas dejando un tronco que era posteriormente transformado mediante hacha y sierra en tablones. Para construir la cimbra, una vez ensamblada, se situaba en su posición mediante unos andamios construidos en la obra. Hasta el siglo XVIII, el cálculo de los grosores de las piezas de madera para su construcción se hacía mediante reglas prácticas validadas por la experiencia. Así, en el tratado de Palladio (1570), se establecen tipologías básicas de puentes de madera y se señala que las dimensiones en un caso particular serán proporcionales a allí señaladas.
Una vez instalada la cimbra, se comenzaban a colocar las dovelas de forma simétrica desde los salmeres o arranques hasta llegar a la última pieza, la clave. El avance simétrico se realizaba para repartir convenientemente el peso de la sillería sobre los pilares y evitar una posible deformación indebida de la cimbra. A partir de ese momento, la cimbra ya puede retirarse, pues el arco funciona por sí solo.
La construcción de las bóvedas romanas se podía ejecutar arco a arco, cimbrando de forma independiente cada uno de ellos, puesto que las pilas eran tan robustas que eran capaces de contrarrestar el empuje desestabilizante de la bóveda adyacente recién descimbrada. Se podía empezar la construcción desde uno de los extremos y terminar en el otro, o bien empezar por ambos extremos a la vez. Este aspecto permitía un gran ahorro de madera en las cimbras. El resultado era la construcción de arcos de radio constante, con dovelas idénticas (Monleón, 1986). Otra ventaja adicional es que ha permitido la supervivencia de los actuales puentes romanos, puesto que el colapso de una de las bóvedas en caso de conflicto bélico, o bien a causa de la socavación de una de sus pilas, permitiría que el resto de las bóvedas permaneciesen estables reconstruyéndose solo la parte dañada (Arenas, 2002).
Ya entrados en el siglo XVI, la construcción de las bóvedas seguía realizándose a la romana, es decir, reutilizando la misma cimbra en varios arcos iguales. En el caso de disponer un gran arco central, sus empujes se recogían construyendo previamente los arcos laterales. El ensamblaje de la cimbra no se realizaba con la anchura total que fuera a tener la bóveda, sino que se hacía por fases, desde los laterales al centro, guardando la simetría. Como el viento podría llevar al traste esta fase constructiva, se arriostraban las estrechas cimbras mediante sogas de cáñamo. Además, para garantizar el correcto asiento de las dovelas, se cubría la cimbra con una capa de yeso.
El izado de las dovelas sobre la cimbra se ejecutaba mediante una grúa. Algunos de estos ingenios fueron proyectados por los propios arquitectos o ingenieros en las obras, como es el caso de Juan de Herrera, que diseñó sus propias grúas para las obras del Monasterio de El Escorial, tras la muerte del arquitecto Juan Bautista de Toledo, en 1567. Los ingenieros romanos no tuvieron que imaginar nuevos procedimientos para izar cargas pesadas, pues los griegos ya disponían de máquinas elevadoras o machinae tractores, perfectamente ideadas para cualquier carga del momento (Adam, 2002). Una grúa muy utilizada eran las provistas de ruedas de pisar que pivotaban sobre un eje vertical, que permitía orientarlas convenientemente. La polea y el torno elevador se asociaban para formar una máquina elevadora que ha mantenido su éxito durante mucho tiempo: la cabria, constituida por un par de piezas de madera unidas en ángulo agudo y sujetas mediante tirantes de fijación. Estas máquinas disponían de unas tenazas de hierro, empleadas desde los romanos, que sujetaban los sillares.
Los extremos del puente, los estribos, se construían en primer lugar, pues la primera bóveda empezaba a transmitir sus empujes en cuanto se descimbraba. Se componen de un muro frontal, de aparejo similar al de las pilas, y unos muros laterales que se denominan “de acompañamiento” en el caso de ser paralelos al puente y “aletas” en caso contrario. Estos muros contienen el relleno del intradós o el derramamiento de tierras, y también sirven para encauzar la corriente del río (León y Espejo, 2007).
En otros posts completaremos información acerca del descimbrado de la bóveda y terminación de la calzada de este tipo de puentes de arcos de fábrica.
ADAM, J.P. (2002). La construcción romana. Materiales y técnicas. León: Editorial de los Oficios.
ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.
LEÓN, J.; ESPEJO, S. (2007). Aspectos resistentes de los puentes romanos, en Memorias del Seminario Puente de Alcántara: Restauración de puentes romanos. Fundación San Benito de Alcántara.
MONLEÓN, S. (1986). Curso de puentes, Vol. I. Colegio de Ingenieros de Caminos, Canales y Puertos. Valencia, 216 pp.
MORENO, F. (1985). Arcos y bóvedas. Ed. CEAC, 15ª edición, Barcelona.
YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Universitat Politècnica de València. Inédito.
Es evidente que, en un pequeño artículo como este, resulta atrevido cualquier intento de explicar la ingeniería de las primeras civilizaciones. Sin embargo, parte de lo que somos como ingenieros hay que buscarlo allí. Vamos, pues, a dar dos pinceladas sobre algunas de las técnicas que se originaron en las antiguas tierras del Oriente Próximo, a sabiendas de que dejamos muchísimo por el camino.
La “tierra entre ríos”, Mesopotamia, entre el Tigris y el Éufrates, fue no solo cuna de las primeras civilizaciones, sino también de las técnicas constructivas. Hubo otros logros en la Antigüedad, quizás no tan espectaculares como las pirámides, pero con un mayor impacto en el desarrollo de la Humanidad, como la construcción de canales y acueductos, que hicieron posible la aparición de ciudades y la expansión de la agricultura. Mucho antes del 3000 a.C., los Sumerios habían drenado las marismas del Golfo Pérsico y construido canales para irrigación. La ingeniería subterránea, tal como la entendemos actualmente, tuvo sus comienzos en Babilonia hacia el 2180 a.C. con la construcción de un túnel bajo el río Éufrates, de unos 900 m de longitud y una sección de 3.60 x 4.50 m2. Del mismo modo, la sustitución de la energía humana por otros tipos de energía, o el desarrollo de estas nuevas fuentes, han supuesto igualmente hitos fundamentales en el desarrollo de la técnica. El uso de bueyes y, posteriormente, con la aparición del arado, de caballos (más rápidos y eficientes que los bueyes), permitió al hombre disponer de nuevas fuentes motrices. En este sentido, el salto más importante se dio al reemplazar la energía animal por la mecánica, dando inicio al periodo que se conoce como Revolución Industrial.
Los sistemas de construcción se desarrollaron ampliamente en Mesopotamia; los sistemas de ingeniería hidráulica y sanitaria, los caminos, los puentes y las artes navales de los imperios asirios, babilonios y otros pueblos de esa región. Gracias a la naturaleza arcillosa del suelo, esta civilización comenzó usando este material para la obtención de adobes o ladrillos cocidos, material poco resistente que explica el alto grado de deterioro de las construcciones encontradas. En el siglo VII a.C. constituye el principal material empleado en las construcciones de Nabucodonosor; los relatos de Herodoto estipulan que los muelles y las fortificaciones eran en parte construidos con este mismo material. Los asirios recurrían al ladrillo cocido solo en los casos en que la humedad hubiese disgregado la arcilla. El betún, abundante en Caldea, también se empleó como material de construcción. Formaba una argamasa impermeable muy utilizada, que estaba compuesta, además, de cal, arena y agua.
Respecto a las técnicas de construcción, los constructores babilónicos no cavaban nunca cimientos, pensaban que como sus tierras poseían demasiada agua, el fondo sólido debería de estar lejos, por lo que renunciaban a alcanzarlo y se apoyaban directamente sobre el suelo interponiendo entre ese y el edificio un macizo de asiento. Como podemos ver se empieza a perfilar lo que hoy conocemos como Geotecnica, en cuanto a la clasificación y características del terreno.
Las comunicaciones también fueron un referente en el Oriente Medio, siendo a mediados del IV milenio cuando empezaron a trazarse las primeras carreteras que permitieron enlazar las numerosas ciudades mesopotámicas. Así, la primera carretera de larga distancia es la llamada “Ruta Real”, que ya en el siglo VI a.C. unían las ciudades de Persépolis con Sardes (capital de Lidia), a más de 2500 km de distancia. Su prolongación hacia el este formaría la Ruta de la Seda.
Los arcos y las bóvedas tuvieron su origen en las marismas del bajo Egipto o en Mesopotamia. El prototipo de estos lo constituía una serie de haces de juncos colocados verticalmente en el suelo, doblados hacia el centro y unidos por su extremo superior, formando así un techo. La superficie exterior se cubría con una capa de barro. Los historiadores indican que en Mesopotamia se inició la tradición de que un político inaugure la construcción de un edificio público con una palada de tierra.
Durante la mayor parte de la historia faraónica se construyeron arcos y bóvedas radiales, de manera esporádica, en tumbas y puertas monumentales. El arco y la bóveda radial fueron, sin embargo, más utilizados en Mesopotamia, en donde evolucionaron seguramente de forma independiente y más o menos al mismo tiempo que en Egipto. Los constructores de Asiria conocían la bóveda de ladrillo y la empleaban a causa de la falta de madera, aunque las únicas que han llegado hasta nuestros días son bóvedas de galerías.
Mención especial hay que hacer de los zigurats o pirámides escalonadas representativas de las culturas sumerias, babilónicas y asirias. La bíblica Torre de Babel podría ser una de estas construcciones babilónicas.
Es evidente, por tanto, que el mundo antiguo percibió a la ingeniería como un quehacer que competía con las fuerzas naturales y las dominaba, como una profesión atenta a la invención de los ingenios de guerra, de las máquinas de extracción del agua, de los caminos, de los canales, de los puentes, del desecamiento de los pantanos, de las galerías subterráneas, de los grandes ingenios portuarios, de las defensas de las ciudades…
Resulta también de gran interés destacar la primera huella demostrada de la existencia de normas legales reguladoras de la responsabilidad civil de la profesión. Se trata del famoso código de Hammurabi, rey babilónico entre los años 1792 y 1750 a.C., cuyos artículos 229 y 230 establecen que, de producirse el derrumbe culpable de una obra o edificio causando la muerte del cliente, el arquitecto, amén de reparar a su costa los daños, debía pagar con su vida, o con la de un hijo suyo si la víctima fuese uno del propietario. Un comienzo algo brusco desde nuestra perspectiva moderna, pero ciertamente precursor de las normativas que sobre construcción han ido apareciendo a lo largo de la Historia.
Referencias
YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.
Muchos catalogan, desde mi punto de vista de forma poco acertada, a la extensa Edad Media como un periodo oscuro, bárbaro, donde el retroceso de la civilización conocida fue tremendo y donde no existen hitos o avances dignos de mención, ni tampoco en el ámbito de la construcción y la ingeniería. Trataremos de ver en esta pequeña nota que no es este extremo del todo cierto. Seguimos en este post con otros anteriores que ya trataron de la historia de la ingeniería en la prehistoria, en la antigua China, Mesopotamia, Grecia, etc.
La caída de Roma es sinónimo del fin de los tiempos antiguos. En el tiempo que siguió, el periodo medieval, la legislación de castas y la influencia religiosa retardaron considerablemente el desarrollo de la ingeniería. Hasta casi el siglo XIX la evolución de la construcción se centra en la arquitectura y los tipos estructurales, y muy poco en otros aspectos como los materiales. Muchos historiadores llaman “El Oscurantismo” al periodo de 600 a 1000 d.C., la denominada Alta Edad Media. Durante este lapso dejaron de existir la ingeniería y arquitectura como profesiones. La construcción queda en manos de los artesanos, tales como los maestros albañiles , que diseñaban las catedrales, delineaban los planos y supervisaban el trabajo de construcción, mientras que los mamposteros y otros artesanos proporcionaban la mano de obra especializada para construir. Europa entra en una recesión constructiva muy importante, mientras que esto no ocurre en los países islámicos mediterráneos ni incluso en otros más lejanos como China e India. Fue durante este período cuando se usó por primera vez la palabra Ingeniero. El término ingeniator aparece ya a finales del siglo VIII o principios del IX relacionado con obras públicas, fortificaciones y máquinas de carácter militar. Ese era el nombre del operador de una catapulta usada en el ataque de las murallas de defensa de las ciudades.
Normalmente se piensa en la Edad Media como un periodo de estancamiento caracterizado por la falta de progreso social. Sin embargo, algunas de las más grandes creaciones arquitectónicas de la Humanidad, las catedrales y los castillos, datan de la época que podríamos llamar como Baja Edad Media, que terminaría en 1492 con el descubrimiento de América, o en 1453 con la caída del Imperio bizantino, fecha que tiene la ventaja de coincidir con la invención de la imprenta(Biblia de Gutenberg) y con el fin de la Guerra de los Cien Años. En esta misma época, y gracias al Islam, en España existe un desarrollo técnico, e incluso científico, muy superior al del resto de Europa, como, por ejemplo, la importancia y perfección de los sistemas de riego y diques construidos en nuestro país, superado únicamente por los romanos.
Los siglos XI y XII fueron testigos de una explosión constructora, tanto pública como privada, en edificación de castillos e iglesias. Los maestros constructores reemplazaron los techos planos de madera por grandes cúpulas de piedra conocidas como bóvedas de cañón o bóvedas cilíndricas. Las catedrales se construyeron en estilo románico, con maestros constructores que se desplazaban a lo largo de toda Europa, lo cual garantizó cierta homogeneidad. Las pesadas bóvedas de piedra de las iglesias románicas exigían pilares y muros masivos para soportarlas, con estrechas ventanas que también fueron características de los castillos de dicho periodo.
A partir del siglo XII se incorporó la bóveda y los arcos punteados dando lugar a las construcciones más esbeltas y de mayor altura de las catedrales góticas. También se introdujo el concepto de contrafuerte, que básicamente era un pilar de piedra muy arqueado que se construía fuera de los muros, posibilitando la distribución del peso de los techos abovedados de la iglesia en dirección hacia abajo y hacia afuera, lo cual eliminó los pesados muros que soportaban las enormes bóvedas cilíndricas.
En España se configuró durante la baja Edad Media dos sistemas constructivos diferentes. Uno, con predominio de la cantería, que construyó las catedrales románicas y góticas; el otro, con predominio de la albañilería y la carpintería, que construye los edificios islámicos y mudéjares. Durante el siglo XV hasta el XVI, poco a poco se produce una hibridación que culmina con El Escorial donde cuaja un sistema constructivo español, que con algunas variantes, perdurará hasta la Revolución Industrial.
Una gran parte de los conocimientos logrados por los árabes en enseñanza y técnica y que se depositaron en España durante la Reconquista, fueron absorbidos posteriormente por la cultura europea en un proceso que duró dos siglos y que terminó hacia el año 1100. Las prolongadas contiendas en España entre el Islam y el Cristianismo, hicieron que se diera gran importancia a la construcción de castillos y ciudades amuralladas. En la España musulmana fueron, obviamente, hispanoárabes los ingenieros que construyeron y repararon los puentes, las calzadas y los azudes. Entre los más conocidos destacamos Halaf, que construyó el puente de Alcántara de Toledo en el siglo X; o bien El Hach Yaix que tendió el primitivo puente de Triana en Sevilla y restauró la conducción romana de Los Caños de Carmona y llevó el agua a Sevilla en 1172.
La construcción de los castillos era una tarea ardua y costosa. Se requerían oficios especializados como maestros albañiles, canteros, etcétera, que se desplazaban de un lugar a otro y eran muy demandados. Una de las técnicas constructivas más habituales era la mampostería, con el relleno de escombros y de argamasa.
Una figura interesante, entre los ingenieros medievales, es la del “cavacequias”, que abundó, tras la conquista, en los territorios de la Corona de Aragón. Pedro Raimundo de Sassala, conocido como Pere Cavacèquies, construyó hacia 1180 la acequia de Piñana. Entre los constructores de la acequia Real del Júcar hay que señalar a Arnaldo Vidal y al maestro acequiero Bofill, a quien en 1260 autorizó el rey don Jaime I para vender las heredades que le habían correspondido en pago de su trabajo.
Cuando a partir del siglo XI empezaron a repararse las infraestructuras, fue la Iglesia la encargada de la reconstrucción de puentes y calzadas. Las calzadas son la primera expresión constructiva de la Alta Edad Media, y gracias a las calzadas aparece el intercambio del conocimiento arquitectónico que permite pasar del románico al gótico. En toda Europa surgieron monjes ingenieros que estudiaron a los clásicos y que transmitieron oralmente la tradición constructora. Entre los más conocidos se encuentran el francés San Benezet, autor del famoso puente de Avignon y el inglés Meter Colechurch que, entre los siglos XII y XIII, construyó el puente viejo de Londres. En España hubo monjes pontoneros muy célebres que fueron incluso venerados como santos: San Pedro González construyó un puente sobre el Miño, o San Ermengol, autor de un puente sobre el Segre. Sin embargo el más famoso fue Santo Domingo de la Calzada (patrono de las obras públicas españolas), que reparó el camino de Santiago y edificó un puente sobre el Oja y los de Logroño sobre el Ebro, y Nájera, sobre el Najerilla. Conviene resaltar aquí también que el primer puente sobre pontones del cual se tiene referencia lo construyeron los ingenieros militares en la toma de Sevilla por Fernando III el Santo, en 1248, para facilitar el paso de las tropas por el río Guadalquivir. Estas infraestructuras de caminos y puentes van a facilitar la Reconquista en España.
En el siglo XIII, Santo Tomás de Aquino argumentó que ciencia y religión eran compatibles. Ghazzali, erudito en ciencia y filosofía griegas, llegó a la conclusión de que la ciencia alejaba a las personas de Dios, por lo que era mala. Los europeos siguieron a Santo Tomás, en tanto que el Islam siguió a Ghazzali. En medida, esta diferencia en filosofía es la que subyace al tan distinto desarrollo técnico en estas dos culturas. El historiador Harvey (1970) afirma: “la principal gloria de la Edad Media no fueron sus catedrales, su épica o su escolástica: fue la construcción, por primera vez en la historia, de una civilización compleja que no se basó en las espaldas sudorosas de esclavos o peones sino primordialmente en fuerza no humana“. Esto porque la revolución medieval de la fuerza y la potencia es uno de los desarrollos más dramáticos e importantes de la historia. Obviamente que un estímulo para este desarrollo fue la decadencia de la institución de la esclavitud y el continuo crecimiento del cristianismo. Las principales fuentes de potencia fueron la fuerza hidráulica, el viento y el caballo, que se concretaron en las ruedas y turbinas hidráulicas, los molinos de viento y las velas, las carretas y los carruajes. Tampoco hay que olvidar el uso de palancas y poleas, y el aumento en la capacidad de carga en los barcos.
El cristianismo hizo desarrollar la construcción en expresiones tan maravillosas y sacras como las catedrales góticas y el Islam las mezquitas. Los ingenieros medievales elevaron la técnica de la construcción, en la forma marco gótico y los arbotantes, hasta alturas desconocidas por los romanos. La mayoría de las catedrales góticas presenta una estructura optimizada desde el punto de vista geométrico y compositivo ante las necesidades resistentes motivadas por la acción gravitatoria (Roca y Lodos, 2001). Sus constructores supieron extraer el mayor provecho del material para ellos disponible, otorgando a los elementos unas dimensiones y unas esbelteces que prácticamente se hallan en el extremo de lo razonablemente posible. Lo más admirable es que dichos constructores no tuvieron la capacidad de cálculo de la que se dispone en la actualidad.
Los estilos arquitectónicos de la Edad Media, el románico y el gótico, se caracterizan fundamentalmente por la utilización de la bóveda de piedra para cubrir los espacios públicos, tanto religiosos como civiles. El románico utiliza la bóveda de cañón y la bóveda por arista, y el gótico las bóvedas nervadas de crucería. Este dominio se refleja claramente en los puentes de este periodo. Pero, tal y como indica Fernández Troyano (2005), ello no quiere decir que se superara la calidad de los puentes romanos, aunque sí se puede decir que, en general, los puentes medievales son más esbeltos en lo que se refiere a la esbeltez de los arcos y a la relación entre el ancho de las pilas y la luz de los arcos.
La utilización de la zapata independiente en edificios es debida a la aparición del estilo gótico, pues las grandes luces y el uso de columnas aisladas provocan la separación de las plataformas usadas anteriormente. Las dimensiones de los cimientos en raras ocasiones estaban determinadas por las cargas que actuaban sobre ellas. Cuando se producía un accidente, se ensanchaba la parte defectuosa hasta que la carga era soportada de modo adecuado.
Durante el siglo XI en Italia se produce el colapso de importantes edificios, debido a fallos de sus cimentaciones y son muchos los campaniles que sufren inclinaciones, algunos de los cuales han continuado su movimiento hasta nuestros días, como es el caso de la torre de Pisa. Este puede ser considerado uno de los grandes errores de los constructores y arquitectos de la Edad Media en Italia, una torre excesivamente pesada para la escasa calidad del suelo donde se cimentó.
Vías, puentes, canales, túneles, diques, puertos, muelles y máquinas se construyeron en la Edad Media con un conocimiento que todavía maravilla en la actualidad. El libro de bosquejos del ingeniero francés Villard de Honnecourt revela un amplio conocimiento de las matemáticas, la geometría, las ciencias naturales y la artesanía. Sin embargo, desde la alta Edad Media y hasta finales de la Edad Moderna el oficio de ingeniero fue una actividad gremial cuyos conocimientos se transmitían de padres a hijos o entre convecinos del mismo concejo.
Como se puede comprobar, materia no falta para poder evaluar los logros en construcción e ingeniería de esta época. Seguro que nos hemos dejado muchísima información de gran interés por el camino. Pero siempre tendremos la oportunidad de otros posts para ir aumentando la información y comentarla.
Referencias
FERNÁNDEZ TROYANO, L. (2005). Variantes morfológicas de los puentes medievales españoles. Revista de Obras Públicas, 3459: 11-32.
HARVEY, J. (1970). The Gothic World 1100-1600. B.T. Bastford, London.
ROCA, P.; LODOS, J.C. (2001). Análisis estructural de catedrales góticas. OP ingeniería y territorio, 56: 38-47.
YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.
Resulta difícil resumir en un pequeño post todo lo relacionado con la ingeniería que tuvo lugar en un periodo tan apasionante como el Renacimiento. Tras la “oscura” Edad Media, el renacer del hombre como centro del conocimiento y la vuelta atrás en busca de los clásicos supone un avance de gran trascendencia en todos los órdenes del saber y del conocimiento. Vamos, pues, a realizar una pequeña -y siempre imperfecta- incursión en este periodo, a sabiendas de que nos vamos a dejar muchas cosas por el camino. Dejo, por tanto, algunos enlaces a otras páginas para aquel interesado en ampliar la información.
El Renacimiento (siglos XV y XVI) fue un periodo de reactivación científico y tecnológico. Junto con la posterior Ilustración, supusieron un revulsivo ideológico que tuvo su manifestación en el interés por la técnica y los procedimientos constructivos. Los ingenieros nuevamente fueron miembros de una profesión respetada e incluso algunos de ellos recibieron buena paga. Su ingeniería se diferencia claramente de la medieval, al estar claramente influenciada por los clásicos, y en especial por Vitrubio, cuyos textos fueron descubiertos en 1415 en el monasterio de San Gallo. Igual que en las restantes manifestaciones artísticas o científicas, el renacimiento de la técnica tuvo su origen y alcanzó su más alto nivel en Italia.
Nicolás García Tapia (citado por Sáenz, 1993) señala, entre las principales características de la ingeniería renacentista, las siguientes: se instaura una visión humanística de la técnica; aparece la figura del ingeniero teórico, con creciente separación de la técnica de las ciencias herméticas; los ingenieros mejoran su condición social respecto a los alarifes tradicionales y aumentan su movilidad y sus posibilidades de contratación por diversos países; nace la técnica experimental; se establece una nueva concepción de los sistemas mecánicos y se generalizan las invenciones de toda índole. Un buen resumen de la ingeniería de esta época se encuentra en un reciente número monográfico de la Revista del Ministerio de Fomento sobre “Ingeniería, Cartografía y Navegación en la España del Siglo de Oro” (Varios autores, 2005).
En la España de los Reyes Católicos y tras la Reconquista, la ingeniería estuvo muy cercana a las tropas combatientes. España se dividió administrativamente en regiones y por primera vez aparecen las Comandancias de Ingenieros, dependientes de Artillería, que unifican sistemas y criterios para la ejecución de obras de defensa. Se procedió a realizar una gran labor de restauración de castillos y de construcción de puentes y caminos. En 1474, una cédula de los Reyes Católicos prohíbe la construcción de nuevos castillos en España.
La especialización de numerosos Maestros Mayores de Obras o Alarifes, con fuerte tradición medieval, en obras muy específicas de defensa de ciudades y la progresiva evolución de los sistemas de ataque bélico, propician que se vaya recuperando el término romano de “ingenium” para denominar a las máquinas bélicas, fruto del ingenio de la persona que las concibe. Poco a poco, sobre el año 1540, va apareciendo la denominación de Ingeniero para el especialista en la construcción de fortificaciones, que acompaña a los ejércitos, facilitando los ataques a las ciudades o la defensa de las mismas, y cuyo arte se denomina poliorcética.
En Europa aparecen grandes arquitectos como Leone Battista Alberti. La publicación en 1485 del primer libro de arquitectura indica la inquietud que sentía por la divulgación del conocimiento. En la década de 1550 se hizo también famoso en Ferrara Giovanni Battista Aleotti. Las edificaciones del Renacimiento se caracterizan por construir un conjunto racional, cuyos elementos se hallan dispuestos según rigurosas normas de proporción, donde los elementos formales característicos son la construcción circular coronada por una cúpula y la división armónica de la superficie de los muros, entre otras. En la España de Carlos I se conocen numerosos ingenieros italianos que trabajan a las órdenes del emperador, así en el año 1552, encontramos a Gianbattista Calvi reforzando las fortificaciones de Roses, Barcelona y Tarragona. El mismo Carlos I creó en 1543 la Escuela de Artillería de Milán, para formar profesionales con conocimientos de matemáticas, física y construcción, siendo una de las primeras escuelas cuya vida se dilató a lo largo del siglo XVII.
Durante los siglos XV y XVI tienen también lugar desarrollos importantes en la dinámica moderna que permiten abandonar los postulados de Aristóteles que se habían estado utilizando prácticamente hasta entonces y que quedaban obsoletos. Florencia tuvo el más famoso ingeniero de todos los tiempos. Pocas veces ha sido bendecido el mundo con un genio como Leonardo da Vinci (1452-1519). Anticipó muchos adelantos del futuro; por nombrar algunos: la máquina de vapor, la ametralladora, cámara oscura, el submarino y el helicóptero. Pero, es probable que tuvieran poca influencia en el pensamiento de la ingeniería de su tiempo. Sus investigaciones eran una mezcolanza no publicada de pensamientos e ilustraciones. Era un investigador impulsivo, y jamás resumía su investigación para beneficio de otros a través de la publicación. En sus cuadernos hacía la anotación de sus investigaciones de derecha a izquierda, posiblemente por comodidad, debido a que era zurdo. Da Vinci fue, probablemente, el primero en describir y utilizar técnicas experimentales que hoy día son empleadas en los laboratorios más avanzados. También se puede decir que fue Leonardo el creador del armamento tal como hoy se concibe. Inventó, entre otras, una máquina para hincar pilotes.
Georgius Agrícola (1.494-1.555) y Galileo Galilei (1564-1642) establecieron las bases científicas de la ingeniería. El primero, en su obra póstuma De Re Metallica (1556) recopiló y organizó de forma sistemática todo el conocimiento existente sobre minería y metalurgia, siendo la principal autoridad en la materia durante cerca de 200 años. Galileo es conocido por sus observaciones astronómicas y por su declaración de que objetos de diferentes masas se ven sometidos a la misma “tasa” de caída. Sin embargo, Galileo fue un magnífico ingeniero, con sus proyectos sobre drenaje al pretender desecar las costas venecianas y dedicarlas al cultivo agrícola, o como ingeniero militar. Su contribución más importante en la construcción fue la “teoría de vigas” que tuvo su origen en el análisis comparativo entre las estructuras de los grandes barcos de madera y la de los botes, aunque sus predicciones fueron erróneas al no considerar la elasticidad de los materiales. Una de sus mayores contribuciones fue la formulación de un método científico, ampliamente aceptado. Uno de los descubrimientos más importantes en la historia de la ingeniería mecánica lo realizó Simón Stevin en Holanda, a fines de la década de 1500. Mediante el “triángulo de fuerzas”, permitió a los ingenieros manejar fuerzas resultantes que actuaban en los miembros estructurales. Stevin escribió un tratado sobre fracciones y también realizó trabajos que llevaron al desarrollo del sistema métrico.
Se pasa, de los siglos XIV y XV, caracterizados por el desarrollo de la construcción, especialmente de castillos, alcázares, atalayas y torres vigías de defensa de la costa, al siglo XVI, centrado en la construcción de palacios y edificios de gran calidad arquitectónica debido a arquitectos de la talla de Juan de Herrera, constructor de El Escorial, de la fachada de la Catedral de Valladolid, etcétera. Algunos ingenieros de aquella época procedían del extranjero como es el caso de Juan Bautista Antonelli, quien dirigió varias obras de fortificación en España e incluso en ultramar, siendo de destacar, entre otras, los castillos del Morro y de la Punta en La Habana, empezados a construir en 1581. A Antonelli se le debe el enlace fluvial Madrid-Lisboa por el Tajo, Jarama y Manzanares, que permitía, en época de Felipe II, navegar en chalupa desde Madrid hasta Lisboa.
En aquellos tiempos España estaba considerada como el país europeo más avanzado en cuanto a conocimientos de fortificación y empleo de armas de fuego, siendo el primero en conocer las reglas, principios y enseñanzas del Arte del Ingeniero y Artillero que se ensañaba en su Academia de Ciencias de Madrid, ochenta años antes de que hubiese sido creada la Real Sociedad de Londres y la Academia Real de Ciencias de París.
En el siglo XVI fue preciso impulsar la agricultura y crear nuevas zonas de regadío, lo que obligó a la construcción de redes de canales, acueductos y presas. En España se construyó en 1594 el célebre dique de Tibi que durante muchos años, con sus 41 m de altura, fue el más alto de Europa. Los veintiún libros de los ingenios y las máquinas de Juanelo Turriano, escrito en 1568, fue el mejor tratado de construcción del siglo XVI. Era la época de Felipe II, que continúa la política de fortificaciones con los Antonelli, así como con Juan de Herrera y su discípulo Cristóbal de Rojas. Éste último escribió en 1598 la Teórica y Práctica de la Fortificación, que fue el primer tratado de fortificación impreso en España.
En el Renacimiento continúa la preocupación por las cimentaciones. Palladio plantea que los cimientos deberían ser el doble de gruesas que los muros soportados por ellas, una dimensión que podría modificarse según la calidad del suelo y la escala de la edificación. Según Alberti, la excavación de la cimentación debería ser horizontal, para evitar cualquier deslizamiento o movimiento y los muros deberían ubicarse en el centro de la zapata, recomendando abrir algunos pozos o fosos para conocer las características de los estratos presentes bajo la superficie. Existe en este momento una mayor preocupación sobre las cimentaciones y sus técnicas constructivas, si bien no es posible realizar un desarrollo evolutivo del diseño de las cimentaciones, pues fueron tan variadas como los edificios que sustentaban.
Referencias
SÁENZ, F. (1993). Los Ingenieros de Caminos. Colección de Ciencias, Humanidades e Ingeniería, nº 47. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid, 305 pp.
VARIOS AUTORES (2005). Ingeniería, Cartografía y Navegación en la España del Siglo de Oro. Revista del Ministerio de Fomento, 542. 200 pp.
YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.
La cultura constructiva de Egipto y Mesopotamia tuvo su continuación tanto en la Grecia clásica, como en Roma. La decadencia de la civilización egipcia desplazó el centro del conocimiento a la isla de Creta y después, alrededor de 1400 a. C., hacia la antigua ciudad de Micenas en Grecia. Sus sistemas de distribución de agua y riego fueron parecidos al de los egipcios, pero mejoraron los materiales y su manipulación. Los ingenieros de este periodo se conocían mejor por el uso y desarrollo de ideas ajenas que por su creatividad e inventiva.
Tanto los constructores de Micenas, como los egipcios, manejaron en sus construcciones enormes bloques de piedra, de hasta de 120 toneladas. Además, dominaron el arco falso, una técnica con la que se ganaron un puesto en la ingeniería. Este principio lo usaron en las construcciones subterráneas, como tumbas y sótanos y en las superficiales, en puentes para vías y acueductos; estos últimos los construyeron con eficacia, así como los sistemas de drenaje. Los griegos de Atenas y Esparta deben mucho a los ingenieros minoicos, pues fueron más conocidos por el desarrollo intensivo de ideas prestadas que por su creatividad e inventiva.
La ciencia griega no fue muy propensa a la ingeniería; sin embargo, su mayor contribución fue descubrir que la naturaleza tiene leyes generales de comportamiento, las cuales se pueden describir con palabras. Además, está la ventaja de la geometría euclidiana y su influjo en la técnica. Los griegos, además, pudieron desarrollar una arquitectura muy esbelta, combinada con materiales muy pesados, gracias a la buena calidad del terreno sobre el que se asentaban, que permitían soportar cargas importantes.
Aunque a Arquímedes se le conoce mejor por lo que ahora se llama el “principio de Arquímedes”, también era un matemático y hábil ingeniero. Realizó descubrimientos relevantes en geometría plana y sólida, así como una estimación más exacta de las leyes para encontrar los centros de gravedad de las figuras planas. También determinó y demostró matemáticamente la ley de las palancas. Mientras estuvo en Egipto, inventó “el tornillo de Arquímedes”, que consiste en una hélice encerrada dentro de un tubo y que se hace girar para levantar agua. Este dispositivo se usó siglos después en los sistemas hidráulicos y en la minería. Arquímedes también fue constructor de barcos y astrónomo. Típica de su inventiva fue una grúa que instaló en uno de sus mayores barcos, con un gancho para levantar la proa de pequeños barcos de ataque hasta vaciarlos de su contenido, para después echarlos al agua de popa. El tirano de Siracusa, Heron II, en el siglo III a.C. utilizó sus conocimientos en defensa de la ciudad frente al ataque de los romanos. Su comportamiento fue semejante al de los ingenieros tal y como se concibieron en los siglos XV a XVIII, siendo una de las grandes mentes de todos los tiempos.
La primera obra de ingeniería cuya autoría está bien documentada es el abastecimiento de aguas de la ciudad de Samos, que incluía un túnel de 1036 m de longitud. Data del siglo VI a.C. y su autor fue, según Herodoto, el arquitectoEupalinos de Megara. Conocemos los nombres de varios otros ingenieros griegos, como son los de Crates, que en el siglo IV a.C. realizó el desagüe del lago Copaïs mediante una galería de 2400 m de longitud, o Thophylactos, autor de una calzada cerca de Jalkis o el mítico Sóstrato de Cnido, al que se le atribuye el faro de Alejandría en el siglo III a.C. Otro ingeniero importante fue el macedonio Dinócrates, el planificador de la ciudad de Alejandría. El propio Herodoto, apasionado admirador de los persas, nos habla de las obras de ingeniería ejecutadas por los oficiales de Darío y Jerjes. Nos ha legado los nombres de algunos de ellos como Mandrocles de Samos, autor del puente sobre el Bósforo. El mejor ejemplo de estructura de contención de la antigüedad está en el tempo de Demetrio en Pérgamo (s. II a.C.). Para construir una terraza en el frente del muro se requería un muro de 14 m de altura y 85 m de longitud con contrafuertes.
Aproximadamente en 440 a. de J.C., Pendes contrató arquitectos para construir templos en la Acrópolis, en Atenas. Un sendero por la ladera occidental llevaba, a través de un inmenso portal conocido como Los Propóleos, hasta la cima. Las vigas de mármol del cielo raso de esta estructura estaban reforzadas con hierro forjado, lo que constituye el primer uso conocido del metal como componente en el diseño de un edificio. Las escalinatas de acceso al Partenón, otro de los edificios clásicos de la antigua Grecia, no son horizontales. Los escalones se curvan hacia arriba, al centro, para dar la ilusión óptica de estar nivelados. En la construcción actual de puentes se toma en cuenta generalmente el hecho de que los que se curvan hacia arriba dan impresión de seguridad, en tanto que los horizontales parecen pandearse por el centro.
Probablemente, las obras portuarias de mayor sofisticación en la antigüedad fueron las del primer puerto de Alejandría (Egipto), construido al oeste de la Isla de Pharos alrededor del 1800 a.C. por los minoicos. La dársena principal, diseñada para albergar 400 embarcaciones de unos 35 m de eslora, tenía 2300 m de longitud, 300 m de ancho y entre 6 y 10 m de calado. Se utilizaron grandes bloques de piedra en los numerosos diques y muelles del puerto. Alejandro el Grande y sus sucesores griegos reconstruyeron el puerto dotándole de apariencia monumental (300-100 a.C.). Se prolongó el dique hasta una longitud de 1.5 km, conectando con la Isla de Pharos. El dique se interrumpía en dos aberturas que, a su vez, configuraban dos dársenas con un área de 368 Ha y 15 km de línea de atraque. Alejandría es probablemente la más conocida por su torre de 130 m de altura, construida con sillares unidos con mortero hidráulico y revestidos con bloques de piedra blanca, en la que se alojaba el faro que era avistado por las embarcaciones desde 50 km mar adentro. Fue considerado una de las maravillas de la antigüedad, finalmente destruido por sendos terremotos en 1326 y 1349.
En 305 a.C., Demetrio había producido la máquina de guerra más temible de la época: el castillete, diseñado por el ingeniero Eplmaco, de nueve pisos, con una base cuadrada que medía entre 15 y 22.5 m por lado y una altura total entre los 30 y los 45 m. Todo el equipo pesaba cerca de 82 toneladas, tenía ocho inmensas ruedas con aros de hierro y lo empujaban y jalaban 3 400 soldados (acarreadores del castillete). Cada uno de los nueve pisos contenía un tanque de agua y cubetas para apagar los fuegos que lo incendiaran. Una de las defensas en contra de esa torre parece ahora haber sido bastante perspicaz, consistente en prever la trayectoria que seguiría la máquina y reunir aguas negras y de lavar, e incluso la escasa agua de beber si era necesario, para vaciarla durante la noche frente al camino. Estos castilletes eran monstruos muy poco maniobrables, de tal manera que si se arrojaba suficiente líquido a la tierra y se daba tiempo para que penetrara el agua, la torre se atascaba inevitablemente. Este es un ejemplo antiguo de la creencia común en los círculos militares contemporáneos de que para cada arma ofensiva hay al menos un arma defensiva potencialmente efectiva. El castillete fue un arma ofensiva muy usada durante años, hasta que la invención del cañón hizo que las murallas perdieran su efectividad como una línea de defensa.
Pero ningún ingeniero antiguo adquiere tanto relieve en la memoria de Herodoto como Artaqueas, el oficial que, para que cruzara la escuadra de Jerjes, cortó con un canal la península de Athos. En aquella obra descomunal, hecha para ser usada una única vez y, sobre todo, para hacer ostentación de la grandeza de Jerjes, se emplearon decenas de miles de soldados, agrupados en batallones de las más diversas etnias.
La ingeniería tiene un gran desarrollo y perfección en Roma, como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería. Pero eso ya es otra historia y es objeto de otro artículo.