Pavimentos bicapa de hormigón

Los pavimentos bicapa de hormigón son una solución eficiente y duradera para las infraestructuras viales. Compuestos por una capa inferior estructural que soporta las cargas de tráfico y una capa superior de rodadura que proporciona funcionalidad y seguridad, estos pavimentos son una alternativa sostenible frente a los pavimentos monocapa. Su desarrollo se remonta a la crisis energética de los años setenta, cuando se buscaban opciones menos dependientes de materiales bituminosos, lo que impulsó la adopción de pavimentos rígidos.

El diseño de los pavimentos bicapa requiere una evaluación exhaustiva de las cargas y la selección adecuada de materiales. La capa estructural emplea hormigón de alta resistencia, mientras que la de rodadura se optimiza para garantizar su durabilidad y comodidad. Las juntas de contracción y expansión, junto con conectores de acero, garantizan la estabilidad y reducen el riesgo de grietas causadas por cambios térmicos y de carga.

El proceso de construcción implica una cuidadosa preparación de la explanada y un riguroso control de calidad en cada una de las etapas, desde el extendido y el acabado hasta el curado de la superficie. En la gestión, se presta especial atención a la regularidad superficial y a la calidad de los materiales empleados para garantizar la durabilidad y la resistencia. En cuanto a la conservación, los pavimentos bicapa requieren menos intervenciones y suponen un menor coste de mantenimiento a largo plazo.

Además, desde el punto de vista ambiental, presentan ventajas como la reducción de emisiones y un menor efecto de calor urbano debido a su reflectancia. Proyectos de demostración en España han confirmado su viabilidad y sus ventajas en términos de sostenibilidad, eficiencia y confort. La adopción de estos pavimentos, junto con una formación técnica adecuada, puede revolucionar la construcción de infraestructuras viales y proporcionar carreteras más seguras, duraderas y sostenibles.

1. Introducción a los pavimentos bicapa de hormigón

Los pavimentos de hormigón surgieron como una solución duradera para responder a la creciente demanda de carreteras resistentes y con menor necesidad de mantenimiento. Las primeras pruebas en España se realizaron a principios del siglo XX, cuando se desarrollaron técnicas innovadoras como el uso de encofrados deslizantes y hormigón armado. La crisis energética de 1973 incentivó la búsqueda de alternativas menos dependientes del petróleo, lo que impulsó el uso de pavimentos rígidos de hormigón y, con el tiempo, favoreció la aplicación de pavimentos bicapa en diversos tipos de vías.

Los pavimentos bicapa de hormigón están compuestos por dos capas diferenciadas: una capa inferior o estructural, destinada a soportar las cargas principales del tráfico, y una capa superior o de rodadura, que proporciona una superficie de contacto segura, duradera y cómoda para el tráfico de vehículos. Este diseño bicapa ofrece ventajas significativas, como una mayor durabilidad, un mejor desempeño acústico y propiedades superficiales específicas, como resistencia a la abrasión y mayor reflectancia, lo que contribuye al confort y la seguridad en las vías.

Los pavimentos bicapa de hormigón presentan varias ventajas frente a los monocapa, entre las que destaca su sostenibilidad, ya que reducen la necesidad de reposiciones frecuentes y, por tanto, disminuyen el uso de recursos materiales y energéticos a largo plazo. Además, ofrecen un mayor confort y seguridad gracias a sus mejores acabados superficiales, mayor regularidad y menor sonoridad. Aunque la inversión inicial es mayor, los costes de mantenimiento y funcionamiento se reducen significativamente, por lo que resultan más rentables a largo plazo.

En España no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción Española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendido y de las centrales de hormigón preparado.

2. Bases teóricas del diseño de pavimentos bicapa

El diseño estructural de pavimentos bicapa se basa en la evaluación de cargas y en el análisis de las exigencias del tráfico pesado para estimar el espesor y la resistencia necesarios en la capa inferior. También se tiene en cuenta la distribución de la presión a lo largo de la estructura para garantizar la integridad del pavimento con el paso del tiempo. La capa estructural asume la carga del tráfico, mientras que la capa de rodadura protege el hormigón de base y facilita una conducción suave. Para ello, se calculan los esfuerzos de tensión y compresión en ambas capas mediante modelos de elasticidad y resistencia estructural.

Para la selección de materiales en pavimentos bicapa, se recomienda utilizar hormigón de alta resistencia para la capa inferior, que debe tener bajo contenido de aire, buena cohesión y agregados gruesos y uniformes que maximicen la resistencia estructural. En cuanto a la capa superior o de rodadura, es importante emplear un hormigón con características específicas de textura superficial y reflectancia. También se puede añadir un aditivo polímero si es necesario mejorar la resistencia a la abrasión o hacer frente a condiciones climáticas extremas.

En el diseño de pavimentos bicapa, los aspectos clave incluyen la clasificación del tráfico, ya que identificar el tipo e intensidad del mismo permite determinar la resistencia necesaria para ambas capas. Se recomienda un diseño más robusto en vías de alto tráfico para evitar el desgaste prematuro. Además, es fundamental verificar la estabilidad de la explanada, ya que es necesario garantizar su capacidad de soporte mediante pruebas del módulo de compresibilidad y de deflexión patrón. Por último, el diseño de juntas es esencial para permitir la dilatación y prevenir agrietamientos, para lo cual hay que calcular la disposición de juntas de contracción y expansión, así como juntas longitudinales y transversales, en función de las tensiones térmicas y de carga en cada segmento de pavimento.

3. Proceso de construcción del pavimento bicapa

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (entre 4 y 5 cm) sobre otra capa de hormigón que se extiende junto con la anterior para que funcionen como una sola capa, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir estrictas exigencias de resistencia al desgaste y al pulimento. También es posible limitar la disminución del tamaño máximo del árido en la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

Las etapas de construcción de pavimentos bicapa comienzan con la preparación de la explanada, donde se debe nivelar y compactar el suelo de apoyo para recibir la capa estructural de hormigón, lo que puede incluir una capa de regularización para corregir cualquier irregularidad del terreno. A continuación, se extiende el hormigón de la capa estructural mediante un proceso de nivelación mecánica, para lo que se utilizan vibradores y rodillos compactadores con el fin de lograr una densificación adecuada que asegure una buena cohesión y resistencia. Finalmente, se aplica la capa de rodadura de manera continua sobre la capa inferior para evitar la formación de juntas frías y mejorar la durabilidad del pavimento.

La instalación de juntas y conectores es esencial para la durabilidad de los pavimentos bicapa, ya que las juntas de contracción y expansión previenen las grietas causadas por movimientos térmicos y de carga, mientras que los conectores de acero, como barras de atado y pasadores, facilitan la transferencia de carga entre las losas y garantizan la alineación estructural. Además, en las áreas de transición, como los carriles de desaceleración o la conexión con puentes, se utilizan sistemas de transición que minimizan las discontinuidades entre los diferentes tipos de pavimentos, mejorando la continuidad y el rendimiento general del sistema.

El proceso de curado y acabado en la construcción de pavimentos bicapa incluye la aplicación de inhibidores de fraguado y curado, que consisten en un curador químico destinado a evitar la evaporación del agua y asegurar un fraguado controlado, lo que reduce la formación de fisuras y aumenta la durabilidad del pavimento. Además, se realiza un acabado de la superficie mediante equipos especializados que ajustan la textura y la regularidad, eliminando cualquier irregularidad y garantizando así la seguridad y el confort del usuario.

4. Gestión de calidad en la construcción

El control de calidad de los materiales empleados en la construcción de pavimentos bicapa incluye la realización de pruebas de calidad del hormigón en fábrica, donde se verifica que cumpla con las especificaciones de resistencia y durabilidad mediante el análisis de la resistencia a la compresión y el contenido de aire. Además, se lleva a cabo un riguroso control de los componentes de las juntas para garantizar que los materiales de sellado y las barras de conexión cumplan con las normas específicas de elasticidad y resistencia, lo que es crucial para la integridad y funcionalidad del pavimento.

El control de la ejecución y el acabado en la construcción de pavimentos bicapa incluye la verificación de la alineación y el espesor de las capas, lo que es fundamental para garantizar que se coloquen según las especificaciones diseñadas y asegurar así la durabilidad y resistencia del pavimento. Además, se utilizan equipos de perfilometría para medir la rugosidad y la regularidad de la superficie, lo que permite ajustar la textura superficial con el fin de reducir el ruido y mejorar la tracción, lo que contribuye a un mejor rendimiento y seguridad en las vías.

5. Conservación y mantenimiento de pavimentos bicapa

La gestión de la conservación de pavimentos bicapa se basa en estrategias de conservación preventiva y correctiva que incluyen el control de las condiciones y el mantenimiento periódico. Un plan preventivo puede contemplar aplicaciones de sellado para evitar la entrada de agua en las juntas y reducir el desgaste. Además, se utilizan bases de datos y sistemas de gestión para registrar el estado del pavimento, lo que facilita el seguimiento y la planificación de intervenciones futuras, y asegura la prolongación de su vida útil.

Las intervenciones y renovaciones en pavimentos bicapa abarcan el mantenimiento superficial y la reparación de juntas, lo que incluye el sellado de juntas y la reparación de grietas superficiales. En casos de desgaste significativo, se puede aplicar una nueva capa de rodadura. Además, en situaciones en las que el pavimento estructural haya fallado, puede ser necesario realizar un refuerzo o incluso una rehabilitación completa del mismo. Estas intervenciones se planifican cuidadosamente para minimizar la afectación al tráfico, garantizando así la seguridad y la funcionalidad de la vía.

6. Sostenibilidad y análisis ambiental

La evaluación de impacto ambiental de los pavimentos bicapa destaca su eficiencia energética, ya que reducen la dependencia de materiales bituminosos y, por tanto, disminuyen las emisiones de gases durante su producción y transporte. Además, su capacidad de reflectancia contribuye a reducir la temperatura en entornos urbanos, lo que ayuda a mitigar el fenómeno de las islas de calor y a promover un ambiente más sostenible y saludable.

Los aspectos económicos y sociales de los pavimentos bicapa reflejan una relación coste-beneficio a largo plazo, ya que, aunque su coste inicial es más elevado, su durabilidad y sus bajos requerimientos de mantenimiento pueden generar ahorros significativos con el tiempo. Además, la calidad de la superficie de rodadura ofrece un mayor confort y seguridad para el usuario, ya que proporciona una experiencia de conducción más cómoda, con un menor riesgo de deslizamientos y una mayor resistencia al frenado. Esto contribuye a la seguridad vial en general.

7. Conclusiones

En conclusión, la adopción de pavimentos bicapa ofrece numerosas ventajas, como la construcción de carreteras más sostenibles y la reducción de costes operativos a largo plazo. Para futuros proyectos, se recomienda fomentar la formación de ingenieros y técnicos en esta tecnología, así como llevar a cabo estudios piloto en regiones donde el pavimento bicapa aún no se ha implementado ampliamente, lo que facilitaría su adopción y contribuiría a la mejora de la infraestructura vial.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencias:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plantas asfálticas con tambor secador-mezclador

Figura 1. Tambor secador-mezclador

En España, las centrales discontinuas fueron el método predominante para la producción de áridos mezclados con betún hasta los años 80. En ese momento, se introdujo la tecnología de la central continua de tambor secador-mezclador (drum-mixer), capaz de producir hasta 600 toneladas por hora. Esta innovadora planta cuenta con un tambor cilíndrico que se encarga de secar los áridos y mezclarlos con el betún. El tambor gira sobre su propio eje gracias a un motor reductor alimentado por un motor eléctrico.

Las plantas continuas de tambor secador-mezclador se dividen en dos secciones: la primera calienta los áridos, mientras que en la segunda se agregan el ligante y el filler para mezclar. Aunque la corriente de gases durante el proceso arrastra partículas de polvo mineral, el betún presente en la mezcla limita la extracción del filler al 20-25%. Los álabes del tambor se cierran en la zona del quemador para proteger los materiales de la llama, y se abren gradualmente para aumentar el contacto con los gases de la combustión sin oxidar excesivamente el ligante.

El proceso de producción de mezclas asfálticas con áridos fríos comienza en el extremo del quemador, donde los áridos se introducen en el tambor y se calientan para eliminar la humedad. En la sección inicial del tambor, los potentes ventiladores extraen el fíller y lo almacenan para su uso posterior. En la sección media, se pulveriza el betún y el polvo mineral de recuperación y aportación, logrando la mezcla final en la sección final con la ayuda de los álabes. Una variante del proceso utiliza dos tambores consecutivos para calentar los áridos y agregar el ligante. La emulsificación del betún mejora la trabajabilidad de la mezcla, que luego se vierte en camiones o se almacena en silos calorífugos, como en las plantas discontinuas.

Figura 2. Planta móvil de tambor secador-mezclador

La central de tambor secador-mezclador tiene como desventaja que se realiza una única dosificación de áridos en frío, lo que dificulta la obtención de una granulometría precisa, especialmente con arenas con exceso de finos. No obstante, esta planta presenta varias ventajas en comparación con las centrales tradicionales. Es más simple y consume menos energía, debido a que solo hay una dosificación, mientras que en las plantas discontinuas se efectúan varias dosificaciones en diferentes etapas. Además, es más pequeña y fácil de transportar y montar, y también más económica tanto en su adquisición como en su mantenimiento, lo que la hace más rentable económicamente. A pesar de estas ventajas, hay desventajas en que solo hay un proceso de dosificación, lo que puede resultar en dificultades para lograr la granulometría establecida si se utiliza arena con un exceso de polvo mineral. Sin embargo, es muy adecuada para procesos de reciclado en central, para los cuales se dispone en el tambor un anillo con una tolva para la introducción de los productos de reciclado.

Referencias:

KRAEMER, C.; PARDILLO, J.M.; ROCCI, S.; ROMANA, M.G.; SÁNCHEZ, V.; DEL VAL, M.A. (2010). Ingeniería de carreteras II. McGraw-Hill, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Riegos sin gravilla

Figura 1. https://www.ibef.net/es/emulsions-3/tecnicas/riegos-de-adherencia/

Un riego sin gravilla estaría compuesto únicamente por ligantes bituminosos. El empleo de los riegos sin gravilla en la construcción de firmes suele reservarse con fines auxiliares o provisionales, nunca proporcionando unas características estructurales. Forman parte de las operaciones auxiliares en la construcción o conservación del firme. Estrictamente hablando, estos riegos no pueden considerarse superficiales, sino que se dividen en varios tipos:

  • Riegos en negro: se aplican sobre superficies de rodadura envejecidas como medida provisional para rejuvenecer el firme y mejorar su impermeabilidad.
  • Riegos antipolvo: se aplican en caminos rurales o de poco tráfico para minimizar la producción de polvo y proteger al firme de la erosión y la humedad.
  • Riego de imprimación: se aplica un ligante sobre una capa granular antes de colocar sobre ella una capa o tratamiento bituminoso. La imprimación penetra en la superficie de la base, sella los huecos, endurece la superficie y ayuda a unir la capa superior de asfalto. Este riego optimiza la transmisión de cargas, por lo que es importante barrer enérgicamente la superficie granular y regarla con agua antes de su aplicación.
  • Riego de adherencia: se aplica una emulsión bituminosa sobre una capa tratada con ligantes hidrocarbonados o conglomerantes hidráulicos antes de colocar cualquier tipo de capa bituminosa que no sea un tratamiento superficial con gravilla o una lechada bituminosa. Este riego mejora la adherencia entre las capas bituminosas.
  • Riego de curado: se aplica sobre capas tratadas con conglomerante para evitar la pérdida de humedad y lograr un curado adecuado. En la práctica, estos riegos también se pueden utilizar como riego de imprimación o como protección contra el tráfico rodado.

Os dejo a continuación un vídeo educativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, que espero que os sea de interés.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Terminación, texturado y curado del pavimento de hormigón

Figura 1. Fratás automático http://www.imcyc.com/revistacyt/jul10/pavimentos.htm

La terminación o acabado final del hormigón es una tarea crítica en la construcción de un pavimento, pues tiene la importante misión de corregir las irregularidades o defectos producidos durante la colocación y compactación del material. Para lograr una superficie adecuada en el hormigón fresco, se pueden llevar a cabo diferentes trabajos, que van desde un ligero fratasado manual hasta intervenciones más significativas como reparaciones de bordes.

El fratasado es una técnica que se utiliza para nivelar la superficie del hormigón, eliminar la capa superficial de lechada, sumergir las partículas de árido más gruesas, remover y corregir pequeñas imperfecciones, y presentar mortero en la superficie para el texturizado. Esta técnica puede realizarse de forma manual o mecánica, y puede ser longitudinal o transversal.

En las carreteras de alta velocidad de España se logra una textura superficial longitudinal mediante el estriado del hormigón con cepillos metálicos o de plástico y una arpillera húmeda y lastrada para conseguir una microtextura áspera en toda la superficie. La arpillera también se emplea para eliminar las marcas de la bailarina. En los bordes de las carreteras se suele crear una textura transversal. En otros países, la macrotextura se logra mediante técnicas como la denudación química o la incrustación de gravilla en el hormigón fresco.

Una vez que la pavimentadora ha terminado su trabajo, el carro de texturizado y curado (Figura 2) se acerca para aplicar la textura deseada con un cepillo de cerdas o flejes, mientras que se rocía líquido de curado como última operación. Si se desea una textura de árido visto, el carro extiende el retardador de fraguado y, en algunos casos, el compuesto de curado. Algunos productos pueden realizar ambas funciones simultáneamente. En regiones lluviosas, el retardador de superficie se protege con una lámina de plástico desplegada desde un rollo montado en el carro. Una vez retirado el mortero sin fraguar, se aplica el producto de curado sobre el pavimento.

Figura 2. Equipo de texturizado y curado (Calo et al., 2015)

El curado del pavimento es esencial para evitar la pérdida de agua necesaria para el fraguado y endurecimiento del hormigón, así como la aparición de fisuras por retracción que pueden debilitar su resistencia. Aunque es posible usar agua para el curado en carreteras con poco tráfico, se recomienda utilizar productos de calidad que creen una capa impermeable sobre el pavimento para evitar la evaporación del agua. Estos productos suelen tener un pigmento blanco que, además de reducir la ganancia de calor por incidencia de la radiación solar, ayuda en la inspección visual de la uniformidad de la aplicación. Después, al sellar las juntas, es necesario volver a aplicar el producto en la ranura correspondiente.

Figura 3. Tren de curado (Calo et al., 2015)

Las membranas químicas de curado están formuladas a base de resinas y solventes de rápida evaporación que no son solubles en agua. Estas membranas pueden aplicarse inmediatamente después de las tareas de texturizado y terminación del hormigón, incluso si hay agua en la superficie. Al aplicarse por aspersión sobre la superficie del pavimento, se forma una película protectora en pocos minutos que impide la evaporación del agua de exudación y mejora su acción preventiva al adherirse a la superficie del hormigón. Debido a estas características, resultan especialmente útiles en la pavimentación con encofrados deslizantes.

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimento continuo de hormigón armado para carreteras

Figura 1. Colocación de armadura en un pavimento continuo de hormigón armado.

El Pavimento Continuo de Hormigón Armado (PCHA) no requiere juntas transversales de contracción. Básicamente, se trata de un pavimento de hormigón armado con juntas, pero con una armadura suficiente para que la distancia sea infinita. Cuando se ejecuta adecuadamente, este pavimento requiere un mantenimiento mínimo. Los PCHA buscan proporcionar superficies cómodas y sin interrupciones. Mediante el cálculo de cargas, retracción y cambios de temperatura, se puede anticipar la resistencia del pavimento y controlar su tendencia a agrietarse, como en cualquier otra estructura de hormigón armado. Las ventajas de este tipo de pavimento son su seguridad, su coste y su capacidad para ser compatible con pavimentos existentes de mezcla bituminosa o con superficies de hormigón en mal estado, pues no requieren su eliminación previa.

La eliminación de las juntas transversales implica aumentar la cuantía de la armadura longitudinal de acero de alto límite elástico a valores superiores a 10 kg/m². La eliminación de las juntas transversales permite reducir el espesor de la capa de hormigón y amplía su campo de aplicación, aunque su elevado coste inicial hace que su uso esté más extendido en firmes que soporten altos niveles de tráfico pesado, especialmente en autopistas y carreteras principales.

Inicialmente, estos pavimentos se utilizaban principalmente en firmes de nueva construcción. Sin embargo, en los últimos años también se han empleado como refuerzo de firmes ya existentes, tanto rígidos como flexibles, y en la reconstrucción de carriles para vehículos pesados en autopistas. Los pavimentos de hormigón armado continuo también se utilizan en pistas de aterrizaje y despegue de aeropuertos, como en el aeropuerto de Narita (Tokio) y en la base francesa de Lorient-Lann-Bihoué. Además, se usan en glorietas, túneles, plataformas industriales y en carreteras donde se espera un asentamiento diferencial, ya que la corta distancia entre las grietas del pavimento permite que se divida en pseudolosas de pequeña longitud, lo que facilita su adaptación a los movimientos del terreno de base.

Figura 2. Sección de un Pavimento Continuo de Hormigón Armado (PCHA)

El PCHA se utilizó por primera vez en Estados Unidos en 1938, en autopistas con tráfico pesado, pero pasó más de una década hasta que se empezó a experimentar su uso en Europa. Bélgica fue el primer país en aplicarlo en tramos experimentales y en utilizarlo comúnmente en autopistas y carreteras importantes. En 1963, se realizaron pruebas experimentales en la N-II, cerca de Madrid, y se construyeron 43 km de la autopista Oviedo-Gijón-Avilés en 1975. A partir de 1990, se construyeron algunos tramos en la autopista del Cantábrico. Aunque su uso en España es limitado, se dispone de una técnica madura y fiable para su desarrollo.

Debido a la alta cantidad de armadura principal que poseen en dirección longitudinal (entre el 0,6 % y el 0,7 %), los PCHA tienden a desarrollar fisuras transversales de manera natural en intervalos aleatorios pequeños (generalmente de 0,8 a 2,0 m). La función principal de la armadura es limitar la fisuración por retracción y temperatura, y la secundaria, absorber las tracciones estructurales. La armadura transversal, que representa del 0,05 % al 0,10 %, actúa como soporte para las barras longitudinales y puede ser prescindible. Según el PG-3, los solapes deberían ser inferiores al 20 % del total.

Generalmente, se deja una distancia de aproximadamente 15 cm entre las barras longitudinales para facilitar el vertido del hormigón. Por su parte, las armaduras transversales se colocan como soporte de las barras longitudinales y para mantener su posición relativa. No obstante, en los últimos años se ha popularizado el uso de equipos con guías para colocar las barras longitudinales en su posición final durante el vertido del hormigón, lo que permite prescindir de las armaduras transversales.

La cantidad de armadura longitudinal necesaria en un PCHA depende de varios factores, incluyendo el límite elástico del acero y la resistencia característica a flexo-tracción del hormigón. En el caso de hormigones HP-4,5 (4,5 MPa), esta cantidad suele estar en valores entre el 0,65 % y el 0,7 %. Generalmente, se suelen emplear barras corrugadas de alto límite elástico (510-620 MPa) como armadura en este tipo de pavimentaciones.

La distancia entre las fisuras y su apertura es inversamente proporcional a la cantidad de acero dispuesta. Según datos empíricos, la distancia deseable entre fisuras está entre 1 y 3 m, siendo lo óptimo entre 1,5 y 2 m. El ancho de las fisuras debe ser inferior a 0,5 mm. Además, es importante que la distribución de las fisuras sea homogénea para asegurar la transferencia de cargas a través de ellas sin desniveles ni degradación bajo el tráfico. Las fisuras deben estabilizarse a los 4 o 5 años. Para lograrlo, es necesario seguir las indicaciones previas en cuanto a la cantidad de acero, la separación óptima de las barras, el porcentaje de solapamientos, entre otros factores.

En las primeras etapas del uso del acero en PCHA, se solía colocar la armadura en el tercio superior de la losa para mantener cerradas las fisuras en esa zona y para que la armadura actuara como «armadura de piel» y resistiera los desprendimientos de hormigón debidos al tráfico. Sin embargo, con la evolución de la técnica, se ha descubierto que es preferible colocar la armadura en la mitad del espesor. Esto no solo reduce el riesgo de corrosión, sino que también mejora la regularidad superficial del pavimento al evitar las ligeras ondulaciones causadas por la «reflexión» de la armadura en la superficie.

Figura 3. Esquema de un Pavimento Continuo de Hormigón Armado (PCHA)

Esta técnica es poco competitiva debido al elevado coste del acero, pero es posible reducir su cuantía a casi la mitad sustituyendo las barras por bandas corrugadas de acero de muy alto límite elástico. Estas bandas tienen una sección transversal de 2 x 40 mm² y se suministran en bobinas desenrollables. Aunque los pavimentos de hormigón armado tienen un costo de construcción más elevado que los pavimentos de hormigón simple con juntas, los PCHA presentan la ventaja de requerir poco mantenimiento y de tener una vida útil más larga que otros tipos de pavimentos si se ejecutan correctamente. No obstante, debido a su elevado coste, no suele utilizarse este tipo de pavimento, salvo en casos muy especiales de tráfico muy pesado, especialmente si se trata de refuerzos.

Os dejo una presentación de IECA sobre este tipo de pavimentos.

Descargar (PDF, 2.21MB)

Algunas organizaciones promotoras del empleo del cemento han editado publicaciones explicando las ventajas. Os dejo un vídeo explicativo de IECA donde se explica cómo se construye este pavimento. Espero que os guste.

Otro vídeo sobre el mismo tema es el siguiente:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón armado con juntas para carreteras

Figura 1. Pasadores en una junta de construcción de un pavimento rígido

En su momento, los pavimentos de hormigón armado con juntas se popularizaron debido a su capacidad para reducir la cantidad de uniones, lo que permitió separarlos varias decenas de metros, llegando incluso a los 30 m. El diseño buscó resolver el problema de conservación que representaban estas juntas, consideradas como la zona más débil, mediante la reducción de su número y el aumento de la longitud de las losas. Si bien estos pavimentos solían utilizarse para el tráfico pesado, en la actualidad son poco comunes en las carreteras, aunque se emplean en pavimentos industriales y otras aplicaciones. No obstante, han quedado en desuso debido a su elevado coste, pues no se considera que su calidad sea proporcional al precio.

Los pavimentos de hormigón armado con juntas (Figura 2) se dividen en losas, las cuales tienen una longitud mayor y la armadura no se dispone de forma continua. En cambio, la armadura se interrumpe en la zona de las juntas, donde se instalan pasadores para mejorar las condiciones de transferencia de carga.

Figura 2. Esquema de un pavimento de hormigón armado con juntas

Es importante destacar que un mayor espacio entre juntas puede provocar un mayor movimiento en la losa debido a los cambios de temperatura y humedad, lo que puede afectar a la transferencia de carga y aumentar la demanda de los sellos de las juntas. Por lo tanto, en este tipo de pavimentos, se exige la incorporación de pasadores en todas las juntas transversales, como medida obligatoria para garantizar la estabilidad a largo plazo.

Figura 3
Figura 3. Sección de un pavimento de hormigón armado con juntas

Las armaduras se ubican en el tercio superior de la losa, no con una función estructural, sino para evitar las fisuras transversales que puedan formarse entre las juntas. Esto garantiza la transmisión de cargas en las fisuras, impide la penetración de agua y otros materiales finos y evita la formación de grietas en forma de “V” bajo la acción del tráfico. La distancia entre juntas longitudinales se mantiene en torno a los 4-6 m, como en el caso del hormigón en masa, aunque en la actualidad se recomienda no superar los 9 m de separación entre juntas.

Figura 4. Pavimento de hormigón armado con juntas

La cuantía geométrica de armadura suele estar entre el 0,07 % y el 0,10 % del área de la sección transversal, y es frecuente el uso de mallas electrosoldadas, como la de tipo ME 15 x 15 A ø 6-6 B 500 T. En el sentido transversal, se utilizan tanto barras de unión como armadura distribuida, aunque con una cuantía inferior a la utilizada en el sentido longitudinal.

Veamos en esta animación cómo funcionan los pasadores ante el paso del tráfico:

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Textura en los pavimentos de hormigón en carreteras

Figura 1. Texturizado de pavimentos de hormigón con peine metálico transversal. https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

En los últimos años, ha aumentado la preocupación por las texturas superficiales de los pavimentos de hormigón debido al incremento progresivo del tráfico y de la velocidad de circulación. Anteriormente, la texturización se vinculaba a la reducción de accidentes por deslizamiento en superficies húmedas, pero en la actualidad también se considera la generación de ruido entre el pavimento y el neumático. La textura superficial garantiza la rugosidad necesaria para conseguir una buena adherencia, un buen drenaje, baja sonoridad y reduce la reflectancia del pavimento. Una textura superficial adecuada se realiza mediante el arrastre o paso de algún elemento sobre el hormigón fresco, y se procede inmediatamente al curado. En resumen, el objetivo del texturizado es conseguir una resistencia mínima al deslizamiento en condiciones húmedas, mantener un buen drenaje y escurrimiento superficial del agua, reducir los niveles de ruido y brindar resistencia al desgaste y la durabilidad.

Existen diversas técnicas para aplicar una textura sobre la superficie del hormigón, que pueden ejecutarse con equipamiento mecánico o manualmente. Asimismo, se pueden aplicar otras técnicas en estado endurecido en pavimentos en servicio o nuevos para mejorar el rendimiento de la superficie en parámetros como la fricción, el drenaje superficial y el ruido.

Es importante aplicar la textura de forma homogénea para producir condiciones uniformes de fricción y circulación, independientemente de la técnica utilizada. Los factores que más influyen en la textura cuando se aplica en estado fresco son la consistencia y las características del hormigón, el momento o tiempo en el que se realiza, la presión con la que se aplican las herramientas de texturizado, su limpieza y la presencia de agua de exudación en la superficie del hormigón, entre otros.

Entre las texturas que se pueden utilizar en la superficie del pavimento, se encuentran las siguientes:

  • Estriado transversal: se crea mediante el uso de peines de púas metálicas o de plástico. Esta textura proporciona una alta adherencia y resistencia al frenado, así como un buen drenaje. Sin embargo, también es ruidosa, por lo que se recomienda su uso en arcenes y en zonas muy lluviosas.
  • Estriado longitudinal oscilante: se consigue mediante el empleo de cepillos o peines, que generalmente están integrados en el carro del equipo de curado. Es fundamental que el dispositivo que crea la textura tenga un movimiento lateral, combinado con el avance, que provoque una ondulación sinusoidal para evitar el guiado de las ruedas. Generan un bajo nivel de ruido.
  • Terminación con arpillera: se logra aplicando una arpillera húmeda lastrada para obtener una microtextura adherente de baja rugosidad. Esta técnica suele combinarse con alguna de las otras texturas mencionadas anteriormente. Es una técnica sencilla, que puede aplicarse tanto de forma manual como automática, y además, genera poco ruido. Entre sus debilidades, destaca una baja profundidad de textura y una mayor pérdida de fricción inicial.
  • Árido visto: se consigue eliminando el mortero superficial del pavimento mediante la aplicación de un retardador de superficie sobre el hormigón fresco, lo que impide que el mortero se endurezca en los milímetros superiores. Después, se aplica un producto filmógeno de curado o una lámina de plástico sobre el retardador. Una vez que el resto del hormigón ha adquirido suficiente resistencia, lo cual ocurre generalmente al cabo de un día, se elimina el mortero mediante barrido, dejando el árido parcialmente visible. Este método, si se desarrolla correctamente, permite obtener pavimentos con alta rugosidad, buenas características de evacuación del agua de lluvia, antideslizantes y de muy baja sonoridad, cualidades que se mantienen durante toda su vida útil. Entre sus ventajas se encuentran los elevados índices de fricción, la baja generación de ruido y la elevada durabilidad. Sin embargo, también tiene algunas desventajas, como la necesidad de utilizar métodos y equipos especiales, su elevado coste y la importancia de contar con un constructor calificado.
Figura 2. Texturizado con cepillo en sentido transversal (manual y automatizada). https://web1.icpa.org.ar/wp-content/uploads/2019/04/2014-04-Texturas-pavimentos.pdf

Os dejo algunos vídeos que, espero, os sean de interés.

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capas y bases tratadas: Gravaceniza

Figura 1. Cenizas volantes. https://ceramica.fandom.com/wiki/Cenizas_volantes

Las cenizas volantes son residuos sólidos de las centrales térmicas que utilizan carbón pulverizado como combustible. Los filtros antipolvo electrostáticos, por donde el humo antes de salir por la chimenea, captan estas partículas. Presentan un diámetro de 1 a 200 µm, son ligeras, friables y están dotadas de propiedades puzolánicas en la mayoría de los casos. Se trata de un subproducto industrial poco aprovechado, cuyo almacenamiento puede dar lugar a problemas ambientales.

Las cenizas procedentes de la combustión de la hulla y la antracita presentan altos contenidos en sílice y alúmina, y una proporción débil de cal y sulfuros. Son las cenizas sílico-aluminosas, que representan la mayor parte de la producción de cenizas volantes. En las centrales alimentadas con lignitos, las cenizas presentan menor porcentaje de cal y sulfuros, siendo cenizas sulfo-cálcicas.

Parte de este subproducto se emplea como adición para ciertos cementos, usado en carreteras para hormigones y otras mezclas con cemento. También pueden estabilizar arenas finas y limos agregando una pequeña adición de cal o cemento. Su uso también es habitual como polvo mineral de aportación en las mezclas bituminosas.

Figura 2. Central térmica de Puertollano. https://es.wikipedia.org/wiki/Central_t%C3%A9rmica_de_Puertollano

Pero su uso más reciente es en bases para los firmes. Se usan con áridos similares a los de gravacemento. El conglomerante hidráulico se usa en un 10% respecto al peso de los áridos y está constituido por un 80% de cenizas sulfoaluminosas y un 20% de cemento Portland o de cal viva o apagada. La cal y el cemento actúan como activadores de las cenizas. A menudo tiene más garantía utilizar de cementos especiales con solo un 20% de clinker.

Las bases y subbases realizadas con grava, ceniza y cal presentan elevada facilidad de compactación por el efecto lubricante de los granos de ceniza, un endurecimiento lento con bajas rigideces a corto plazo, una disminución del agrietamiento originado por asientos diferenciales y retracciones térmicas producidas a corto plazo y la posibilidad de apertura al tráfico tras ser compactada.

La cantidad de agua de amasado necesaria se encuentra entre el 5 y el 8%, siendo algo superior a la humedad óptima de compactación. La gravaceniza se coloca en obra de forma similar a la gravacemento. Se transporta a obra en camiones y se coloca mediante una extendedora, que realiza una compactación previa. Posteriormente se compacta energéticamente con maquinaria pesada, con una densidad superior al 100% del Proctor Modificado. La superficie de la capa se debe sellar para evitar la pérdida de humedad y para permitir, con una pequeña adición de árido fino de cubrición, dejar la capa compactada abierta al tráfico de forma inmediata.

La resistencia mecánica de las bases de gravaceniza son más bajas al principio que las realizadas con conglomerantes con elevado contenido de clinker. Sin embargo, las reacciones puzolánicas elevan esta resistencia al cabo de algunos meses, pudiéndose llegar o superar dichas resistencias, pudiéndose llegar hasta 20 MPa.

Se considera que el radio de acción técnico y económico para el uso de las cenizas volantes es de 100 km alrededor de una central térmica.

 

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capas y bases tratadas: Gravaescoria

Figura 1. Escoria granulada. http://www.cedex.es/NR/rdonlyres/BFF81F23-BDB7-4B5B-85A5-A7ABD2974A42/119856/ESCORIASDEHORNOALTO.pdf

La gravaescoria consiste en una mezcla homogénea de áridos, escoria granulada de alto horno, cal y agua, que convenientemente compactada, se utiliza en la construcción de firmes de carreteras. La regulación de esta unidad de obra se recogía en el ya derogado artículo 515 del PG3. Se trata de un tipo de base desarrollada en Francia en los años 60 del siglo pasado. Su mayor problema es el coste del transporte de la escoria desde el alto horno a la central de fabricación, siendo 100 km una distancia límite. Esta es una de las razones por las que se encuentra desregulado su empleo. De hecho, actualmente en España la producción de escoria se localiza en Asturias, concentrándose su consumo principalmente en la zona norte del país.

La escoria granulada es una arena vitrificada obtenida por el enfriamiento brusco y controlado de la escoria de alto horno, a la salida de éste. Está constituida fundamentalmente por silicatos cálcicos, conteniendo también otras sustancias, principalmente alúmina y magnesia. La gravaescoria parte de una mezcla de árido, un 15-20% de escoria granulada de alto horno, agua y un 1% de cal viva o apagada que actúa como catalizador del fraguado. El catalizador es necesario porque la escoria granulada no es un conglomerante hidráulico, sino puzolánico. Por ello el fraguado (en puridad, una cristalización) es progresivo y lento, que puede durar varios meses, llegando al cabo de unos 2 años a alcanzar las resistencias obtenidas con la gravacemento. En otros países se utiliza escoria aireada, obtenida por enfriamiento con agua y aire.

Los áridos utilizados serán naturales o procedentes del machaqueo y trituración de piedra de cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, exentos de polvo, suciedad, arcilla y otros materiales extraños. Su huso granulométrico es algo más abierto que en el caso del árido para la gravacemento. La humedad de la mezcla es algo superior a la óptima del Proctor Modificado. Se aconseja un riego de curado, aunque no es estrictamente necesario.

El proceso de ejecución será el que se indica a continuación:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte y vertido
  • Compactación y acabado

La fabricación en central permite dosificar por separado el árido, la escoria granulada, la cal y el agua. Se debe asegurar una compactación que llegue al 100 % del Proctor Modificado, así como un buen drenaje del firme para evitar futuros problemas. La extensión se realiza por capas que, una vez compactadas, varíen entre 15 y 30 cm. Sin embargo, la compactación se realizará en una sola tongada.

La compactación se inicia por el borde más bajo de las distintas bandas longitudinales y continuará hacia el borde más alto de la capa, con el solape correspondiente. En los bordes se debe disponer de una contención lateral adecuada. Esta unidad de obra se puede ejecutar si la temperatura ambiente a la sombra supera los 5ºC y no se prevean heladas. Sin embargo, si la temperatura tiene tendencia a crecer, podrá bajarse el límite a 2ºC.

Cuando la gravaescoria es económicamente factible, presenta algunas ventajas respecto a la gravacemento. Así, su lento endurecimiento permite más tiempo de puesta en obra y abrir al tráfico ligero inmediatamente. Aunque se deforme la capa, siempre se podrá reperfilar antes de extender el pavimento. Otra ventaja es la homogeneidad conseguida en la mezcla debido a la elevada proporción de conglomerante, siendo la humedad y el contenido de escoria factores menos críticos. El problema del reflejo de las grietas en el firme se reduce debido a su menor retracción, por lo que es posible disminuir el espesor del pavimento bituminoso.

Descargar (PDF, 279KB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capas y bases tratadas: Gravaemulsión

La gravaemulsión es un tipo de mezcla bituminosa en frío que consiste en la mezcla íntima de áridos, emulsión asfáltica y agua, que convenientemente compactada, se utiliza para la construcción de capas de firmes de carreteras. La gravaemulsión se concibe como una técnica de estabilización de áridos marginales. Sin embargo, en España se identifica más con una mezcla de áridos de granulometría continua, relativamente duros y, en general, procedentes del machaqueo.

La mezcla se realiza con áridos húmedos y con una emulsión de rotura lenta. La emulsión puede ser catiónica o aniónica, pero siempre de betún puro. La emulsión aniónica se emplea con áridos calizos, mientras las catiónicas tienen mayor aplicabilidad, aunque de rotura más rápida. El artículo 213 del PG3 indica que se pueden emplear emulsiones de los tipos ECL-2 y EAL-2. Se puede adicionar agua y cemento, importantes para la fabricación, compactación y apertura al tráfico. Los porcentajes de ligante residual oscilan entre el 2 y 5 % sobre el peso seco de los áridos.

Figura 1. Extensión de una capa de  gravaemulsión. https://www.ateb.es/index.php/blog/item/212-grava-emul-que

Los áridos utilizados serán de características similares a los empleados en la gravacemento. Los husos granulométricos deben ser estrictos (GEA-1 y GEA-2). El equivalente de arena debe ser superior a 45. El artículo 514 del PG3 que regulaba el uso de la gravaemulsión fue derogado de la normativa actual del Ministerio de Fomento, que solo considera la utilización del suelocemento y de la gravacemento. La normativa autonómica sí que recoge su empleo. En general, se restringe al aprovechamiento de capas granulares procedentes de antiguos firmes para su uso en firmes provisionales o deformables, o bien capas de base para tráficos medios y ligeros, T2 a T4.

El proceso de ejecución será el que se indica a continuación:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte de la mezcla
  • Extensión y compactación
  • Juntas de trabajo
  • Curado

Lo habitual es fabricar la gravaemulsión en centrales continuas, de forma similar a la fabricación de mezclas bituminosas en frío o de otras gravas tratadas. Estas centrales tendrán dispositivos adecuados para dosificar por separado la emulsión, el agua y los áridos. La mezcla se debe transportar en camiones de caja basculante, lisa y completamente limpia. Antes de extender la gravaemulsión, se debe comprobar que la capa subyacente tiene la densidad y geometría correctas. La extensión con calidad la realiza una extendedora, pero una motoniveladora tiene la ventaja de poder reperfilar (Figura 2). El espesor de la capa es de 6 a 15 cm, que se compacta con rodillos vibratorios o compactadores de neumáticos con alta carga por rueda. La compactación puede esperar sin problemas varias horas después del extendido. En caso de abrir al tráfico antes de extender la capa de rodadura, debe aplicarse un riego de sellado, con una dotación de betún residual de 200 a 500 g/m2 y arena.

Figura 2. Extensión de gravaemulsión con motoniveladora. https://www.eadic.com/mezclas-en-frio-con-emulsion-bituminosa-para-mantenimiento-de-carreteras/

La gravaemulsión se pondrá en obra si la temperatura ambiente, a la sombra, es superior a 2ºC en emulsiones catiónicas y 10ºC en las aniónicas. Pero si la temperatura ambiente tiende a aumentar, podrá fijarse en 5ºC la temperatura límite inferior para fabricar y extender la gravaemulsión en el caso de emulsiones aniónicas.

Tras la compactación y el curado, la capa de gravaemulsión presenta una elevada resistencia a compresión y a deformación bajo cargas lentas. Ello se debe a su granulometría continua, de elevado rozamiento interno. La presencia del mortero bituminoso le confiere una buena resistencia a tracción y flexión, así como una buena impermeabilidad. El módulo de elasticidad varía entre 2500 y 4000 MPa. Entre sus ventajas destaca su flexibilidad, buena compatibilidad con las capas granulares o bituminosas y su sencillez de fabricación y puesta en obra.

Dejo a continuación una publicación de la Asociación Técnica de Emulsiones Bituminosas (ATEB) sobre la gravaemulsión.

Descargar (PDF, 1.69MB)

Si bien está derogado el artículo 514 del PG3, os lo dejo a continuación por su interés.

Descargar (PDF, 269KB)

Referencias:

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.