Contención de aguas mediante ataguías

Figura 1. Ataguía, Montgomery Point Lock and Dam (Estados Unidos). https://en.wikipedia.org/wiki/File:Dam_Coffer.jpg

Una ataguía (cofferdam) es una estructura, generalmente provisional, destinada contener el terreno e impedir, reducir o desviar la entrada de agua en una excavación. Se trata de construir un recinto estanco y seco temporal muy empleado, por ejemplo, en la ejecución de pilas de puentes, muelles, presas, y en cualquier otro lugar donde se quiera trabajar en seco.

Son obras que reciben el empuje de las tierras, el hidrostático y las fuerzas dinámicas debidas a corrientes u oleaje, en su caso, y que deben satisfacer los requisitos de estabilidad, impermeabilidad y estanqueidad. Por tanto, resulta inútil emplear ataguías sobre terrenos muy permeables, pues de nada serviría la impermeabilidad de las paredes si por el fondo se filtran caudales imposibles de agotar. En estos casos, sería necesario un dragado previo hasta alcanzar el sustrato impermeable.

Además, si la ataguía se utiliza en obras fluviales, hay que considerar los problemas hidráulicos como la erosión del lecho de la corriente y el desbordamiento. No en balde, si la ataguía empieza a tener dimensiones importantes debe diseñarse y construirse con todas las garantías exigibles a una presa, aunque sea provisional.

El trazado de la ataguía con frecuencia termina formando un recinto cerrado, caso muy habitual en el caso de la construcción de cimientos de puentes en los ríos. Sin embargo, pueden ser construcciones no cerradas, como es el caso de derivación de un río para construir una presa. En este caso de ataguías abiertas, no tiene sentido que su altura supere un nivel superior al de las orillas, aunque sí quedar por encima de la crecida ordinaria del río. La altura debe quedar por encima de las pleamares en obras marítimas.

La construcción de estos recintos estancos es compleja, pues se debe colocar en medio del cauce de un río o en el mar, en condiciones ambientales a veces muy duras. Es por ello difícil mantener las tolerancias constructivas, desviándose las dimensiones previstas en proyecto. Además, hay que tener presente que, en caso de desmontaje, se deben considerar los esfuerzos sobre la obra construida. Es por ello que muchas veces los recintos se quedan de forma permanente, por ejemplo en el caso de la construcción del cimiento de un puente.

Figura 2. Ataguía de tablestacas para la construcción de la cimentación de un puente. https://www.flickr.com/photos/vtrans/19114472205

Una ataguía de interés es la construida para el desvío y cierre del cauce de un río para la construcción de una presa. Realmente son presas cuya vida útil es muy reducida (de 1 a 4 años, según los casos), con fugas de agua o filtraciones admitidas mayores que las presas definitivas y con materiales empleados que, dada la cortedad de su vida útil, pueden ser de menor calidad. Es frecuente también colocar una contraataguía aguas abajo de la presa para contener la lámina de agua que pudiera llegarse a formar agua abajo, a la salida del túnel de desvío; aunque podría no ser necesaria cuando la pendiente del cauce es suficiente para que el agua siga con una cota máxima de lámina inferior al nivel del cauce en el lugar de trabajo.

Sea cual sea el tipo de ataguía a utilizar, resulta muy importante realizar un cálculo del gradiente hidráulico que se forma por la líneas de filtración del agua por el material permeable. Si el gradiente hidráulico, es decir, el caudal de agua dividido por la longitud de la línea de filtración excede a la unidad, se puede producir inestabilidad y el efecto de “arenas movedizas” del sifonamiento. Estas filtraciones se deben recoger en un sumidero para ser bombeadas al exterior del recinto excavado. El bombeo previsto para agotar el agua del recinto debe ser muy superiores a los previstos, pues son frecuentes las averías de las bombas, así como entradas de agua imprevistas.

La correcta elección del tipo adecuado de ataguía depende de aspectos tales como de la profundidad del agua, profundidad y tamaño de la excavación, tipo de terreno, velocidad de la corriente de agua, existencia de mareas o de elementos flotantes, condiciones locales y los medios que puedan utilizarse en función de la importancia de la obra a proteger. Galabrú (2004) clasifica las ataguías en los siguientes tipos: ataguías de tierra, ataguías mixtas de tierra y tablestacas, ataguías de escollera y gaviones, ataguías de tablestacas metálicas (cortinas simples, recintos y células autoestables), ataguías de hormigón (gravedad o bóveda, paredes moldeadas en el suelo e inyecciones, pantallas de pilotes y cajones hincados con aire comprimido o sin él), ataguías por congelación de suelos y casos especiales (sobres suelo rocoso o en cursos de aguas con corriente intensa).

Es más, los procedimientos de construcción de cimentaciones mediante cajones indios o mediante cajones de aire comprimido podrían considerarse, en cierto modo, como ataguías, puesto que serían sistemas que permiten trabajar en seco; aunque en estos casos el medio auxiliar no es provisional, sino que queda formando parte de la cimentación, tal y como pasa en el caso de los puentes cimentados bajo el agua.

Los romanos ya empleaban las ataguías para la construcción de la cimentación de los puentes, tal y como podemos ver en este pequeño vídeo de Structuralia:

Aquí tenéis una animación de cómo se construyó el Puente de Carlos, en Praga, puente que se terminó en 1402. Fijarse bien en cómo se ejecutaba la ataguía con una doble pared de tablestacas de madera rellenas de tierra.

Os dejo algún vídeo explicativo sobre ataguías y recintos cerrados (cofferdams).

Recientemente se han utilizado ataguías que se llenan, se despliegan y se estabilizan de forma rápida, tal y como se puede observar en los siguientes vídeos:

REFERENCIAS:

  • GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ranking de investigadores en ingeniería civil 2020

https://labibliotecainforma.wordpress.com/

Hoy día se hacen listas de todo tipo, especialmente en las redes sociales. Se catalogan a las universidades, a las empresas, a las personas. También se hace lo mismo con los investigadores. Son listas en las que los criterios de evaluación son a veces discutibles, especialmente en el ámbito científico.

En un artículo anterior discutí brevemente el índice h como indicador de la calidad investigadora de un científico. Basándose en este índice, viene siendo habitual que a principios de cada año se publiquen listados sobre los “influencers” en investigación científica en España. Una de las páginas más famosas es http://indice-h.webcindario.com/

Lo interesante de esta página es su metodología de evaluación, que se puede consultar aquí:  http://indice-h.webcindario.com/P+F.html. Se trata de una página elaborada por el Grupo para la Difusión del Índice h (DIH), que intenta dar a conocer a los científicos con mayor índice h de entre los que trabajan en España. Según sus autores, este índice aumenta con la calidad de la investigación que se publica y, por tanto, permite establecer rankings de los mejores investigadores. La información la elaboran de una base de datos de gran prestigio (ISI Web of Knowledge).

Pues bien, en el ámbito de la ingeniería civil, los investigadores con mayor índice h en España, a fecha de hoy, son los siguientes (se limita el número de investigadores a aquellos que tengan un valor mínimo de h que sea la mitad del que encabeza la lista):

 

Drenajes horizontales instalados mediante zanjadoras

Figura 1. Zanjadora instalando dren horizontal. https://www.jedipumps.com/dewatering.htm

Si se quiere rebajar el nivel freático en la excavación de un cimiento, sótano de edificio, en obras lineales de poca profundidad como líneas ferroviarias o carreteras, o en zanjas longitudinales para abastecimiento de agua potable, alcantarillado, líneas eléctricas, gaseoductos, oleoductos, etc., se puede realizar mediante la colocación de un dren horizontal (horizontal well dewatering) instalado mediante una zanjadora (dewatering trenchers) (Figura 1).

A diferencia del drenaje desde pozos filtrantes, el drenaje se instala en posición horizontal, justo debajo de la zona a drenar (Figura 2). Los drenes horizontales suelen ser muy efectivos en terrenos granulares.

Figura 2. Esquema del drenaje horizontal y del bombeo. https://www.groundwatereng.com/dewatering-techniques/horizontal-wells

La instalación de este sistema es relativamente sencilla. La zanjadora abre una zanja de unos 30 cm de ancho e instala en primer lugar un tubo sin perforar seguido de un tubo perforado, normalmente de material plástico (Figura 3). El dren se recubre de un geotextil para evitar la entrada de limos y arenas y posteriormente se rellena la zanja. En el caso de que el terreno sea de baja permeabilidad, la zanja se puede rellenar con grava filtrante en lugar del terreno original.

La longitud del dren la determina su diámetro, la naturaleza del terreno y el nivel freático. Normalmente las longitudes de drenaje son de unos 50 m, aunque pueden llegar a 100 m, y los diámetros entre 80 y 100 mm. El dren horizontal se suele instalar a unos 6-7 m de profundidad, pues a mayores distancias el coste se incremente significativamente. Tras instalar la tubería, se conecta la parte del tubo sin perforar a una bomba. Mientras se bombea agua, se puede trabajar en seco.

Figura 3. Esquema de la apertura de zanja para la instalación del dren horizontal. https://www.inter-drain.com/index.php/en/applications/horizontal-dewatering

Además de la facilidad en la instalación del drenaje, una ventaja del sistema es que la maquinaria de la obra puede circular por encima sin restricciones, al tratarse de un drenaje subterráneo. Además, se reduce hasta en un 30% el volumen necesario de agua a extraer, con la consiguiente reducción en el consumo de combustible o electricidad.

Os paso unos vídeos al respecto. Espero que os sean útiles.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Special Issue “Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 2.468 (2018)

Special Issue “Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; life-cycle assessment; decision-making; sustainability; concrete structures; CO2 emissions; construction management

Guest Editor

Dr. Ignacio J. Navarro
Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multicriteria decision making; reliability-based maintenance optimization; sustainability of infrastructures; social impacts of infrastructures

Special Issue Information

Dear Colleagues,

The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

El embrague

Embrague acoplado/desacoplado. Wikipedia.

El embrague es un sistema que permite tanto transmitir como interrumpir la transmisión de una energía mecánica a su acción final de manera voluntaria. En un automóvil, por ejemplo, permite al conductor controlar la transmisión del par motor desde el motor hacia las ruedas.

Os dejo a continuación unos vídeos, que espero os sean útil para entender su funcionamiento.

https://www.youtube.com/watch?v=RVdkZu7BWp0

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Drenaje horizontal con pozos radiales

Figura 1. Pozo Ranney. https://infogram.com/obras-de-toma-1g0n2owd8340p4y

Los pozos radiales o de drenes horizontales consisten en diversos tubos perforados horizontales, que se disponen desde un pozo revestido de hormigón, de un diámetro suficiente para permitir el acceso de varios operarios (Figura 1). El objetivo es extender el radio efectivo del pozo para aumentar el caudal específico de drenaje. De hecho, el pozo con drenes horizontales se comporta, considerando aparte las pérdidas de carga interiores, como un pozo vertical de gran radio.

Los pozos horizontales son útiles en suelos donde no se pueden utilizar zanjas drenantes, pozos profundos o wellpoints, no siendo recomendable en suelos estratificados. Es típico en excavaciones profundas a través de terrenos permeables (aluviales y zonas muy karstificadas), hasta llegar a una capa impermeable.

El agua fluye dentro del pozo desde los tubos perforados horizontales, bombeándose el agua al exterior. Los drenes se pueden perforar con cierta inclinación hacia arriba para penetrar en más de un horizonte de acuífero. Estos drenes se colocan mediante martillos neumáticos o por inyección. La longitud de los drenes varía en función del área a drenar, pudiendo variar de 30 a 100 m de longitud.

Figura 2. Esquema de pozo radial. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Según el procedimiento constructivo para instalar los drenes horizontales, se denominan pozos Ranney, Fehlmann o Preussag:

  • Pozos Ranney: las perforaciones radiales se realizan con los mismos tubos filtrantes definitivos, quedando directamente instalados. Son tubos de acero, de paredes gruesas y ranuras alargadas en sentido longitudinal.
  • Pozos Fehlmann: utiliza tubos de perforación, de unos 250-300 mm de diámetro, que se retiran después de la colocación de los filtros, pudiéndose utilizar de nuevo. De esta forma se puede elegir el material y abertura de las ranuras de los tubos filtrantes según las propiedades químicas del agua y con la granulometría y permeabilidad del terreno.
  • Pozos Preussag: emplea tubos de perforación similares al sistema Fehlmann, colocando después prefiltros de arena. A veces la colocación de estos prefiltros puede ser complicada y difícilmente adaptable a posibles variaciones de la granulometría a lo largo del dren.

El procedimiento constructivo presenta dos fases características, la construcción del pozo central e instalación de los drenes horizontales. El pozo central se construye hincando cilindros de hormigón, de unos 3-4 m de diámetro, a medida que se excava. Este cajón se introduce en el suelo por el sistema de “cajones indios“, por excavación interior sin achique previo. Cuando la profundidad del pozo alcanza la cota prevista, se hormigona el fondo construyendo un tapón bajo el agua.

En el caso del sistema Fehlmann, los colectores se hincan con un equipo de empuje instalado sobre una plataforma en el fondo del pozo. Para facilitarla se coloca una punta reforzada, denominada piloto, que desagrega el terreno facilitando el avance. En el interior de estos tubos se colocan los tubos filtrantes, de forma que los tubos estancos se retiran para volverse a utilizar, quedan abandonado en el terreno el piloto. Este tubo con punta reforzada puede comunicar con el interior del pozo central por medio de una tubería auxiliar llamada tubería de desarenado. La presión del agua sobre los agujeros del azuche crea una corriente de agua a gran velocidad por el interior de la tubería de desarenado cuando se abre una válvula en el interior del pozo. Posteriormente durante el servicio de la captación, la cámara sirve como elemento receptor y depósito de los caudales extraídos y para facilitar las maniobras de cierre y apertura de cada dren.

Los rendimientos para construir un pozo de este tipo pueden ser de 5-7 m por semana para el pozo central y de 8-10 m diarios para la penetración de los tubos horizontales.

Figura 3. Hinca de tubería en sistema Fehlmann. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Destacan las siguientes ventajas de los pozos radiales: permiten, para igual velocidad de flujo, caudales superiores a los pozos ordinarios; se puede regular cada colector por separado, pudiendo cerrarlos para el mantenimiento; baja velocidad de entrada del agua a los drenes (hasta 30 veces menor que en los pozos ordinarios), por lo que disminuyen los arrastres; no le afectan tanto las fluctuaciones del nivel freático como a los pozos ordinarios; además, como los drenes permanecen siempre sumergidos, se reducen los fenómenos de corrosión e incrustaciones. Sin embargo, es necesaria una fuerte inversión inicial y un alto grado de especialización en la construcción, con acuíferos no demasiado profundos (aunque hay realizaciones de hasta 70 m). Además, el hincado de los drenes limita su uso a acuíferos granulares poco compactos de granulometría variable.

El rendimiento hidráulico en estos pozos supera de 45 a 60% la producción de un pozo ordinario de diámetro similar, pudiendo llegar, en capas freáticas, a caudales de 200 a 400 l/s. Si los pozos están cerca de un río, el caudal sube de 750 a 1150 l/s.

Se puede estimar el caudal Q (m3/s) de un pozo radial en régimen normal de servicio en función de del radio del pozo r (m), de la altura del agua sobre la solera en régimen normal h (m) y del coeficiente de permeabilidad del terreno k (m/s):

De la ecuación se observa que el caudal depende del radio y de la altura del agua sobre la solera y como no se puede hacer mucho para aumentar esta última, debe actuarse sobre el radio, que puede ser grande.

Os dejo varios vídeos explicativos de este tipo de pozos radiales.

Os dejo a continuación un artículo donde se explica cómo se ejecutó un pozo Ranney, en este caso para aumentar el abastecimiento de agua en Málaga.

Descargar (PDF, 6.64MB)

REFERENCIAS:

  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Balance personal de 2019 en el ámbito docente e investigador

Como suele ser habitual, el 31 de diciembre es una buena fecha para reflexionar sobre lo que ha sido este año. No vamos a hablar de década, pues según la Real Academia de la Lengua, la próxima empieza con el año 2021. En este año me concedieron la Medalla XXV años de la Universitat Politècnica de València, por acuerdo del Consejo de Gobierno, lo cual supuso un orgullo para mí, siendo un indicador o aviso de que el tiempo pasa inexorable.

Desde el punto de vista de la ingeniería, me impactó la tragedia de Julen en Totalán y la extraordinaria proeza de nuestros compañeros para intentar rescatar al niño con vida. En septiembre tuve la ocasión de conocer a Ángel García y Mauricio Delgado con motivo de la conferencia impartida el pasado martes 24 de septiembre en la Escuela de Ingeniería de Caminos de Valencia. Ello dio pie a una artículo de opinión que escribí en prensa y que tuvo una amplia repercusión. Trataba sobre cómo afrontar emergencias y las lecciones aprendidas de Totalán.

Otro de los hitos de este año, sin duda, fue la malograda cumbre del clima organizada por Chile en Madrid. Tampoco habría que olvidar los problemas en internos e internacionales, pero eso ya es harina de otro costal. Sin embargo, hoy toca realizar el balance del 2019 y destacar aquellos logros que hacen que haya merecido la pena el paso de este año. Como siempre, me centraré en el ámbito docente e investigador.

En relación con las publicaciones de artículos científicos en revistas indexadas, 2019 ha sido un buen año. He publicado 12 artículos internacionales en revistas indexadas en el JCR, de las cuales 5 son del primer cuartil (3 del primer decil) y 5 del segundo cuartil, lo cual no está nada mal. Pero hoy ya tenemos un artículo de Engineering Structures y otro del Journal of Cleaner Production aceptados para su publicación en 2020, ambas revistas del primer cuartil. Además, hay otros 3 artículos publicados este año en revistas internacionales. Asimismo, destaco mi contribución como editor invitado en dos números especiales en revistas indexadas: en la revista Sustainability (Q2), Special Issue “Sustainable Construction II”, junto con el profesor José V. Martí; y en la revista Mathematics (Q1), Special Issue “Optimization for Decision Making II”, junto con el profesor José María Moreno. En ambos casos, son números especiales que ampliaron la edición anterior debido al interés de los temas. Todo esto no hubiera sido posible sin mis estudiantes de doctorando y colegas del grupo de investigación. El resultado ha sido que, a fecha de hoy, mi índice Hirsch de producción científica, según la Web of Science, es h=23, mientras que ese mismo índice en Google Académico es h=37.

También me gustaría destacar que este año me han ofrecido ser editor asociado en dos revistas internacionales indexadas, Structure & Infrastructure Engineering y también Advances in Civil Engineering. Además, me he incorporado como miembro del comité editorial de Mathematics y de Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF. Con esto ya son 7 las revistas indexadas en el JCR donde soy editor asociado o pertenezco al comité editorial, a parte de otras 6 internacionales.

En cuanto a los congresos, cabe destacar por su singularidad el simposi0  GeoRoads19, al cual fui invitado y que supuso el primer evento online de difusión de la ingeniería civil en el ámbito de las carreteras. También participé durante los días 23 a 25 de octubre en la Universidad de Alicante en el congreso internacional CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering). También ha destacado este año la asistencia a congresos docentes, a los cuales asistimos asiduamente para intentar mejorar este aspecto tan importante para los profesores. Cabe destacar también mi pertenencia a distintos comités científicos de congresos internacionales que se van a celebrar el año que viene, como son los del International Conference on High Performance and Optimum Design of Structures and Materials HPSM-OPTI 2020, The Seventh International Symposium on Life-Cycle Civil Engineering IALCCE 2020 y el VIII Congreso Internacional de Estructuras ACHE.

En cuanto a proyectos de investigación competitivos, este año ha sido el segundo del proyecto DIMALIFE  (Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos, BIA2017-85098-R), el cual tiene una duración prevista de tres anualidades y cuenta con la financiación necesaria para un contrato predoctoral FPI. Este es un proyecto donde soy investigador principal. Además, también continuamos con el proyecto RTC-2017-6148-7-AR (Sistema integral de mantenimiento eficiente de pavimentos urbanos) donde participo como investigador. En cuanto a tesis doctorales, se han leído las de Jorge Salas y la de Ignacio Navarro, estando ya entregada para su lectura la de Vicent Penadés. También es destacable la concesión del Premio Extraordinario de la UPV a la tesis doctoral de Leonardo Sierra, leída en el 2017. Hoy nuestro grupo de investigación ha crecido con presencia internacional, un doctorando de China, otro de Irán y una estancia de investigación de un estudiante de doctorado de Suecia.

Tribunal de la tesis doctoral de Jorge Salas, de la que fui director

En el ámbito docente, me gustaría destacar el curso MOOC (gratuito, masivo y en línea) denominado “Introducción a los encofrados y las cimbras en obra civil y edificación“, que este mismo año ya va por la cuarta edición y ha tenido más de 7000 alumnos inscritos. Todo un éxito inesperado que espero poder repetir este próximo año con otros temas.

En cuanto a premios recibidos, destaco el Premio Docencia en Red 2018/2019, recibido en el contexto del Plan de Docencia en Red de la Universitat Politècnica de València al mejor curso MOOC de la UPV. Otro de los hitos de este año ha sido la colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación. El curso se desarrolló en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Está prevista su segunda edición en el mes de enero del 2020.

Tuve la ocasión de presidir el tribunal de la tesis doctoral de Andrés Coves Campos que se defendió septiembre en la Universidad de Alicante, titulada “Análisis de la durabilidad de la señalización vial horizontal atendiendo a su composición y posicionamiento en la calzada de carreteras secundarias en climas semiáridos cálidos”, dirigida por Salvador Ivorra Chorro y por Esther Perales Romero.

En compañía del equipo directivo de la Escuela de Ingeniería en Valparaíso (Chile)

En el mes de mayo, impartí varias conferencias en Chile sobre optimización y toma de decisiones en puentes e infraestructuras viarias, invitado por la Pontificia Universidad Católica de Valparaíso y su Escuela de Ingeniería en Construcción. Estas conferencias, que tuvieron lugar en Valparaíso el 22 de mayo y en Santiago el 23 de mayo, se complementaron con varias reuniones con diversos profesores y con representantes del Ministerio de Obras Públicas de Chile. En cuanto a la difusión de la ingeniería, destaca una entrevista que me realizaron en Chile con motivo de mi estancia en mayo.

Me gustaría destacar las visitas de investigación recibidas por parte de profesores de prestigio internacional como ha sido el caso del profesor Gizo Partskhaladze, (Georgia) que nos ha visitado ya por cuarta vez. También hemos recibido al profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, en Brasil.

Por último, en cuanto a las redes sociales, este artículo es el número 191 de los publicados en 2019, lo que supone una media de casi 16 artículos por mes. Es un esfuerzo muy importante, pero es la base de mis clases y supone una labor de divulgación de la ingeniería civil y la edificación que considero fundamental. El blog ha recibido este año más de novecientas mil visitas, lo cual empiezan a ser cifras de vértigo. El contenido del blog normalmente se redirige a las distintas redes sociales, como Twitter, Facebook o Linkedin.

En definitiva, 2019 se puede calificar de un buen año en estos aspectos universitarios. Espero que 2020 siga siendo al menos, la mitad de bueno que éste. A continuación paso un listado de alguna de las cosas que he podido terminar este año.

MEDIOS DE PRENSA:

 

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. DIMALIFE. [Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets]. BIA2017-85098-R.

 

ARTÍCULOS INDEXADOS EN EL JCR:

  1. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791
  2. YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9, 3253; DOI:10.3390/app9163253
  3. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  4. MARTÍN, R.; YEPES, V. (2019). The concept of landscape within marinas: Basis for consideration in the management. Ocean & Coastal Management, 179: 104815. DOI:10.1016/j.ocecoaman.2019.104815
  5. PARTSKHALADZE, G.; MSHVENIERADZE, I.; MEDZMARIASHVILI, E.; CHAVLESHVILI, G.; YEPES, V.; ALCALÁ, J. (2019). Buckling Analysis and Stability of Compressed Low Carbon Steel Rods in Elasto-Plastic Region of Material. Advances in Civil Engineering, 2019: 7601260. DOI:10.1155/2019/7601260
  6. BOSCARDIN, J. T.; YEPES, V.; KRIPKA, M. (2019). Optimization of reinforced concrete building frames with automated grouping of columns. Automation in Construction, 104: 331-340. DOI:10.1016/j.autcon.2019.04.024
  7. SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191
  8. MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; INSA-FRANCO, R.; YEPES, V. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037
  9. KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI: 10.3390/su11051307
  10. SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083
  11. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  12. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001

OTROS ARTÍCULOS:

  1. YEPES, V. (2019). La calidad visual a través del color. Cuadernos de Diseño en la Obra Pública, 11:4-10. ISSN: 2013-2603.
  2. PENADÉS-PLÀ, V.; YEPES, V.; KRIPKA, M. (2019). Optimización de puentes pretensados mediante la metodología de la superficie de respuesta. Revista CIATEC-UPF, 11(2):22-35. https://doi.org/10.5335/ciatec.v11i2.9159
  3. YEPES, V.; PÉREZ-LÓPEZ, E.; GARCÍA-SEGURA, T.; ALCALÁ, J. (2019). Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges. International Journal of Computational Methods and Experimental Measurements, 7(2):118-129. DOI: 10.2495/CMEM-V7-N2-118-129

CONGRESOS:

  1. KRIPKA, M.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Otimização simultânea do custo e da constructibilidade de pilares em concreto armado. XL CILAMCE Ibero-Latin American Congress on Computational Methods in Engineering, 11-14 nov 2019, Natal/RN, Brazil.
  2. ATA-ALI, N.; MARTÍNEZ-MUÑOZ, D.; YEPES, V.;  (2019). Case study of the evaluation of the life cycle of a facade using the flip teaching method. 12th annual International Conference of Education, Research and Innovation ICERI 2019, 11-13 nov 2019, Sevilla, Spain.
  3. MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V.; YEPES, V. (2019). Application of flipped learning to the life cycle assessment of a composite pedestrian bridge. 12th annual International Conference of Education, Research and Innovation ICERI 2019, 11-13 nov 2019, Sevilla, Spain.
  4. MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.
  5. PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.
  6. YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.
  7. YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.
  8. YEPES, V. (2019). Optimización aplicada a la gestión sostenible del mantenimiento de las carreteras. GeoRoads 19, 11-12 de abril, Guadalajara, Jalisco, México.
  9. ATA-ALI, N.; MARTÍ, J.V.; YEPES, V.; PONS, J.J. (2019). Case study of the life cycle assessment of a ventilated façade in a certain climatic zone of Spain in a postgraduate course.  13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1833-1841. ISBN: 978-84-09-08619-1
  10. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V.; LÓPEZ-DESFILÍS, V.J. (2019). Life cycle assessment of composite footbridges in a postgraduate optimization course through a case study. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1803-1813. ISBN: 978-84-09-08619-1
  11. PONS, J.J.; YEPES, V.; SALVADOR-ZURIAGA, P.; INSA-FRANCO, R. (2019). Life cycle assessment for sustainable design of railway infrastructures. A case study application in education.  13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1742-1749. ISBN: 978-84-09-08619-1
  12. YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

VÍDEOS EDUCATIVOS (POLIMEDIAS):

  1. Concepto y clasificación de cimentaciones. 10 minutos, 13 segundos.
  2. Cimentaciones superficiales. 9 minutos, 44 segundos.
  3. Zapatas aisladas. 8 minutos, 33 segundos.
  4. Concepto y clasificación de pilotes. 10 minutos, 7 segundos.
  5. Pilotes metálicos. 9 minutos, 39 segundos.
  6. Pilotes prefabricados de hormigón armado. 9 minutos, 31 segundos.
  7. Hinca dinámica de pilotes y tablestacas. 9 minutos, 9 segundos.
  8. Hinca de pilotes y tablestacas por vibración. 7 minutos, 40 segundos.
  9. Hinca de pilotes y tablestacas por presión y procedimientos especiales. 9 minutos, 55 segundos.

La caja de cambios

Figura. Caja de cambios. https://www.flickr.com/photos/donmeliton/3568084166/

En los vehículos, la caja de cambios o caja de velocidades  forma parte de la transmisión del automóvil, y es el elemento encargado de obtener en las ruedas el par motor suficiente para poner en movimiento el vehículo desde parado, y una vez en marcha obtener un par suficiente en ellas para vencer las resistencias al avance, fundamentalmente las derivadas del perfil aerodinámico, de rozamiento con la rodadura y de pendiente en ascenso.  En general es un mecanismo que gana en par motor a expensas de la disminución de la velocidad de rotación y utiliza para ello diferentes etapas de reducción con engranajes que pueden ser permutadas a voluntad del conductor o bien de manera automática. La cantidad de etapas de cambio dependerá del campo de utilización del automóvil y de la elasticidad del motor.

Si no existiera forma de variar la relación de determinado giro entre el motor y las ruedas, el vehículo, a un régimen del motor, marcharía siempre a la misma velocidad debido a la relación constante de transmisión entre los engranajes desde el motor hasta la rodadura. Precisamente lo que hace una caja de cambios es engranar dos piñones de distinto número de dientes para lograr una relaciones adecuadas a la potencia del motor, su peso, sus neumáticos y la velocidad máxima deseada.

Os dejamos unos vídeos donde podremos ver una explicación sencilla sobre el funcionamiento de un cambio manual y de su función en un vehículo. Espero que os sean útiles.

https://www.youtube.com/watch?v=XfGE8shOkXc

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

Motores eléctricos

Rotor, estátor y ventilador de un motor eléctrico. Wikipedia.

El empleo de la energía eléctrica para el equipo de construcción, depende del tipo de trabajos, de las necesidades de movilidad y de la disponibilidad de electricidad o posibilidades de generarla. Cuando su uso es posible y los trabajos están concentrados en un solo sitio, la potencia eléctrica puede ser la más económica posible.

Un motor eléctrico transforma energía eléctrica en mecánica por acción de un campo electromagnético (lo contrario sería un generador). Los motores eléctricos se componen por dos partes fundamentales: el rotor que es la parte que gira, y el estator, que es la fija, no se mueve y está unida a la carcasa. Además cuentan con:

 

  1.  Un inductor, formado por uno o varios imanes o bobinas por las que pasa la corriente y que genera el campo magnético. Si la corriente es continua, se creará un electroimán de polaridad fija y, si es alterna, de polaridad oscilante.
  2. Un inducido, formado por una o varias bobinas situadas dentro del campo magnético que crea el inductor. Normalmente el inductor se coloca en el estator y el inducido en el rotor.
  3. El colector, que es el elemento que recoge la corriente que pasará a las bobinas.
  4. Las escobillas, que transmiten la corriente al colector, están apoyadas sobre él y evitan que el cable se enrede al girar.

Los motores eléctricos, si pueden utilizarse, presentan una serie de ventajas:

  • Facilidad del arranque, sobre todo en tiempo frío.
  • Pocas incidencias y averías.
  • Entretenimiento mínimo.
  • Fácil investigación y reparación de averías.
  • Bajo costo, lo cual permite tener otro motor de repuesto.
  • Economía de funcionamiento.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Compresores de lóbulos o tipo Roots

Figura 1. Compresor Root de dos lóbulos. http://dopedia.blogspot.com/2014/09/compresor-de-lobulos-roots-neumatica.html

Formados por dos rotores iguales que habitualmente tienen forma de ocho, aunque existen rotores de tres lóbulos. En la Figura 1 se representa un compresor Root de dos lóbulos, de gran aplicación como sobre alimentador de los motores diésel o de los sopladores de gases a presión moderada. Como el volumen de las cámaras de trabajo no disminuye durante el giro de los rotores, no existe compresión interna, por lo que sólo se utilizan para relaciones de compresión menores de 2.

Su rendimiento no es muy alto, contando además con la desventaja de que el aire se calienta mucho y su caudal no el muy elevado. En cambio presentan la ventaja de prescindir del movimiento alternativo. Se fabrica normalmente para presiones inferiores a 2 bares, por lo que su utilidad en los equipos principales de aire comprimido es muy limitada. Se consideran, por tanto, más soplantes que compresores.

La holgura presente entre los dos rotores y la que queda entre estos y el estator, hacen innecesaria la lubricación. Se emplean usualmente para la impulsión neumática de materiales a granel, en “camiones-silo” o en fábricas de cemento u otras instalaciones industriales.

Os dejo algún vídeo de su funcionamiento.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.