Drenaje de excavaciones mediante bombeo desde pozos filtrantes profundos

Figura 1. https://www.griffindewatering.com/construction-dewatering/deep-well-system/

Una excavación bajo nivel freático se puede realizar mediante un sistema de bombeo desde pozos filtrantes. Se trata de pozos profundos (deep wells), separados en función de su radio de acción, cada uno de los cuales tiene su propia bomba sumergible en el fondo de la perforación con salida a la superficie mediante una tubería.

La potencia y el reducido tamaño de algunas electrobombas sumergidas permite su colocación en el fondo de pozos y extraer con ellas el agua por encima de la cota de excavación, con una limitación de altura de bombeo que dependerá de la potencia del motor. Si se utilizan bombas centrífugas, hay que tener presente que la aspiración práctica suele ser de unos 5 m, por lo que si se busca una mayor depresión con estas bombas, se deberían escalonar. Sin embargo, también se pueden utilizar bombas eyectoras. De esta forma se consigue un descenso temporal del nivel freático con la consiguiente desecación del terreno. El nivel freático deprimido debe situarse entre 60 cm o, preferentemente, a 150 cm por debajo del fondo de la excavación. Se disponen pozos en el perímetro de la zona a excavar.

Figura 2. Pozos filtrantes en sótano en construcción de viviendas en Valencia. Imagen: V. Yepes (2020).

Se llaman pozos filtrantes pues disponen de una capa de material filtrante de granulometría adecuada para evitar el lavado de finos. Actualmente existen tubos comerciales de plástico ranurado que llevan incorporado en el exterior un filtro prefabricado de arena pegada con resina. Dentro del tubo dren se mete una tubería de aspiración con una válvula de cierre en su parte inferior. Cada uno de estos tubos dren se reúnen en la superficie con una tubería colectora que llega hasta la bomba de aspiración (Figura 1). De este modo, el nivel freático queda deprimido alrededor del pozo, hasta alcanzar un equilibrio entre el caudal de agua achicado por las bombas y la que se introduce en cada pozo debido a la permeabilidad del terreno (Figura 3). Normalmente se dispone de una llave de cierre en cada pozo para desconectar de la red los pozos que se consideren oportunos.

Figura 3. Agotamiento profundo del nivel freático mediante un pozo filtrante. Elaboración propia basado en Pérez Valcárcel (2004).

Por otra parte, un pozo profundo permite controlar las líneas de flujo, especialmente en terrenos arenosos y limosos susceptibles de tubificación, tal y como se observa en la Figura 4.

Figura 4. Efecto en las líneas de flujo por efecto de un pozo profundo. www.soletanche-bachy.com

La profundidad del pozo no está limitada teóricamente, pues basta dar al agua la presión necesaria para elevarla hasta la superficie. Se suele dejar un margen de perforación en material permeable por debajo del freático mínimo. Es un sistema de drenaje especialmente útil cuando se necesita un gran descenso del nivel de agua y particularmente adecuado en terrenos que aumentan su permeabilidad con la profundidad, llegando a terrenos granulares. Sirven para terrenos con alta permeabilidad y grandes rebajamientos (k > 10-5 m/s). También son útiles cuando hay que rebajar el nivel freático en terrenos con intercalaciones de gravas limpias u otros estratos muy permeables, que aportan caudales importantes.

La acción de estas bombas sumergidas a profundidades variables, entre 10 y 30 m, pudiéndose llegar a los 80 m en casos excepcionales. Con acuíferos de gran potencia bajo la cota de máxima excavación, y sin barreras impermeables al flujo horizontal, las perforaciones deberían alcanzar entre 1,5 y 2 veces la profundidad de la excavación. Hasta 25-30 m, facilita el bombeo de caudales de unos 300 l/min, en radios de acción de unos 20 m.

Existe una tendencia actual a reducir el diámetro del pozo, pues reduce su coste de ejecución. Ello nos lleva a pozos de baja capacidad (low capacity wells) que son más eficaces. En efecto, como el caudal de un pozo es proporcional al logaritmo neperiano de su radio, duplicar el diámetro del pozo solo nos lleva a incrementar un 10% el caudal.

Figura 5. Sección transversal de un pozo filtrante. Elaboración propia basado en García Valcarce et al. (1995).

La ejecución de este drenaje profundo pasa por la instalación, durante la perforación del pozo, de un tubo recubierto por una camisa provisional de acero que se retira posteriormente. Al mismo tiempo que se retira la camisa, se rellena el hueco por un filtro formado con arena y grava con la granulometría adecuada. Este tubo está ranurado a partir de una determinada profundidad y se encuentra recubierto por varios tamices (Figura 5). Por último, se bombea el agua sucia y se instala la bomba sumergible.

En definitiva, el procedimiento constructivo del sistema de pozos drenantes sería el siguiente:

 

  1. Se introduce a presión, hinca o vibración, una tubería de unos 400-600 mm de diámetro. Los tramos se unen mediante roscado a medida que avanza la perforación hasta llegar a la cota prevista.
  2. Se extrae el terreno y se vacía el interior del tubo provisional.
  3. Se introduce por el hueco un tubo filtrante de 150-300 mm de diámetro. Cerrado en su base y perforado con orificios de 1 a 2 cm hasta cierta altura; en esa altura, el tubo va envuelto en un filtro formado por una o varias mallas de latón, cobre o estaño, que impiden la colmatación de los orificios durante el bombeo.
  4. La bomba se deposita en el fondo.
  5. Se rellena el espacio entre el tubo filtrante y el tubo provisional con un material granular que facilita la entrada del agua.
  6. Se retira el tubo provisional con el mismo gato o martinete de hinca.

En la Figura 4 se presenta una sección transversal típica de un pozo filtrante, aunque pueden existir múltiples variantes. Suelen emplearse tuberías de PVC, que al menos ofrezcan una resistencia a la presión de 8 a 10 atmósferas, para evitar que la tubería colapse durante la colocación del empaque, desarrollo o bombeo del pozo. Las tuberías metálicas no suelen utilizarse por su mayor coste. Los pozos filtrantes presentan un diámetro entre 250 y 450 mm, incluso de 600 mm, dependiendo del tamaño de las bombas sumergibles, con filtros de una longitud entre 5 y 25 m.

Por razones económicas, se recomienda estandarizar las dimensiones de perforación a 250 mm (para tuberías de 140 mm) o a 300 mm (para tuberías de 225 mm), pues diámetros mayores requieren perforadoras de mayor tonelaje. Se debe comprobar que el espesor de la capa material permeable, bajo el que debe rebajarse el nivel freático, sea suficiente para garantizar la inmersión eficaz del filtro y de la bomba.

Los pozos se disponen en batería, a una distancia entre ellos que garantice que el rebajamiento del nivel freático sea suficiente para mantener la excavación seca (Figura 6). La separación típica entre ellos se sitúa entre 5 y 70 m, dependiendo del rebaje deseado, de la permeabilidad del terreno, de las fuentes de filtración y de la altura de inmersión disponible para las bombas.

Figura 6. Efecto de la separación entre pozos en la depresión del nivel freático. Elaboración propia basado en Tomlinson (1982).

En un terreno muy permeable, como son unas gravas, la depresión formada es muy plana, pudiéndose colocar los pozos más distanciados. En cambio, con arenas limosas, menos permeables, las depresiones formadas presentan curvas más pronunciadas, por lo que la separación será menor. Evidentemente, a mayor separación entre pozos, se necesitarán bombas de mayor capacidad.

Por otra parte, los pozos podrán separarse si la capa impermeable se encuentra alejada al fondo de la excavación. En caso de estar este estrato cercano al fondo de la excavación, se tendrán que acercar los pozos para que el rebajamiento funcione adecuadamente.

En cuanto a las ventajas del sistema de pozos filtrantes destacan las siguientes:

  • Es adecuado para reducir las presiones intersticiales en acuíferos confinados.
  • Se puede combinar con el uso de wellpoints.
  • Pueden quedar fuera del recinto de excavación, sin interferir en el resto de procedimientos constructivos.

Como inconveniente cabe destacar su coste elevado. Además, es importante señalar que la propia excavación del pozo y la depresión del nivel freático suelen aumentar los asientos en superficie, por lo que se debe prestar un especial cuidado ante estructuras próximas.

A continuación os dejo un vídeo explicativo sobre el drenaje con pozos profundos. Espero que os sea de interés.

Os paso un vídeo de la empresa Perforaciones Ferrer S.L. en la que se describe el sistema de control del nivel freático para la construcción del Centro Comercial Arena (Valencia).

Os dejo algún vídeo sobre la ejecución de este sistema de drenaje.

https://www.youtube.com/watch?v=EXOQgRaNFdE

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València. 89 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención de aguas mediante ataguías

Figura 1. Ataguía, Montgomery Point Lock and Dam (Estados Unidos). https://en.wikipedia.org/wiki/File:Dam_Coffer.jpg

Una ataguía (cofferdam) es una estructura, generalmente provisional, destinada contener el terreno e impedir, reducir o desviar la entrada de agua en una excavación. Se trata de construir un recinto estanco y seco temporal muy empleado, por ejemplo, en la ejecución de pilas de puentes, muelles, presas, y en cualquier otro lugar donde se quiera trabajar en seco.

Son obras que reciben el empuje de las tierras, el hidrostático y las fuerzas dinámicas debidas a corrientes u oleaje, en su caso, y que deben satisfacer los requisitos de estabilidad, impermeabilidad y estanqueidad. Por tanto, resulta inútil emplear ataguías sobre terrenos muy permeables, pues de nada serviría la impermeabilidad de las paredes si por el fondo se filtran caudales imposibles de agotar. En estos casos, sería necesario un dragado previo hasta alcanzar el sustrato impermeable.

Además, si la ataguía se utiliza en obras fluviales, hay que considerar los problemas hidráulicos como la erosión del lecho de la corriente y el desbordamiento. No en balde, si la ataguía empieza a tener dimensiones importantes debe diseñarse y construirse con todas las garantías exigibles a una presa, aunque sea provisional.

El trazado de la ataguía con frecuencia termina formando un recinto cerrado, caso muy habitual en el caso de la construcción de cimientos de puentes en los ríos. Sin embargo, pueden ser construcciones no cerradas, como es el caso de derivación de un río para construir una presa. En este caso de ataguías abiertas, no tiene sentido que su altura supere un nivel superior al de las orillas, aunque sí quedar por encima de la crecida ordinaria del río. La altura debe quedar por encima de las pleamares en obras marítimas.

La construcción de estos recintos estancos es compleja, pues se debe colocar en medio del cauce de un río o en el mar, en condiciones ambientales a veces muy duras. Es por ello difícil mantener las tolerancias constructivas, desviándose las dimensiones previstas en proyecto. Además, hay que tener presente que, en caso de desmontaje, se deben considerar los esfuerzos sobre la obra construida. Es por ello que muchas veces los recintos se quedan de forma permanente, por ejemplo en el caso de la construcción del cimiento de un puente.

Figura 2. Ataguía de tablestacas para la construcción de la cimentación de un puente. https://www.flickr.com/photos/vtrans/19114472205

Una ataguía de interés es la construida para el desvío y cierre del cauce de un río para la construcción de una presa. Realmente son presas cuya vida útil es muy reducida (de 1 a 4 años, según los casos), con fugas de agua o filtraciones admitidas mayores que las presas definitivas y con materiales empleados que, dada la cortedad de su vida útil, pueden ser de menor calidad. Es frecuente también colocar una contraataguía aguas abajo de la presa para contener la lámina de agua que pudiera llegarse a formar agua abajo, a la salida del túnel de desvío; aunque podría no ser necesaria cuando la pendiente del cauce es suficiente para que el agua siga con una cota máxima de lámina inferior al nivel del cauce en el lugar de trabajo.

Sea cual sea el tipo de ataguía a utilizar, resulta muy importante realizar un cálculo del gradiente hidráulico que se forma por la líneas de filtración del agua por el material permeable. Si el gradiente hidráulico, es decir, el caudal de agua dividido por la longitud de la línea de filtración excede a la unidad, se puede producir inestabilidad y el efecto de “arenas movedizas” del sifonamiento. Estas filtraciones se deben recoger en un sumidero para ser bombeadas al exterior del recinto excavado. El bombeo previsto para agotar el agua del recinto debe ser muy superiores a los previstos, pues son frecuentes las averías de las bombas, así como entradas de agua imprevistas.

La correcta elección del tipo adecuado de ataguía depende de aspectos tales como de la profundidad del agua, profundidad y tamaño de la excavación, tipo de terreno, velocidad de la corriente de agua, existencia de mareas o de elementos flotantes, condiciones locales y los medios que puedan utilizarse en función de la importancia de la obra a proteger. Galabrú (2004) clasifica las ataguías en los siguientes tipos: ataguías de tierra, ataguías mixtas de tierra y tablestacas, ataguías de escollera y gaviones, ataguías de tablestacas metálicas (cortinas simples, recintos y células autoestables), ataguías de hormigón (gravedad o bóveda, paredes moldeadas en el suelo e inyecciones, pantallas de pilotes y cajones hincados con aire comprimido o sin él), ataguías por congelación de suelos y casos especiales (sobres suelo rocoso o en cursos de aguas con corriente intensa).

Es más, los procedimientos de construcción de cimentaciones mediante cajones indios o mediante cajones de aire comprimido podrían considerarse, en cierto modo, como ataguías, puesto que serían sistemas que permiten trabajar en seco; aunque en estos casos el medio auxiliar no es provisional, sino que queda formando parte de la cimentación, tal y como pasa en el caso de los puentes cimentados bajo el agua.

Los romanos ya empleaban las ataguías para la construcción de la cimentación de los puentes, tal y como podemos ver en este pequeño vídeo de Structuralia:

Aquí tenéis una animación de cómo se construyó el Puente de Carlos, en Praga, puente que se terminó en 1402. Fijarse bien en cómo se ejecutaba la ataguía con una doble pared de tablestacas de madera rellenas de tierra.

Os dejo algún vídeo explicativo sobre ataguías y recintos cerrados (cofferdams).

Recientemente se han utilizado ataguías que se llenan, se despliegan y se estabilizan de forma rápida, tal y como se puede observar en los siguientes vídeos:

REFERENCIAS:

  • GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje mediante pozos horizontales ejecutados mediante perforación horizontal dirigida

Figura 1. Maquinaria para la perforación horizontal dirigida PHD.  https://trenchlesstechnology.com/hdd-pipe-ramming-used-install-water-wastewater-lines-wood-buffalo/

La técnica de la Perforación Horizontal Dirigida PHD (Horizontal Directional Drilling, HDD) es un método empleado para la instalación de tuberías que evita la apertura de zanjas a cielo abierto (trenchless) minimizando el movimiento de tierras (Figura 1). Se utiliza fundamentalmente para la instalación de líneas de comunicación (fibra óptica, cables de datos), líneas eléctricas, gaseoductos, oleoductos y conducciones de agua a presión. A mediados de 1990, esta técnica se adaptó para instalar pozos de drenaje de aguas contaminadas en zonas industriales, estaciones de servicio o similares. Sin embargo, también es útil para realizar drenajes horizontales (Horizontal Directional Drilling Wells, HDDW)  en áreas inaccesibles o donde realizar perforaciones en superficie no es factible, pudiéndose llegar a distancias de 3000 m de longitud. Con todo, PHD es una técnica que requiere una fuerte planificación, pues requiere de operaciones especializadas.

Un pozo horizontal puede sustituir a 10-30 pozos verticales, dependiendo de las circunstancias de cada caso (Figura 2). En efecto, un solo pozo horizontal intersecta el nivel freático en la mayor parte de su longitud, extendiendo el cono de depresión del freático a lo largo de su recorrido. Por ejemplo, un pozo poco profundo de unos 15 m precisa de unos 60 m de perforación horizontal para alcanzar la cota prevista. En cambio, una red de pozos verticales para interceptar el mismo nivel freático requiere de múltiples pozos y decenas de tubería vertical no productiva (sin rejilla). Además, el pozo horizontal requiere solo de una bomba y una tubería de evacuación al punto de vertido o tratamiento, al contrario que los pozos verticales, donde cada uno de ellos precisa de una bomba. La Figura 2b muestra cómo un pozo horizontal con cierta pendiente puede drenar un terreno en talud simplemente por gravedad.

Figura 2. (a) Drenaje mediante pozos verticales frente a (b) drenaje mediante pozo horizontal.

La mayor diferencia entre los usos habituales del PHD en relación a su uso como drenajes horizontales es que el fluido de perforación usado aquí son polímeros biodegradables, en vez de bentonita. La razón es evitar la reducción de la permeabilidad del terreno asociada a la perforación.

Según el procedimiento de instalación, los drenes horizontales ejecutados mediante PHD se pueden clasificar en doble o simple entrada (Figura 3):

  • Instalación con doble entrada (Figura 3a): Se taladra la perforación piloto desde una fosa de lanzamiento. La perforación desciende en la entrada para luego emerger en la fosa de recepción. Este procedimiento es el más comúnmente utilizado por permitir un mejor control de la estabilidad de la perforación en comparación con los métodos de simple entrada.
  • Instalación de simple entrada (Figura 3b): Este método, también llamado de perforación ciega (blind-ended hole) se utiliza cuando no hay fosa de recepción y el pozo se instala desde un solo extremo. Aquí el escariado para ampliar la perforación se realiza empujando, en vez de tirando, como es el caso de la doble entrada, existiendo el riesgo de que la perforación ampliada no siga la perforación piloto. Las longitudes alcanzadas con este sistema son significativamente menores que las de doble entrada.
Figura 3. Pozos horizontales realizados mediante Perforación Horizontal Dirigida. (a) Con doble entrada, (b) con una sola entrada.

La instalación de la rejilla es una operación más complicada en los pozos HDD que en los pozos verticales convencionales, tanto por la longitud como por la desviación en la dirección. Las rejillas se instalan arrastrando a través de la perforación en el caso de doble entrada, y empujando en el caso de simple entrada. Estas rejillas normalmente son de polietileno de alta densidad (PEAD), de acero al carbono o acero inoxidable. El porcentaje de ranuras de la rejilla es menor que en los pozos verticales para asegurar su resistencia a tracción o compresión. Como es difícil instalar un filtro granular alrededor de la rejilla, normalmente se usan filtros de grava preenvasados, mallas o geotextiles convenientemente protegidos para resistir su instalación.

Os dejo unos polimedias para explicar brevemente el procedimiento de la perforación horizontal dirigida. Espero que os sea de interés.

A continuación os dejo un par de vídeos explicativos.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dúmperes extraviales rígidos

Dúmper Caterpillar CAT 777D

Son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto solo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.

Sus dimensiones pueden superar los 8 m. de anchura, 3.000 CV. de potencia y 360 t. de carga útil (el modelo más grande, Belaz 75710, puede llegar hasta 450 t.), aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t. y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.

Las cajas, robustas y construidas con aceros especiales de alta resistencia, suele tener su fondo en forma de “V” para bajar el centro de gravedad. Sus ruedas son de gran diámetro y anchura, que le da flotabilidad en terrenos blandos, con dibujos muy profundos y marcados para dar mayor adherencia.


[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,50.

[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.

Os paso a continuación algunos vídeos para que podáis comprobar el funcionamiento de este tipo de máquinas de acarreo.

 

Bueno, este par de vídeos que os dejo se salen un poco de los procedimientos constructivos:

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Motoniveladoras

Motoniveladora. Wikipedia

Son máquinas autopropulsadas sobre ruedas cuya función principal va a ser la de nivelación y refino del terreno, reperfilando el material de los pequeños montones altos y moviendo pequeñas cantidades del mismo a poca distancia. Consisten fundamentalmente en un tractor de neumáticos del que arranca un robusto puente-bastidor del que se suspende una hoja niveladora, que puede adoptar diversas posiciones en el espacio, y situada entre los ejes delantero y trasero, pero delante del motor.

Suele trabajar con motor diésel turboalimentado, situado tras la cabina del operador, esto es, en la parte zaguera de la unidad. Su potencia abarca una extensa gama que va desde 30 a 325 CV, siendo los modelos más usados en carreteras de 100 a 200 CV, con una velocidad de transporte que, en algunos modelos, puede llegar hasta los 45 km/h. La relación potencia/peso se sitúan entre 10 y 12 CV/t. La transmisión puede ser mecánica, hidrostática o hidrodinámica, siendo ésta última la normal, mediante convertidor de par. La caja de cambios es del tipo power shift, que permite cambios de marchas sin parar la máquina ni desembragar.

Como curiosidad, Humberto Acco, un contratista italiano, construyó en 1980 la que se considera la mayor motoniveladora del mundo. Construyó una máquina para el desierto de Libia, aunque no llegó a utilizarse por el embargo americano a Libia. La máquina se utilizó en algunos trabajos de explanación en Italia y esta plenamente operativa en las instalaciones de ACCO. Esta maquina pesa unas 200 t y monta dos motores Caterpillar uno de 1000 CV en la parte trasera y otro de 700 en la delantera, la cual pertenece a la cabeza tractora de una mototrailla Caterpillar 657. La hoja (cuchilla) tiene una longitud de 10 m.

La mayor motoniveladora del mundo. Vía http://ingenieriaycomputacion.blogspot.com

Os dejo unos cuantos vídeos sobre cómo funcionan estas máquinas. En el primero veréis cómo pueden recortarse taludes, en el segundo se aprecian bien los movimientos de la hoja y en el tercero no os perdáis cómo se hundió esta máquina (hacia el final del vídeo). Espero que os gusten y os aclaren ideas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Ingeniería civil humanitaria. Cómo afrontar una emergencia: Lecciones aprendidas de Totalán

Comienzo de los trabajos realizados por la Brigada de Salvamento Minero. Fuente: Ángel García, 2019

En muy pocas ocasiones redacto artículos de opinión en mi blog. Sin embargo, en este caso, la importancia del tema me obliga a tomar posición y escribir acerca de un asunto que, creo en España, podría hacerse mucho al respecto. Se trata de cómo afrontar una emergencia difícil, donde hay vidas en juego. Voy a intentar aprovechar la experiencia de un suceso dramático para extraer algunas lecciones aprendidas que, espero, alguien tenga a bien leer y aplicar.

Todo ello viene por la conferencia impartida el pasado martes 24 de septiembre de 2019 en la Escuela de Ingeniería de Caminos de Valencia por parte de Ángel García y Mauricio Delgado. Todo el mundo conoce la noticia: durante trece días España estuvo pendiente del rescate del pequeño Julen, en el municipio malagueño de Totalán. Tanto Ángel como Mauricio, integrantes de un equipo reducido de ocho ingenieros de caminos, explicaron con mucho detalle las circunstancias técnicas y humanas que supuso esta tragedia. El salón de actos de la Escuela se abarrotó, quedando muchas personas en pie escuchando la charla. Reconozco que me emocioné profundamente al escuchar el relato, al igual que todas y cada una de las personas que acudieron al acto. Se trató, tal y como dijeron los conferenciantes, de una obra de ingeniería civil humanitaria sin precedentes. Especialmente interesante fue resaltar la importancia de los procedimientos constructivos en la resolución del problema, algo que me satisface personalmente por se catedrático de esta asignatura en la Escuela de Caminos de Valencia. El resultado fue que la profesión de ingeniería de caminos demostró su vocación de servicio público y su capacidad técnica, aumentando, si cabe, su prestigio ante la opinión pública. Sin embargo, los riesgos tomados fueron excesivos.

Se trató de un acto de coraje personal y técnico, donde en un instante determinado, de forma espontánea, se juntaron en el momento y lugar preciso, un grupo de personas que, dejando atrás cualquier tipo de consideración, de forma voluntaria, asumiendo una responsabilidad por encima de lo exigible y jugándose el prestigio profesional propio y de toda la profesión, fueron capaces de acometer un trabajo descomunal, de elevadísima complejidad técnica y con una presión brutal por parte de los medios de comunicación y de la opinión pública en general. No era para menos, se trataba de salvar contrarreloj la vida de un niño de apenas dos años. Todos, desde el primer momento asumieron el problema como propio, Julen era el hijo de cada uno de ellos y, a través de la televisión, de cada uno de nosotros.

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

Por otra parte, yo conocía a través de las redes sociales a Ángel García, delegado del Colegio de Ingenieros de Caminos en Málaga, antes incluso de que ocurrieran los hechos de Totalán. Persona afable, cariñosa con los suyos, muy de su tierra. Pero el martes tuve la ocasión de conocer personalmente tanto a Ángel como a Mauricio. Todo lo bueno que pensaba sobre ellos se multiplicó y agrandó con el trato directo. Es difícil encontrar a personas con un grado de humanidad, de entrega y de profesionalidad tan grande. Con el permiso de ellos, creo que se creó una amistad que va a durar eternamente. Al tiempo.

Pero justo aquí está el meollo del problema sobre el que quiero reflexionar: en este caso particular, único en el mundo por su complejidad, se tuvo la suerte de juntar en un momento determinado a un conjunto muy especial de técnicos (no solo nuestros compañeros ingenieros, sino todo el operativo que trabajó en el rescate) que, muy difícilmente se podría repetir en otro caso parecido. Que unas personas como Ángel, Mauricio y el resto del equipo dejaran todo, se pusieran en la boca del lobo, asumieran la tremenda responsabilidad de resolver un problema de esta magnitud y tuvieran el temple necesario para tomar las decisiones adecuadas en cada momento, fue una gran suerte para todos. Pero eso, justamente, no puede ser en un Estado moderno como España. Se pudo llegar a rescatar (desgraciadamente ya sin vida) el cuerpo del niño, pero las probabilidades de fracaso y de accidentes y pérdidas humanas durante el rescate fueron, desde mi punto de vista, demasiado altas.

Analicemos con mayor detalle el problema desde la distancia en el tiempo y la independencia que supone no haber participado directamente en este problema. Vemos con una frecuencia cada vez mayor en los medios de comunicación cómo ocurren hechos de gravedad extraordinaria (inundaciones, crisis alimentarias, epidemias, accidentes, incendios, terremotos, atentados, etc.). Incluso este tipo de incidentes superan la ficción: Argameddon es una película donde se acomete un problema cuya posibilidad de ocurrencia no es nula, que es el impacto de un meteorito destructivo en nuestro planeta; Chernobyl no solo ha sido una serie de éxito, sino también una realidad que pone de manifiesto la posibilidad real de accidentes de gran impacto. Para el lector inquieto, recomiendo la lectura de la teoría del cisne negro, de Nassim Taleb.

Una crisis de este tipo presenta una serie de características que alejan su resolución de los casos habituales a los que nos enfrentamos los técnicos todos los días, por difíciles que éstos sean. Se puede caracterizar este tipo de crisis, sin pretender se exhaustivos, por lo siguiente:

  • El tiempo para resolver la crisis es extremadamente limitado, pues hay vidas en juego.
  • A veces se pueden perder más vidas en la resolución del problema que en la propia crisis.
  • La crisis aparece en cualquier parte, por lo que los medios físicos y humanos para resolverla pueden no existir o tardar en llegar.
  • La resolución técnica del problema es compleja, pues no se tienen todos los datos necesarios para tomar decisiones y tampoco hay tiempo para obtenerlos.
  • Es necesaria la participación de distintos tipos de profesionales, a los que se les debería exigir una gran competencia y experiencia en su campo.
  • Se deben tomar decisiones rápidamente, estando éstas sujetas a un elevado grado de incertidumbre, asumiéndose riesgos que, en otras circunstancias serían inaceptables. Se trabaja con coeficientes de seguridad inferiores a los normales.
  • Es difícil coordinar una crisis si no existe una jerarquía clara en el mando de la operación y en la toma de decisiones.
  • Los factores psicológicos pesan sobre los responsables, sobre los que cae toda la gravedad de la toma de decisiones y sobre los que se ejerce una presión insoportable. Suelen acabar con estrés postraumático.
  • Suele existir una presión muy importante que, incluso, suele terminar en un espectáculo mediático debido al gran interés social despertado.
  • La comunicación con los medios de comunicación es clave en la crisis. Es necesaria la transparencia, la prudencia y la veracidad de lo que se comunique.

Seguramente me he dejado cosas, pero lo anterior ya supone un reto de gran magnitud. ¿Qué se debería hacer, por tanto, para aumentar la probabilidad en la resolución del éxito de una crisis? Pues de la lectura de las anteriores características de una crisis, se podrían dar algunas recomendaciones:

  • Se debe trabajar en protocolos de actuación que reduzcan drásticamente las incertidumbres en la toma de decisiones en caso de crisis.
  • El Estado debe asumir la responsabilidad, desde el primer momento, del mando, coordinación y resolución del problema. No se puede delegar en la buena voluntad de unas personas, por magníficas que sean, el peso de la responsabilidad y las consecuencias que pudieran ocurrir en el caso de accidentes, muertes, etc. Pueden existir responsabilidades civiles o penales.
  • Se debe inventariar un conjunto de máquinas especiales y medios técnicos considerados “estratégicos” en la resolución de este tipo de crisis. Deben estar geolocalizados, siempre en disposición de ser utilizados en caso de emergencia y con acuerdos previos sobre este tipo de situaciones con las empresas correspondientes. No se puede delegar el uso de maquinaria estratégica a la buena voluntad de las empresas.
  • Se debe realizar un listado de expertos en temas especiales que, si fuera necesario, fuesen requeridos y puestos a disposición inmediata de las autoridades. El trabajo de estos expertos sería, siempre, de asesoría, pero no de toma de decisiones, que corresponde a la Autoridad del Estado. Igual está mal empleada la palabra, pero se “militarizaría” a este personal mientras durase la crisis. Estaría sometido a la jerarquía de la autoridad y su actuación y responsabilidad por su actuación quedaría respaldada por el Estado.
  • Tanto los recursos técnicos como humanos necesarios podrían provenir de otros países. Se requeriría una estrategia conjunta de emergencias a nivel europeo o incluso de mayor nivel para casos muy excepcionales.
  • Se debe incluir, dentro de la Unidad Militar de Emergencias, o del cuerpo que así se considere oportuno, ingenieros y técnicos de todo tipo expertos en diversos campos, con una formación técnica muy sólida y con formación específica en la resolución de crisis.
  • Es necesario un procedimiento administrativo “de especial urgencia” que, de forma especialmente rápida, se resuelva la contratación inmediata de medios o empresas, con las cautelas necesarias, pero sin que suponga un entorpecimiento de la resolución de la crisis.
  • Resulta clave en la resolución de la crisis y en el impacto sobre la opinión pública, una comunicación directa, transparente, profesional, prudente y veraz de lo que está ocurriendo en cada momento. Esta competencia es difícil y debe aprenderse.

Pero este artículo no estaría completo si no conociéramos, de primera mano, lo que opinan tanto Ángel como Mauricio de este tema. Básicamente coincide con lo que yo he expuesto anteriormente, aunque su opinión es de primera mano, y por tanto, más valiosa que la mía. Os voy a transcribir la última transparencia de la conferencia que me ha pasado Ángel para este artículo, donde se expresan las conclusiones. Yo les llamaría “lecciones aprendidas”. Es oro en estado puro.

Seguramente me he dejado muchas cosas, pero creo que algo hay que hacer. Incluso en las conversaciones mantenidas con Ángel y Mauricio se habló de implicar a las universidades en la realización de algún máster o curso de especialización sobre este tipo de materias.

Os dejo el enlace a la noticia aparecida en nuestra universidad sobre la conferencia y un vídeo donde se da la noticia. Espero que os guste.

http://www.upv.es/noticias-upv/noticia-11441-rescate-en-tot-es.html

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El efecto Renard, o por qué un suelo parece que entra en ebullición: Sifonamiento

Figura 1. Arenas movedizas. https://churbuck.com/category/clamming/page/2/

Cuando existe un flujo ascendente de agua en un terreno, la corriente circula en sentido contrario al peso del terreno. Este empuje puede ser tan algo que supere al peso del terreno, con lo cual tenemos la impresión que el terreno se ha licuado y se comporta como un líquido en ebullición. Este efecto, muy estudiado en cualquier libro de geotecnia, tiene lugar cuando las tensiones efectivas se anulan. Se produce el fenómeno del sifonamiento o licuefacción, también llamado “efecto Renard”. En este caso, una arena, por ejemplo, pierde su consistencia y parece que entre en ebullición. Esto se debe a que un suelo sin cohesión pierde completamente su resistencia al corte y pasa a comportarse como un fluido.

Resulta sencillo demostrar que este fenómeno ocurre cuando se alcanza un gradiente crítico, cuyo valor es el cociente entre el peso específico sumergido del suelo y el peso específico del agua. Este valor se aproxima en muchos casos a la unidad. Cualquier objeto que se sitúe sobre un terreno con licuefacción que tenga un peso específico superior al del la mezcla fluida de terreno y agua, se hundirá; esto es especialmente importante si tenemos maquinaria dentro de la excavación o existen cimentación que se apoye en esa zona. Se trata del conocido fenómeno de las arenas movedizas.

Este problema es importante cuando tenemos que excavar bajo nivel freático una profundidad “h” (ver Figura 2). Una forma de solucionar evitar el sifonamiento consiste en utilizar tablestacas o ataguías que tengan una longitud de empotramiento “x” suficiente. En este caso, la línea de filtración más corta del agua tiene una longitud igual a h+2x.

Figura 2. Longitud de empotramiento para evitar el sifonamiento

Supongamos que nos dan como datos el peso específico de las partículas sólidas de un suelo “γs ” y su porosidad “n“. El peso específico del agua es  “γw“. Vamos a considerar un coeficiente de seguridad  “η“. Como el gradiente es h/(h+2x), se puede comparar con el gradiente crítico dividido por su coeficiente de seguridad. De este modo, es fácil demostrar que la longitud de empotramiento es:

En la Figura 3 se representa la evolución del empotramiento en función de la profundidad de la excavación bajo nivel freático y de la porosidad del suelo. Se ha supuesto γs = 2,65 t/m3   y un coeficiente de seguridad η = 3. Es fácil comprobar la relación lineal entre el empotramiento y la altura del nivel freático sobre la excavación. Además, cuanto más poros presenta el terreno, más empotramiento es necesario.

Figura 3. Profundidad de empotramiento de una tablestaca para evitar el sifonamiento

Respecto al coeficiente de seguridad frente al sifonamiento, el Código Técnico de la Edificación (CTE), en su Documento Básico SE-C Cimientos, se indica que, en el caso de las pantallas, el coeficiente de seguridad será η = 2.

Nota muy importante: una cosa es la profundidad mínima de empotramiento para evitar el sifonamiento y otra bien diferente es calcular el empotramiento necesario de una tablestaca para soportar los esfuerzos de empuje a los que está sometido. Por tanto, el empotramiento real será el mayor de los dos valores. Se recomienda siempre efectuar con detalle los cálculos geotécnicos y estructurales necesarios. Y sobre todo, utilizar el sentido común.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio autopropulsado de patas apisonadoras

Son muy similares tanto por sus características geométricas como de frecuencias, amplitudes y velocidades a la de rodillos lisos, pudiéndose en muchos modelos intercambiarse los equipos. Llevan de 130 a 165 patas por cilindro, adoptando la forma de tacos de 100 mm de altura, ocupando aproximadamente un tercio de la superficie del tambor. Son adecuados para suelos plásticos y granulares, recomendándose los modelos de 16-20 t, con tracción al tambor. Es conveniente que las patas penetren y no se apoye la parte lisa del tambor en la capa. Para ello los espesores de capa adecuados no deberían ser superiores a la altura de las patas.

Os dejo algún vídeo para que veáis cómo trabaja este compactador.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Introducción al movimiento de tierras

La mecanización de las obras públicas es cada vez mayor, y la repercusión en el precio de las diferentes unidades de obra está muy influenciada por los rendimientos de los equipos empleados, por sus precios horarios y por la eficacia de su utilización. Los costes de la maquinaria acaparan un 42% del coste de todas las unidades de obra en una carretera. Las unidades que componen el movimiento de tierras en una obra suponen porcentajes importantes del presupuesto total de dichas obras. En una autovía puede suponer entre el 20 y 30% del coste mientras que en una presa de materiales sueltos, este porcentaje puede subir del 45 al 75%, según los casos.

Se entiende por movimiento de tierras al conjunto de actuaciones a realizarse en un terreno para la ejecución de una obra. Se denomina excavación a la separación o extracción de determinadas partes de dicho volumen, una vez superadas las fuerzas internas que lo mantenían unido: cohesión, adherencia, capilaridad, etc. Llamamos carga a la acción de depositar los productos de excavación en un determinado medio de transporte. Genéricamente, se puede clasificar la maquinaria utilizada en el movimiento de tierras en los siguientes grupos:

  •            Equipos de excavación y empuje:  son equipos de arranque tales como tractores con palas empujadoras: bulldozers.
  •            Equipos de excavación y carga: excavadoras de pala frontal, retroexcavadoras, etc.
  •            Equipos cargadores: palas cargadoras.
  •            Equipos de excavación y refino: Motoniveladoras, traíllas y mototraíllas.
  •            Equipos de acarreo: Camiones volquete, autovolquetes, remolques, camiones góndola, dumpers y motovagones.
  •            Equipos de compactación: Compactadores de ruedas neumáticas, rodillos de “pata de cabra”, compactadores vibratorios.
  •            Otro tipo de equipos: Cucharas bivalvas, dragalinas, topos, dragas, bombas de succión, etc.

Los equipos y medios empleados para la excavación de tierras pueden clasificarse de diversas formas: las que atienden a la traslación de la maquinaria, las que contemplan la resistencia a compresión de los terrenos y las que se refieren a su excavabilidad.

Según el modo de trasladarse, se clasifican en:

  •            Máquinas que excavan y trasladan la carga: tractores con hoja empujadora o con escarificador, motoniveladoras, mototraíllas y palas cargadoras. Efectúan la excavación al desplazarse, o bien, como la pala cargadora, excava y luego traslada la carga.
  •            Máquinas que excavan situadas fijas, sin desplazarse: palas excavadoras hidráulicas o de cables, dragalinas, excavadoras de rueda frontal o de cangilones, dragas de rosario y rozadoras. Cuando la excavación a realizar sale de su alcance, se debe trasladar a una nueva posición de trabajo, si bien no excava durante el desplazamiento.
  •            Máquinas especiales: topos, dragas y bombas de succión, dardos y chorros de agua y fusión térmica. La excavación se realiza mediante otros procedimientos distintos a los anteriores.

Os dejo un vídeo explicativo que sirve de introducción al tema. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.