El arco, ese invento diabólico

Puente de Cangas de Onís, sobre el Sella (Asturias). Imagen: V. Yepes

El arco es una estructura que, gracias a su forma, trabaja fundamentalmente a compresión, siendo la estructura resistente por excelencia (Fernández Troyano, 2004). El arco construido por dovelas que se van apoyando unas con otras hasta alcanzar la clave en una cimbra provisional, no es una idea intuitiva. Como indica Fernández Casado (2005), se trata de un invento genial capaz de salvar de manera perdurable un vano mediante elementos de tamaño muy inferior a la luz que pretendían salvar.

De hecho, civilizaciones como la maya o la inca construyeron en fábrica durante siglos sin llegar a utilizar la idea del arco (Huerta, 2004). Tampoco conocieron estos pueblos prehispánicos la maquinaria necesaria para levantar pesos (cabrias, grúas o polipastos) o los martinetes empleados en la hinca de pilotes. A este respecto, resulta de gran interés el fragmento de los “Comentarios Reales” del Inca Garcilaso de la Vega[1] recogido por González Tascón (1992) refiriéndose a la admiración que los indios tuvieron por los conquistadores españoles pues “…los tuvieron por hijos del Sol y se rindieron con tan poca resistencia como hicieron, y después acá también han mostrado y muestran la misma admiración y reconocimiento cada vez que los españoles sacan alguna cosa nueva que ellos no han visto, como ver molinos para moler trigo y arar bueyes, hacer arcos de bóveda de cantería en las puentes que han hecho en los ríos, que les parece que todo aquel gran peso está en el aire; por las cuales cosas y otras que cada día ven, dicen que merecen los españoles que los indios los sirvan”.

La fábrica, como construcción realizada con materiales pétreos, no resiste las tracciones, lo cual es un gran inconveniente para este tipo de material natural empleado por el hombre desde tiempos inmemoriales. Sin embargo, la invención del arco, que permite el trabajo del material a compresión, supuso un avance de primera magnitud en la construcción, una auténtica revolución tecnológica. Parece ser que el arco no es tan antiguo como la fábrica propiamente dicha. La construcción de bóvedas con obra de fábrica para cubrir huecos tuvo su origen cuando alguien empezó desplazando sucesivamente hiladas sucesivas de piedra, cada una en voladizo respecto a la anterior, para acabar cerrando el hueco en una disposición denominada como “falsa bóveda”. Esta construcción se empleó en las civilizaciones antiguas, por ejemplo en la arquitectura maya. Quizá el ejemplo paradigmático sea la falsa bóveda de la Puerta de los Leones de Micenas, ya en el siglo XIII a.C.

Puerta de los Leones de Micenas
Puerta de los Leones de Micenas, s. XIII a.C. (ejemplo de «falso arco»). Imagen: V. Yepes

El paso a la construcción de verdaderos arcos, es decir, aquellos que basan su resistencia en su propia forma y funcionan con esfuerzos internos de compresión en todas sus juntas, no fue un paso evidente o sencillo. Es difícil entender cómo unas simples piedras talladas, adosadas unas contra otras y adecuadamente orientadas, son capaces de soportar su propio peso y el de otras cargas verticales (Arenas, 2002). Tal y como indican Steinman y Watson (2001), “la belleza y la magnificencia del arco son sorprendentes; su descubrimiento fue uno de los más grandes logros del pensamiento humano”. En palabras de Eduardo Torroja (1957) “el arco es el mayor invento tensional del arte clásico. Él sigue impresionando al vulgo, y la Humanidad ha tardado mucho en acostumbrarse a su fenómeno resistente; prueba de ello es la frecuencia con que la leyenda achaca al diablo su construcción”.

Un arco de fábrica no es más que una viga curvada formada por piezas, capaz de sostenerse al transmitir cada dovela su empuje a la siguiente, desde la clave hasta los arranques, y de ellos, a los estribos. Tal y como refiere Durán (2007), para Heyman el arco constituye un conjunto de piedras a hueso, unas encima de otras, formando una estructura estable bajo la simple acción de la gravedad. Es como si las fuerzas internas describieran un viaje a través del propio arco hasta alcanzar un soporte lo suficientemente sólido. Este lugar geométrico de los puntos de paso de la resultante de las presiones es lo que se denomina como línea de presiones.

Génesis del arco por piezas de tamaños cada vez menores
Génesis del arco por piezas. Imagen: V. Yepes

Por tanto, para que este artificio funcione, los apoyos deben tener su movimiento horizontal impedido con los contrarrestos o tirantes adecuados. Como dice un antiguo proverbio árabe citado por Fernández Casado (1933) “el arco nunca duerme” en alusión a su constante estado comprimido y equilibrado. Este aspecto es fundamental en la construcción de puentes de piedra: una deficiencia en la estabilidad de los apoyos o de los estribos puede provocar la ruina de la estructura. Se comprende así que, cuanto más grande sea el arco, mayor tendrá que ser la base del estribo. Nadie mejor que el autor de la inscripción situada en el puente romano de Alcántara para definir el modo de trabajar del arco: “Ars ubi materia vincitur ipsa sua”, que Fernández Casado (2005) traduce como “Arte mediante el cual la materia se vence a sí misma”. No puede expresarse mejor el arte de las estructuras que resisten por forma.

Referencias

ARENAS, J.J. (2002). Caminos en el aire: los puentes. Colección ciencias, humanidades e ingeniería. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

DURÁN, M. (2007). La utilidad de antiguos conocimientos constructivos en las obras de restauración de puentes históricos, en Arenillas, M.; Segura, C.; Bueno, F.; Huerta, S. (eds.): Actas del Quinto Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Madrid, pp. 261-273.

FERNÁNDEZ CASADO, C. (1933). Teoría del arco. Revista de Obras Públicas, 81(2615): 77-86.

FERNÁNDEZ CASADO, C. (2005). La arquitectura del ingeniero. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos. 2ª edición, Madrid.

FERNÁNDEZ TROYANO, L. (2004). Tierra sobre el Agua. Colegio de Ingenieros de Caminos, Canales y Puertos. 2ª edición, Madrid.

GONZÁLEZ TASCÓN, I. (1992). Ingeniería española en ultramar (siglos XVI-XIX). CEHOPU, Madrid.

HUERTA, S. (2004). Arcos, bóvedas y cúpulas. Geometría y equilibrio en el cálculo tradicional de estructuras de fábrica. Instituto Juan de Herrera, Madrid.

STEINMAN, B.D.; WATSON, S.R. (2001). Puentes y sus constructores. Ed. Colegio de Ingenieros de Caminos, Canales y Puertos, 350 pp. Madrid.

TORROJA, E. [1957] (2007). Razón y ser de los tipos estructurales. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.


[1] Su verdadero nombre fue Gómez Suárez de Figueroa (1539-1616), fue un escritor e historiador hipanoperuano, siendo su obra cumbre los Comentarios Reales de los Incas, cuya primera parte fue publicada en 1609 y la segunda parte en 1616.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Quién inventó el nombre de ingeniero civil?

John Smeaton, con el faro de Eddystone en el fondo

La ingeniería era ya milenaria cuando se intentó definirla, nació antes que la ciencia y la tecnología y puede decirse que es casi tan antigua como el hombre mismo. Obviamente, esta noción de lo que es un ingeniero se sale de los estrechos marcos de las concepciones actuales. No se pretenderá que los ingenieros primigenios fueran científicos y mucho menos que conocieran la tecnología, eran simplemente ingenieros. Por ello ingeniero no es quien tiene el título, es quien ejerce la ingeniería, la profesión que concreta los sueños y construye los ingenios de todo tipo, tan sencillos como la rueda, entendiendo como ingenio, ya sea una máquina o artificio de guerra o bien un artilugio que se fabrica con entendimiento y facilita la labor humana, que de otra manera demandaría grandes esfuerzos. En realidad, la palabra ingeniero apareció en la Edad Media para designar a los constructores de ingenios, aunque junto con el sacerdocio y la milicia, la ingeniería fue una de las primeras profesiones en aparecer. Es decir, la profesión de ingeniero existió muchos siglos antes de que se le diera ese nombre.

La ingeniería no ha podido ser definida satisfactoriamente en una sola frase. En 1820, el arquitecto británico Thomas Tredgold presidente de la Institution of Civil Engineers, fue probablemente el primero que hizo un intento: la llamó “el arte de dirigir las grandes fuerzas de la naturaleza y usarlas para beneficio del hombre”. Para esa época la definición era apropiada, pues, no se había consolidado aún el papel de la ciencia y la tecnología en el quehacer ingenieril.

La ingeniería se define en el documento “Formation des Ingenierus et environement” patrocinado por la UNESCO como “la profesión que consiste fundamentalmente en crear, modificar y valorar el entorno de hombre para satisfacer sus necesidades”. Bajo este punto de vista, el ingeniero debe abordar una amplia gama de aspectos adicionales como la economía, el medio ambiente, la legalidad, la innovación o la creatividad; todas ellas conducentes a optimizar los recursos disponibles para la obtención de un determinado bien social genérico. La Federación Europea de Asociaciones de Ingeniería define al ingeniero como “una persona que ha adquirido y sabe utilizar conocimientos científicos, técnicos y cualesquiera otros necesarios que le capacitan para crear, operar y mantener sistemas eficaces, estructuras, instalaciones o procesos y para contribuir al progreso de la ingeniería mediante la investigación y el desarrollo” (www.iies.es/publicaciones/informe2003).

Aunque en sus inicios la ingeniería nació como evolución de los oficios artesanos, es decir, basada exclusivamente en la experiencia, la aparición de un mundo caracterizado por la gran velocidad de cambio y la fuerte evolución de interdependencia con los conocimientos científicos, ha hecho que esta disciplina tome un gran auge en el mundo moderno.

Sin embargo, hubo una época bastante extensa donde la arquitectura y la ingeniería la desempeñaban maestros o técnicos que podríamos considerar como “arquitectos”. Con el paso del tiempo, al complicarse la construcción y diversificarse las técnicas, los papeles del arquitecto y del ingeniero quedaron totalmente diferenciados.

El “ingeniero civil”, como tal, se puede decir que aparece en Inglaterra con John Smeaton, quien en 1750 acuña el nombre, quizá para diferenciarlo del “ingeniero militar”, sin darse cuenta de que ingenieros civiles eran también los de minas, los metalúrgicos, etcétera, existentes ya en aquellas épocas. Los franceses emplearon, a partir del siglo XVIII, el nombre de Ingenieros de Puentes y Caminos. En España, desde principios del siglo XIX, la denominación fue la de Ingeniero de Caminos y Canales (posteriormente Ingenieros de Caminos, Canales y Puertos); no obstante, la ingeniería no militar se diferenciaba en “caminos y canales” y “minas”, al igual que en Francia.  Se debió esperar hasta la mitad del siglo XIX, para que en España apareciera la figura de Ayudante de Obras Públicas, que, con el paso del tiempo, se transformó en Ingeniero Técnico de Obras Públicas. Todavía un siglo después, los ingenieros civiles definían su profesión como “el arte de la aplicación práctica del conocimiento científico y empírico al diseño y producción o realización de varios tipos de proyectos constructivos, máquinas y materiales de uso o valor para el hombre”.

Los ámbitos de actuación de los ingenieros civiles fueron, con el tiempo, desmembrándose en diversas ramas, que dieron lugar a distintas especialidades como la ingeniería agronómica, de montes, mecánica, química, eléctrica, industrial, electrónica, de telecomunicaciones, informática, aeronáutica y naval.

El ingeniero civil se responsabiliza de la planificación, diseño y construcción de las infraestructuras. Esto incluye las redes de transporte, la gestión del agua, la protección del medio ambiente, el urbanismo, etcétera. Los resultados más visibles son las grandes estructuras como autopistas, puentes o presas. En estos casos, se combinan especialidades tales como la ingeniería de estructuras, la ingeniería geotécnica y la edificación. Otro ámbito de gran importancia es el diseño y operación de plantas de tratamientos de agua, no solo domésticas sino también de desechos industriales. Este campo se amplía a instalaciones de depuración de todo tipo de residuos (ingeniería del medio ambiente). La ingeniería de sistemas de transporte incluye no solo autopistas, ferrocarriles y otros sistemas de transporte rápido, sino también la construcción y gestión de puertos, aeropuertos, vías acuáticas, etc. Dentro de la ingeniería de obras civiles se incluye una especialidad dedicada al diseño de sistemas de transporte de agua y a la gestión de recursos hidráulicos. Por último, dentro de la ingeniería civil, también figuran los aspectos relacionados con la ordenación del territorio y del urbanismo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La historia del hormigón convencional

El Salginatobel construido en Suiza en 1930, de Maillart, uno de mis puentes preferidos. Wikipedia.

La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. En esta entrada continuamos con otra anterior donde también se abordaba este tema, pero desde el punto de vista de los orígenes del hormigón en España. Aquí os dejo un vídeo del profesor Antonio Garrido, aunque con un enfoque más amplio. Espero que os guste.

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

Torroja y las bodegas Tío Pepe

Bodegas Tío Pepe (1960-63). Imagen: V. Yepes

La bodega Tío Pepe, en Jerez de la Frontera, constituye un edifico de dos plantas compuesto por cuatro módulos cubiertos por bóvedas de hormigón, de 42 por 42 m y tres pisos cada uno, unidos en forma de nave rectangular bajo las cúpulas. Se trata de un edificio del tipo bodega catedral, donde es predominante el ladrillo visto en los cerramientos, el hormigón visto, las celosías de hormigón y el pavés. El edificio era tan grande que incluye en su interior calles que anteriormente eran públicas.

El origen de esta bodega se inicia en el año 1960, cuando la empresa González Byass decide la renovación comercial del sector y encarga al ingeniero Eduardo Torroja, junto con el arquitecto local Fernando de la Cuadra, el diseño de una nave de crianza de gran cabida.  Se pretendía que, por una parte, albergara un gran espacio para las tareas de vinificación, y, por otra, cumpliera los requisitos higrotérmicos de una bodega de crianza de fino. Sin embargo, el fallecimiento un año después de Torroja hizo que las obras empezaran bajo la dirección de su hijo José Antonio, durando las obras desde 1961 a 1964.

Se trata de una apuesta por nuevos procedimientos constructivos como la cimentación por pilotaje o las cúpulas de hormigón armado que, en aquella época, eran poco habituales en la zona. Uno de los principales problemas del proyecto era adecuar el borde de la lámina de hormigón, donde se recurrió a un modelo parecido al usado por Félix Candela en el Auditorio de Sahagún, donde se emplearon apoyos puntuales en soportes radiales. Sin embargo, en la dirección de obra se decidió recurrir a la solución ya empleada por Torroja en el mercado de Algeciras, a base de ocho superficies cilíndricas abiertas por las que, inicialmente, debería circular el aire de la bodega.

Os dejo un vídeo sobre estas bodegas, que espero os guste.

Los orígenes del hormigón armado

http://www.cehopu.cedex.es/hormigon/

Las civilizaciones antiguas ya tuvieron la idea de juntar piedras usando un amalgamador. Así, hacia el 2500 a.C., los egipcios ya emplearon un mortero de cal y yeso en la construcción de las pirámides de Giza. Sin embargo, fueron los romanos los que emplearon el hormigón a gran escala en obras como el Coliseo (en su cimiento y paredes internas) y el Panteón, construidos en los años 80 y 120 d.C. en Roma, o bien en el puente de Alcántara, en Hispania, del 104 al 106 d.C.

Tras la caída del imperio romano, el uso del hormigón decae hasta que, en la segunda mitad del siglo XVIII, se vuelve a utilizar en Francia y en Inglaterra. Así, en 1758, el ingeniero John Smeaton, ideó un nuevo mortero al reconstruir el faro de Eddyston en la costa de Cornish. En esta obra se empleó un mortero adicionando una puzolana a una caliza con una alta proporción de arcilla. Este mortero se comportaba bien frente a la acción del agua del mar debido a la presencia de arcilla en las cales, permitiendo incluso fraguar bajo el agua, y permanecer insoluble una vez endurecido.

Aunque Joseph Aspdin patentó en 1824 el cemento Portland, se considera al francés Vicat como padre del cemento al proponer en 1817 un sistema de fabricación que se sigue usando actualmente. Con todo, el cemento Portland actual se produce, desde el año 1845, con el sistema de Isaac C. Jhonson. Este procedimento se basa en altas temperaturas capaces de clinkerizar la mezcla de arcilla y caliza.

Las nuevas dársenas en el puerto de Toulon (Francia), en 1748, constituyen la primera obra moderna en la que se emplea el hormigón y que se encuentre documentada. Esta obra se ejecutó mediante tongadas alternas de hormigón fabricado con puzolana y mampostería irregular. En 1845 Lambot empieza a fabricar en Francia objetos en los que combina el hormigón y el acero, surgiendo de esta forma el primer hormigón armado.

Patentes de sistemas de hormigón armado (Christophe 1902)

Destaca la publicación, en 1861, del libro «Bétons Aglomérés appliqués à l’art de construire«, donde François Coignet analiza la función del hormigón y del acero como partes integrantes del nuevo material. Joseph Monier construye en 1875 el primer puente de hormigón armado del mundo en Chazalet (Francia) con un vano de 16,5 m de luz patentando el hormigón armado. En 1885, asociados Coignet y Monier, presentan en la Exposición Universal de París ejemplos de elementos que podrían realizarse con hormigón como vigas, bóvedas, tubos, etc.

A finales del siglo XIX se comienza a utilizar el hormigón en países como Alemania y Estados Unidos. Aunque las primeras aplicaciones del hormigón en Estados Unidos datan de 1875, fue a partir de 1890 cuando su empleo alcanzó un impulso extraordinario. Eran unos años donde las bases científicas del comportamiento del hormigón armado no estaban asentadas y, por tanto, las aplicaciones estaban sujetas a patentes y sistemas de firmas comerciales. Así, a pesar de las patentes de Monier sobre el hormigón armado, el desarrollo del nuevo material no despegó hasta que empresarios alemanes como Freytag no compraron los derechos de explotación. Fue en 1885 cuando el ingeniero Gustaf Wayss, que acababa de asociarse a las empresas alemanas que poseían los derechos de Monier, estableció los principios básicos del comportamiento del hormigón armado.

Edmond Coignet y De Tedesco publicaron en 1884 el primer método de dimensionamiento elástico de secciones de hormigón armado sometidas a flexión, mientras que el ingeniero Mathias Koenen, director técnico de la empresa de Wayss y Freytag, publicó en 1886 el primer método empírico de este tipo de secciones. La empresa de Wayss y Freytag construyó entre 1887 y 1899 trescientos veinte puentes distribuidos por toda Alemania y el Imperio austro-húngaro.

Las construcciones de Monier en Alemania supusieron un impulso potente en Francia, donde, a partir de 1890, empezó una auténtica revolución en la industria de este país. Jean Bordenave patentó en 1886 un sistema de tuberías de hormigón armado (Sidéro-ciment) que se utilizaría por primera vez en el abastecimiento de agua potable de Venecia. La primera patente realmente significativa en el ámbito del hormigón la realizó F. Hennebique en 1892 en Francia y Bélgica. En 1902 Rabut define las leyes de deformación del hormigón armado y sus reglas de cálculo y empleo. En 1904 De Tedesco publica el primer volumen completo sobre hormigón. La primera tesis sobre hormigón estructural la presentó F. Dischinger en 1928, versando dicho trabajo sobre láminas de hormigón para cubrir grandes espacios.

Anuncio cemento, 1903

En España la técnica del hormigón armado también llegó a finales del siglo XIX, desarrollándose simultáneamente con la industria del cemento portland. Nuestro país se situó desde ese momento en las primeras posiciones en el desarrollo internacional de la construcción con hormigón armado. La fabricación de traviesas de ferrocarril por parte de Nicolau en 1891 y el proyecto y construcción en 1893 del depósito de agua de Puigverd (LLeida) por parte del ingeniero Francesc Macià, se consideran las primeras aplicaciones de este material. En los primeros años del siglo XX, otros ingenieros y arquitectos (Ribera, Zafra, Rebollo, Durán, Jalvo, Fernández Casado, Torroja, entre otros) contribuyeron enormemente al desarrollo del hormigón armado en España. Por último, a partir de 1910, se introduce la enseñanza del hormigón armado en la Escuela de Ingenieros de Caminos de Madrid. No obstante, accidentes como el de la construcción del tercer depósito del Canal de Isabel II hizo que estos inicios fueran complicados.

Puente de Ribera (1910) en Valencia de Don Juan (León). http://www.mirame.chduero.es/PHD/Hidro.php?id=196

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ponte Fabricio (Roma)

Puente Fabricio. Imagen: V. Yepes (2016)

El puente Fabricio, o ponte dei Quattro Capi, es un puente que se construyó en el año 62 d.C. sobre el río Tíber. Se trata de un puente de piedra que comunica el Campo de Marte con el lado este de la isla Tiberina. Su nombre se debe a Lucio Fabricio, curator viarum al que se encargó su construcción. Sirvió para reemplazar un puente de madera anterior que se destruyó en un incendio.

El puente tiene una longitud de 62 m y 5,5 m de ancho. Dispone de dos arcos de 24 m de longitud, apoyado en un pilar central en medio del cauce. El pilar central se encuentra aligerado con una gran ventana que permite aumentar el desagüe hidráulico. Los tímpanos están revestidos con ladrillo  los arcos son de piedra caliza blanca, lo cual supone un contraste visual de interés estético. Los arcos son muy esbeltos, lo que unido a sus arranques verticales que quedan debajo de la lámina de agua, dan una imagen ciertamente moderna. Debajo del ladrillo se ve la sillería romana y el interior de las bóvedas también es original. El puente se restauró en el año 1679 por el Papa Inocencio XI.

Uno de los aspectos más interesantes de este puente, desde el punto de vista estructural, es que los arcos no son los típicos de medio punto, sino que se encuentran cerrados sobre sí mismos, formando unas bóvedas circulares que distribuyen las cargas al fondo del cauce y no a la pila, como es habitual. Esta disposición proporciona una fortaleza estructural excepcional reforzada por una doble rosca y arcos que quedan sumergidos por debajo del cauce.

Sección vertical del Puente Fabricio

 

Puente Fabricio. Imagen. V. Yepes (2016)

Reflexiones de Rogelio de Inchaurrandieta en 1899 sobre la teoría y la práctica

D. Rogelio de Inchaurrandieta (1836-1915)

En mis manos ha caído una reproducción del número extraordinario editado el 12 de junio de 1899 por la Revista de Obras Públicas, con motivo del centenario de la creación del Cuerpo de Ingenieros de Caminos, Canales y Puertos, y de su Escuela especial. En dicho número se recogen reflexiones del Director de la Escuela, en aquel momento, D. Rogelio de Inchaurrandieta. No me he resistido a reproducir algunas de dichas reflexiones que, con la distancia y con sentido crítico, deberíamos repasar para disponer de la necesaria perspectiva que supone la actual crisis que atraviesa nuestra profesión. Más en este momento, donde el cambio de modelo (ingeniería de grado, según Bolonia) provoca la renuncia (o la evolución, según otros) a un modelo de enseñanza diferente del que dio origen a la profesión. Son reflexiones sobre la teoría y la práctica en las enseñanzas del ingeniero de caminos de finales del XIX (sic):

Algunos Ingenieros sostienen que la Escuela de Caminos nació con un carácter científico demasiado pronunciado, y que esto ha influído constantemente en el predominio de la teoría sobre la práctica en todas las transformaciones por las que ha pasado.

Creo que mientras haya Ingenieros de Caminos ha de sobreponerse á esa crítica el caluroso aplauso á los fundadores de la enseñanza, que la hicieron arrancar de la expresión más acabada y completa de las ciencias exactas y físicas, como se conocían en aquellos tiempos.

Ya se ha hecho justicia por todos los hombres pensadores al profesorado de las primeras épocas y al ilustre Director de venerada memoria, D. Juan Subercase, no sólo por el éxito alcanzado, sino por la influencia qeu tuvo la Escuela en el cultivo y adelante en España de las ciencias exactas.

El desequilibrio, si lo hubo, entre la teoría y la práctica, obedeció á razones circunstanciales, y no fué óbice para que nuestra profesión naceise pujante y respetada. Timbre preclaro de aquella época, será constantemente la formación del espíritu de Cuerpo, del culto del deber, de la disciplina administrativa y del entusiasmo por la carrera”.

Y añade lo siguiente (sic):

Considero una exageración reñida con la realidad, la supuesta falta de aptitud práctica de los jóvenes que terminan nuestra carrera. Confúndese en esto por mucho el embarazo del que se encuentra por vez primera ante los problemas prácticos, con la carencia de medios para acometer la resolución de los mismos. Lo primero se vence á los muy pocos meses, lo segundo no lo vencerá en muchos años el que no lleve en sí los elementos científicos que esto requiere, y los llamados prácticos confesarán mil veces su impotencia ante problemas mecánicos ó hidráulicos de fácil resolución para nuestros aspirantes.

Contribuyen á mantener ciertas falsas creencias los mismos Ingenieros, que confunden esa pasajera dificultad, fácilmente dominable, con el infranqueable obstáculo del que tuviera que proyectar obras sin el copioso arsenal de enseñanza teórico-práctica que se adquiere en este centro.

No pretende con todo esto decir que los programas de las asignaturas estén todos en su justa medida; lejos de eso, sostengo que hay mucho por hacer, y que esta tarea es perfectible y continua, tratando siempre de arrancar á la ciencia sus más selectas teorías, y establecer el necesario equilibrio entre ese estudio y el amplio campo de las aplicaciones; mantengo, por tanto, ideas reformistas, en lo que no hago más que seguir de lejos á los grandes modelos que he citado; pero al lado de esta opinión, consigno mi protesta contra la tendencia que he visto en algunos, pocos por fortuna, que quisieran sacrificar la teoría á una práctica que, entiéndase bien, jamás sería completa, y que transformaría nuestra Escuela de Ingenieros, verdaderamente tales, en una Escuela de Artes y Oficios”.

Dejo a criterio de cada uno extraer las conclusiones que les parezcan oportunas.

 

 

La Mina de Daroca: el Renacimiento de los túneles

De Musgosos - Trabajo propio, GFDL, https://commons.wikimedia.org/w/index.php?curid=9976266
De Musgosos – Trabajo propio, GFDL, https://commons.wikimedia.org/w/index.php?curid=9976266

Tras el letargo medieval, los túneles, al igual que la cultura, se ven marcados por el Renacimiento. Leonardo da Vinci concibe niveles subterráneos en sus diseños de ciudades y piensa la posibilidad de perforar montañas para llevar agua a través de canales subterráneos. Pero estas ideas se tenían que llevar a la realidad. Ello fue posible con el primer túnel del Renacimiento, la Mina de Daroca, que se convirtió, posiblemente, en una de las obras públicas más importantes del siglo XVI en Europa. Se trata de un túnel de unos 650 m de longitud y 6,7 m de anchura, con una altura variable entre los 7 y 8 m, que atraviesa el cerro de San Jorge. Fue construido entre 1555 y 1560 por el ingeniero, arquitecto y escultor francés Quinto Pierres Bedel, especialista en aquella época en obras hidráulicas, famoso por haber construido el acueducto de Teruel. En el interior del túnel destaca una chimenea de ventilación que salva las presiones de la boca del túnel, zona que está reforzada con un tramo de bóveda construida en piedra de cantería para evitar la debilidad de la zona. Su finalidad era conducir y desviar las aguas torrenciales de la villa aragonesa de Daroca hacia el río Jiloca. De hecho, la calle Mayor de Daroca, que es la calle principal de la ciudad, coincide con el fondo de un barranco, por lo que las fuertes avenidas torrenciales de agua, que son muy frecuentes, discurren por el centro de la ciudad siguiendo el trazado de la calle y ocasionando grandes daños. Además, esta construcción tiene otros usos, como ruta para el ganado y como camino más corto para ir a la zona de pastos. El decreto del 2 de julio de 1968 por el que se declara conjunto histórico-artístico a la ciudad de Daroca incluye, entre otras obras dignas de conservación, la famosa Mina.

Os dejo a continuación un vídeo donde se describe esta obra de ingeniería subterránea. Espero que os interese.

La barca de Lambot, el «Antecessor» del hormigón armado

Lambot
Barca de Lambot

Seguimos con este post otro anterior en el que nos preguntábamos por el origen del cemento artificial. Aquí vamos a dedicar unos minutos a recordar el origen del hormigón armado. Como suele suceder, siempre existe un pionero que se adelanta a su tiempo y un empresario que pone en marcha el negocio. Aquí los dos personajes serán Lambot y Monier, ambos franceses.

La Exposición Universal de Paris de 1855 trajo consigo la presentación de una barca de carcasa metálica recubierto por un hormigón de cal hidráulica. Tenía 4 m de largo, 1.30 m de ancho y un espesor de sólo 4 cm. Este invento se construyó unos años antes, en 1848, por un francés llamado Jean-Louis Lambot (1814-1887) con la idea de utilizarlo en un lago existente de su propiedad en Miraval, al sur de Francia. Lambot se dedicó a la agricultura en la casa de su familia y en 1845 ya hizo un depósito y unas cajas de naranjas con malla recubierta de cemento y otros elementos para mobiliaria de jardín. No pasó de ser una anécdota, pero fue la primera vez que se aplicaron armaduras o flejes de hierro embebidos en el hormigón para intentar subsanar la escasa resistencia a la tracción del hormigón. Con todo, lo que realmente quería nuestro inventor era una malla de almabres trenzados que sirviera de estructura a sus creaciones, aunque se le ocurrió utilizar el cemento -material de moda- como recubrimiento para darle forma, impermeabilidad y rigidez. A este material le llamó «ferciment«, y desde luego, fue el «homo antecessor» del hormigón armado que hoy día conocemos. Continue reading «La barca de Lambot, el «Antecessor» del hormigón armado»

El túnel de Eupalinos en la isla de Samos

https://es.wikipedia.org/wiki/T%C3%BAnel_de_Eupalino
https://es.wikipedia.org/wiki/T%C3%BAnel_de_Eupalino

El túnel de la isla de Samos, en aguas del mar Egeo, es el primero del que se conoce el nombre de su ingeniero, Eupalinos de Megara. Este ingeniero griego es hijo de Naustrophos y es famoso por su habilidad en la construcción de acueductos y túneles, así como por su conocimiento en la aplicación de técnicas matemáticas y geométricas en la construcción. El Túnel de Eupalinos se puede visitar todavía hoy en día y es un importante yacimiento arqueológico y turístico en Samos.

Se trata de una obra de un kilómetro de longitud que trascurre bajo el monte Kastro y que fue construida hacia el 530 a. C., durante el mandato del tirano Polícrates. El túnel se excavó manualmente en roca caliza, con una sección cuadrada de 1,75 m x 1,75 m, y sirvió de apoyo para la construcción del acueducto de la capital de la isla, que hoy recibe el nombre de Pitagoreión, y como vía de escape en caso de asedio. Se extrajeron 7000 m³ de roca, para lo cual se emplearon unos 4000 esclavos, y la construcción del túnel y del acueducto duró más de una década. El historiador Heródoto describió la obra en su Libro III.

El túnel, que estuvo en funcionamiento durante más de mil años, fue considerado una de las siete maravillas del mundo helenístico y, sin duda, una de las obras maestras de la ingeniería de la antigüedad. En efecto, el problema más importante al que se tuvo que enfrentar Eupalinos fue superar los errores en la medición para que los dos equipos que excavaban el túnel desde los dos extremos se encontraran. Finalmente, solo hubo una desviación lateral de 6 m y vertical de 60 cm. A lo largo de la galería todavía se puede ver la línea de nivel que servía de guía para la excavación, con una pendiente bastante regular del 0,4 %. También se conservan inscripciones de los responsables de cada grupo de trabajo a lo largo del túnel. Os propongo que expliquéis cómo se podría realizar el cálculo usando únicamente triángulos rectángulos y alcanzar dicha precisión. Aunque también podéis ver alguno de estos vídeos que os dejo, donde se explica el procedimiento.