La presa Hoover

Presa Hoover. blogdelagua.com

¿Quién se atreve a construir infraestructuras en época de crisis? La Gran Depresión americana no supuso impedimento para realizar una de las obras de infraestructuras más importantes del mundo en aquel momento: la Presa Hoover.

La Presa Hoover es una presa de hormigón de arco-gravedad, ubicada en el curso del río Colorado, en la frontera entre los estados de Arizona y Nevada (EE. UU.). Está situada a 48 km al sureste de Las Vegas. La presa tiene una altura de 221,4 m y una longitud de 379,2 m. Se tuvieron que emplear 3,33 millones de metros cúbicos de hormigón, conformando un grosor en la base de 200 m y de solo 15 m en coronación. El nombre de la presa se debe a uno de sus impulsores, Herbert Hoover, que llegó a ser Presidente de Estados Unidos. La construcción comenzó en 1931 y fue completada en 1936, dos años antes de lo previsto. El lago creado aguas arriba recibe el nombre de Lago Mead, en honor de Elwood Mead, ingeniero que previó la necesidad de la presa.

El día 11 de marzo de 1931 se firmó el contrato de arrendamiento a seis empresas constructoras para la creación de la Hoover Dam. Durante los siguientes cinco años, un total de 21.000 hombres trabajaron sin cesar para producir la que sería la presa más grande de su tiempo, así como una de las mayores estructuras hechas por el hombre en el mundo. Antes de dar comienzo a los trabajos sobre el terreno había que resolver no únicamente la cuestión del transporte de materiales, sino también la organización de las plantillas de obreros, que se encontrarían en una zona situada en pleno desierto, aún más inhóspita por el hecho de que la construcción de la presa debía iniciarse a 224 m bajo el borde del cañón.

Se construyeron dos ataguías para aislar y proteger la obra de las inundaciones. Tras completar los túneles del lado de Arizona y de desviar el río, lo trabajos adquirieron un ritmo más rápido. La excavación de la presa se realizó sobre roca sólida, retirándose un total de unos 1.150.000 m³ de material. Para desviar el flujo del río alrededor de la obra de construcción, se construyeron cuatro túneles de derivación por las paredes del cañón de 17 m de diámetro, dos sobre el lado de Nevada y dos sobre el lado de Arizona. Su longitud total de los túneles fue de casi 4880 m.

En la construcción de la presa se tuvo que afrontar un problema muy importante, que era disipar el calor producido por el curado del hormigón. Los ingenieros calcularon que si la presa fuera construida en un solo bloque, el hormigón habría necesitado 125 años para enfriarse a temperatura ambiente. Las tensiones resultantes habrían agrietado la presa y esta se habría destruido. Por ello su construcción se hizo en ménsulas trapezoidales y se tuvo que acelerar la refrigeración del hormigón con tubos de acero de una pulgada por donde circulaba el agua del río. Según se enfriaban los bloques, las tuberías de refrigeración se cortaban y se rellenaba de lechada. En total hicieron falta casi 1.000 km de tuberías para enfriar toda la estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La rehabilitación de la ruta más peligrosa del mundo: El Caminito del Rey

Caminito del Rey. Wikipedia.

El transporte de materiales a una obra normalmente se hace por carretera, alguna vez por ferrocarril o en embarcaciones, pero rara vez con medios aéreos. En este caso se trata de la rehabilitación del Caminito del Rey, considerada durante algún tiempo el camino más peligroso del mundo. Se trata de un paso peatonal construido en las paredes del desfiladero de los Gaitanes, en El Chorro, entre Álora y Ardales, en la provincia de Málaga (España). Tiene una longitud de 3 km con largos tramos con una anchura de apenas 1 m colgando hasta 100 m de altura sobre el río, en unas paredes casi verticales.

Las necesidades de mantenimiento de los saltos del Gaitanejo y del Chorro, obligaron a la Sociedad Hidroélectrica del Chorro a construir entre 1901 y 1905 un acceso entre ambos a través del desfiladero de los Gaitanes, cordillera Bética, Málaga. Cuatro años se tardó en abrir un camino a lo largo de los trece kilómetros de la garganta abierta por el río Guadalhorce, que muestra dos estrechamientos con una zona abierta entre ambos. El situado en el lado sur es el más espectacular de ambos. Fue en mayo de 1921 cuando Alfonso XIII recorrió esta pasarela para asistir a la inauguración del Embalse del Conde del Guadalhorce, título que el Rey dio al ingeniero responsable de aquella obra.

El paso del tiempo y el abandono de su mantenimiento hizo mella en el Caminito: en los años 90 presentaba un estado lamentable, con la barandilla desaparecida en casi todo su recorrido, numerosas secciones derrumbadas y las que quedaban amenazando con hacerlo. Precisamente fue su peligrosidad uno de los factores que contribuyó a su fama. Muchos excursionistas se dirigían a El Chorro para recorrer el Caminito (aunque también por su zona de escalada, una de las más importantes de Europa). Esto propició numerosos accidentes (algunos mortales) a lo largo de los años y acrecentó su leyenda negra.

Os paso un par de vídeos. Uno sobre el transporte de materiales y otro sobre el propio Caminito del Rey.

¿Qué aportó el Antiguo Egipto a la ingeniería?

Pirámide de Kefrén y la Gran Esfinge de Guiza. Imagen: Ian Sewell (2014) https://commons.wikimedia.org/wiki/File:SphinxGiza.jpg

Es difícil calcular el número de artículos, posts, comentarios o reportajes sobre las pirámides o sobre el Antiguo Egipto. Algunos muy serios, otros rozando lo exotérico. Aquí, evidentemente, no podemos más que dar dos pinceladas sobre el tema. Sin embargo, tras otros posts que ya hemos hecho sobre la ingeniería de otros tiempos, es imposible saltarnos esta época tan determinante. Vamos, pues, a ello.

La piedra se trabajó desde muy antiguo en civilizaciones como Mesopotamia, Egipto o América Central, con estructuras que han llegado hasta hoy. Los egipcios tenían a su disposición excelentes canteras de piedra y un buen sistema de transporte a través del Nilo, además de una gran fuerza de trabajo. Todo ello les permitió convertirse en el primer pueblo capaz de construir en piedra a gran escala, como fue el caso de los templos y las pirámides. No menos grandiosas fueron algunas de sus obras como el muro que rodeaba Menfis, antigua capital a sólo 19 km de El Cairo actual. Allí además se hizo necesaria la construcción de diques y canales, además de sofisticados sistemas de regadío que propiciaron la agrimensura y la matemática correspondiente. Un ejemplo de artilugio que inventaron en aquella época, y que incluso aún se utilizan hoy día, es el “shaduf” que servía para elevar el agua cuando a las tierras de cultivo.

Cigoñal egipcio pintado en la tumba de Ipuy. Deir el-Medina. Fuente: https://commons.wikimedia.org/wiki/File:Ipuy_shaduf.jpg

La mayor pirámide fue la de Keops, construida entre los años 4235 y 2450 a.C. Tenía 230,4 m por lado en la base cuadrada y originalmente medía 146,3 m de altura. Contenía unos 2 300 000 bloques de piedra, de cerca de 1,1 toneladas en promedio. Teniendo en cuenta el conocimiento limitado de la geometría y la falta de instrumentos de ese tiempo, fue una proeza notable. Basta indicar que solo se cometió un error máximo de unos 6 minutos de arco respecto a la alineación norte sur, este oeste, mientras que la base no fue un cuadrado perfecto por solo 17,78 cm. Se trata de un monumento capaz de resistir 6000 años, representando un hito de la capacidad técnica de los humanos. El probable método de construcción de las pirámides se basaba en la construcción de rampas provisionales por las que se arrastraban las piedras sobre rodillos de madera, aunque incluso hoy en día resulta asombroso que se pudiera dar una productividad tan alta en los trabajos, capaz de levantar dichos monumentos en tiempos tan cortos de tiempo. Algunos bloques, de hasta 120 toneladas, se arrastraban por ciertos de hombres sobre rampas inclinadas construidas de ladrillo, cuya superficie de barro humedecían para hacerla más resbaladiza. Los equipos de arrastre utilizaban cuerdas tejidas con papiros retorcidos.

La Gran Pirámide de Guiza. Imagen: Nina Aldin Thune (2005). Fuente: https://commons.wikimedia.org/wiki/File:Kheops-Pyramid.jpg

En estas fechas tan remotas, los antiguos ya conocían las ventajas de cimentar en roca o en terreno estable. Así, la gran Pirámide de Keops fue cimentada en una superficie rocosa nivelada. Parece ser que el primer camino que registra la historia es el que construyó este faraón, para transportar los materiales para la construcción de su pirámide. Las grandes losas empleadas en este camino indican que los egipcios eran ya conscientes de la necesidad de repartir las cargas sobre el terreno, con objeto de no superar su capacidad portante. Resulta sorprendente comprobar que la construcción de las pirámides, que se inició sobre el año 3000 a.C. durara solo unos cien años. Estas estructuras antiguas únicamente son comparables a la Gran Muralla China.

Los autores de las obras públicas más antiguas son anónimos. El nombre del primer ingeniero conocido fue Imhotep, constructor de la pirámide de peldaños en Saqqara (Egipto) hacia el 2650 a.C. Tal fue su sabiduría y habilidad que se le consideró como un dios tras su muerte. A partir de este momento y mientras estuvo en vigor la antigua civilización egipcia, fue normal que quedara constancia de los nombres de los autores de sus principales monumentos, que ocupaban altísimos cargos en la corte real y estaban vinculados a la clase sacerdotal.

Los templos eran producto de sucesivas fases constructivas, remodelados periódicamente para crear conjuntos cada vez más grandiosos. En el templo de Amón en Karnak, Egipto (1530-323 a.C.), los edificios se dispusieron en la ruta que enlazaba el embarcadero del Nilo con el templo de Luxor. Este conjunto se levantó a lo largo de 1200 años y ocupó una superficie de 21,4 hectáreas. Para su construcción, el edificio se iba rellenando de tierra a medida que se construía, formando un plano sobre el que erigir los bloques y dinteles de piedra. Al finalizar se excavaba la tierra, haciendo surgir el volumen de su interior.

Avenida de esfinges en la entrada del templo de Luxor. Imagen: Jerzy Strzelecki (2005). Fuente: https://commons.wikimedia.org/wiki/File:Kheops-Pyramid.jpg

Tras Imhotep, los egipcios, persas, griegos y romanos desarrollaron la ingeniería civil de una forma empírica, pero basándose en la aritmética, la geometría y en unos incipientes conocimientos físicos. Con todo, resulta incomprensible que la obra de estos ingenieros no se reconociese como obras de ingeniería, sino, acaso, como arquitectura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La presa de Jawa, posíblemente la más antigua documentada

Sistema hidráulico de Jawa (Jordania). https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

¿Una presa en la Edad del Bronce? Como vamos a comprobar a continuación en este breve artículo, resulta sorprendente ver cómo en aquella época se empezaron a manejar, de forma totalmente intuitiva, conceptos básicos en ingeniería de presas como el de núcleo, impermeabilización, etc.  Lo cierto es que, hace 5000 años, apareció una ciudad en medio del desierto que pudo tener perfectamente 2000 habitantes y cuya supervivencia se debió a una gestión inteligente del agua. Y cuya desaparición ocurrió cuando este sistema de suministro sucumbió.

Siempre resulta arriesgado afirmar cuál ha sido la primera vez que alguien ha hecho algo. Lo mismo ocurre con las construcciones, y en particular, las presas. En este caso, vamos a dedicar unas líneas a las presas más antiguas conocidas, localizadas en Jawa, a unos 100 km al nordeste de la capital jordana de Ammán. Se trata de un sistema de suministro de agua que se construyó alrededor del 3000 a.C. que tuvo un breve pero intenso esplendor en aquella época. Realmente se trataba de cinco embalses, con una capacidad conjunta próxima a 46.000 m3, capaces de generar un espacio habitable en medio del desierto. La idea era captar las escorrentías de lluvias en los cortos inviernos y de las pequeñas cuencas hidrográficas a través de Wadi Rajil, que alcanza a recoger 2.000.000 m3 en la actualidad y es probable suponer que en el pasado manejaban los mismos volúmenes, de los cuales solo el 3% s distribuía para la ciudad de Jawa.

Pero quizá lo que más nos interesa, por ser una construcción innovadora en su momento, es la presa mayor, de gravedad. Las presas y canales, aunque rudimentarias para los estándares modernos, estaban más allá de la capacidad de los agricultores y fueron construidas por sociedades organizadas en comunidad. Otras obras de gran escala, incluyeron sistemas de diques para minimizar los daños de las inundaciones. Su construcción se basa en una estructura de dos muros de mampostería seca con un núcleo de tierra. Tenía una altura de 4,50 m, una longitud de 80 m en coronación y un grosor en el núcleo de la presa de 2 m. En el frente del talón, aguas arriba de la presa, se dispuso una capa impermeable. La estabilidad de la estructura se consiguió con un terraplén aguas abajo. La elevación de la presa un metro más fue siguiendo los mismos principios, aunque el ancho del núcleo de tierra se incrementó a unos 7 m. Se dispuso un relleno de roca detrás del muro de aguas arriba para facilitar el drenaje durante el vaciado del embalse. De esta manera la pared fue protegida contra los riesgos de presiones traseras del agua.

Sección transversal de la presa Jawa. https://historiacivil.wordpress.com/2012/09/28/presa-de-jawa/

 

Por razones aún desconocidas, la ciudad sucumbió tan rápido como creció, quizá víctima de su propio éxito, por una presión demográfica excesiva sobre los sistemas de abastecimiento de agua.

 

Evolución histórica de la fabricación de mezclas bituminosas

www.aecarretera.com

Los orígenes de las mezclas bituminosas empleadas en firmes asfálticos se remontan a 1830, cuando el alquitrán se utiliza en algunos riegos superficiales en la pavimentación de carreteras. Sin embargo, los primeros aglomerados realizados in situ con alquitrán se ejecutaron hacia 1850 en algunas carreteras y vías urbanas del Reino Unido. A partir de ese momento la técnica se desarrolla en paralelo con la iluminación con gas ciudad, en cuya fabricación se obtiene dicho ligante como subproducto.  En España se pavimentan con alquitrán las zonas peatonales de la Puerta del Sol de Madrid entre 1847 y 1854. En torno a 1870, en Estados Unidos, se empiezan a utilizar mezclas fabricadas a partir de rocas asfálticas y de asfaltos naturales, si bien estos materiales ya habían sido empleados en algunas pavimentaciones en Burdeos y Lyon en 1810. Más tarde como consecuencia del desarrollo de la industria del petróleo se comienza a emplear betunes de destilación.

A finales del siglo XIX el norteamericano C. Richardson sentó las bases de la tecnología de las mezclas bituminosas para pavimentación. Después de la I Guerra Mundial surge la industria de la fabricación en central de las mezclas bituminosas, aunque es después de la II Guerra Mundial cuando se produce un gran desarrollo tecnológico de estos materiales, debido principalmente a las grandes necesidades de construcción acelerada de pistas de aterrizaje militares.

En España empiezan a ejecutarse de forma significativa pavimentos con mezclas bituminosas a partir de 1926, año en el que se programó la pavimentación con mezclas bituminosas de 223 km de carreteras dentro del Circuito Nacional de Firmes Especiales. Os recomiendo a este respecto un excelente artículo sobre los pavimentos de las carreteras españolas en el siglo XX, del profesor Miguel Ángel del Val.

 

Mapa de carreteras dentro del Circuito Nacional de Firmes Especiales (1926). Wikipedia

Obras de rectificación de trazado, con la supresión de una curva peligrosa, en la Carretera Nacional IV. Años cincuenta. http://carreterashistoricas.blogspot.com.es/

El primer paso para mejorar las infraestructuras viarias se da en 1950 con la aprobación del Plan de Modernización de las Carreteras. Esta época se caracteriza por el crecimiento del parque de vehículos y por una discreta mejora de las carreteras. Las plantas que se empezaron a construir en estos años eran muy rudimentarias. Se alimentaban con carretillas con las que se hacía una predosificación de los áridos en frío, se clasificaba con trómeles, el asfalto se medía en una cubeta con un índice que marcaba el volumen, que se vertía a continuación por volteo a mano. En esta época el dominio absoluto es de las plantas discontinuas tanto para los contratistas como para las administraciones. Las plantas continuas, en las que la mayor parte de sus elementos son similares a las plantas discontinuas, (alimentación en frío, tambor secador, clasificación en caliente) sólo se diferencian en la alimentación en caliente continua y en el mezclador en continuo de los áridos, asfalto y filler, a pesar de esto, este tipo de plantas se emplearon con ciertas reservas, injustificadas ya que producían un aglomerado de excelente calidad.

Entre los años 1960 y 1970 se producen algunos hechos que suponen un avance tecnológico de gran calado de las plantas asfálticas:

  • Se produce la liberalización de la importanción de maquinaria de construcción, lo que permite el uso de máquinas modernas, de gran producción.
  • El arranque, en 1967, del Plan de Mejora de la Red de Itinerarios Asfáticos (plan REDIA) y la construcción de las primeras autopistas en España. Se empiezan a modernizar las carreteras -la mayoría en muy malas condiciones-, en su mayoría constituidas con firmes con tratamiento superficial, pocas con aglomerado y algunas de adoquín. Este hecho provoca la adquisición de maquinas modernas y eficientes por parte de las constructoras.
  • El inicio de la fabricación mixta en España de las plantas asfálticas. Se empieza por construir elementos sencillos (tolvas, silos, etc.), estructuras y alguna marca acaba construyendo las plantas con una fabricación total.

 

Fresadora de asfalto. https://pavimentosyasfaltos.es/fresado-de-asfalto/

Hacia los años 70 se alcanza en España la madurez en la técnica de las mezclas bituminosas en caliente en España. Atrás quedan los firmes de macadam, revestidos o no con riegos con gravilla. Entre 1970 y 1980 se completa el plan REDIA. Este período se ve marcado por la crisis del petróleo que provoca una conmoción mundial. La crisis alcanza a nuestro país con una subida sin precedentes hasta entonces de los precios del crudo que modifica todos los planes sobre infraestructuras para el transporte. Una de las formas de ahorrar energía es el reciclaje de parte de los materiales existentes, áridos y asfalto, en las capas asfálticas deterioradas. Las máquinas fresadoras arrancan el material calentándolo con rayos infrarrojos, aunque produciendo una oxidación adicional del asfalto. La técnica se perfecciona con fresadoras en frío. Al terminar la fresadora su labor, la superficie queda en muy buenas condiciones para recibir las capas siguientes y se obtiene un producto aprovechable, por su tamaño, directamente en las plantas asfálticas. Cuando se fresan pavimentos muy deteriorados, es frecuente utilizar una machacadora para reducir el tamaño del material e introducirlo en las plantas asfálticas.

Uno de los problemas que surgen al aprovechar el material reciclado frío es su incompatibilidad con las plantas discontinuas. Ello obliga a sobrecalentar los áridos vírgenes añadidos, aunque ello oxida el asfalto y le hace perder volátiles. Además el calentamiento del material reciclado produce otros problemas, lo que obliga al uso de otro tipo de instalaciones: las plantas tambor secador-mezclador. Estas plantas permiten, mediante la alimentación central, el aporte del material reciclado en una zona protegida del contacto directo de la llama por la cortina del material virgen. Este hecho favorece que el material recuperado pueda reciclarse en proporciones importantes. Este tipo de plantas ofrecen aún más ventajas, entre ellas la sencillez, ya que sólo hay una dosificación, mientras que en las plantas de tipo discontinuo hay una dosificación en frío, luego una clasificación y posteriormente otra dosificación en caliente. Otra ventaja es el menor tamaño, por lo tanto el transporte es más fácil y económico. Son más fáciles de montar, de conservar y tienen un menor consumo energético, que en estos momentos, no debemos olvidar, es una de las grandes preocupaciones. Y por último son más baratas a la hora de adquirirlas que las discontinuas, por lo tanto presentan una mayor rentabilidad económica.

Posteriormente en España se llega a un descenso de la construcción que empieza a remontar en 1984, donde aumenta la construcción en un 10 – 12 %. A principios de los 80 se venden en España, no sin cierta dificultad, las primeras plantas de tambor secador-mezclador. Los fabricantes de plantas discontinuas alertan sobre los problemas que pueden producirse en las plantas tambor secador-mezclador, uno de los cuales es que, debido al escaso tiempo de permanencia de los áridos en el tambor dedicado al secado, éstos quedan con cierta humedad. Esto es respondido por los defensores de las plantas tambor secador-mezclador con la emulsión inversa, diciendo que, al emulsionarse la humedad residual con el asfalto, se facilita la adherencia y se producen mezclas de gran calidad, lo que implica que este tipo de plantas sean aceptadas. Los inconvenientes que presentan es la deficiente clasificación de los áridos, el exceso de filler sobrante que hay que eliminar y la pérdida de volátiles del betún, entre otros. El primer inconveniente es debido a que las canteras no están preparadas, lo que provoca que las plantas de áridos sean incapaces de abastecer al ritmo necesario.

CZWl8c-UMAE6-T_

 

En estos años el medio ambiente empieza a ser un tema central. Para evitar la contaminación atmosférica se procede a la instalación de filtros de mangas; hasta este momento se utilizan los sistemas de depuración por vía húmeda, pero no son capaces de solucionar la contaminación por polvo sobrante y volátiles. Estos filtros cumplen la normativa y se empiezan a utilizar, pero los volátiles y las pequeñas partículas de asfalto arrastradas por el tiro, impregnan las mangas, lo que obliga a costosos lavados y sustituciones. En las plantas tambor secador-mezclador es necesario utilizar un silo de producto terminado, para enlazar el proceso continuo de producción con el proceso discontinuo de carga de camiones. Estos silos pueden ser de aislamiento simplemente o pueden tener calentamiento, lo cual permite el almacenamiento de hasta dos días o más. Para almacenamientos prolongados se proveen atmósferas inertes para evitar la oxidación del aglomerado. Si los silos tienen gran altura se disponen de sistemas para evitar la segregación.

Por otro lado, los fabricantes de plantas discontinuas siguen mejorando para adaptarse al mercado. Además de mejorar en muchos aspectos como ser más fáciles de montar, de transportar, etc., ofrecen sobre todo la posibilidad de añadir aditivos en la mezcladora, algo que no es posible en las plantas tambor secador-mezclador por las altas temperaturas en la zona de mezclado. Frente a esta mejora, las plantas tambor secador-mezclador incorporan una mezcladora continua adicional a la sólida del tambor, para permitir la incorporación de aditivos. Otras trabajan en independizar la zona de secado y la zona de mezclado.

Los años 90 suponen un aumento muy fuerte en la licitación de carreteras en España, con el objetivo de alcanzar un nivel similar al resto de los países de la Unión Europea. La competencia entre plantas discontinuas y plantas tambor secador-mezclador sirvieron para mejorar de forma notable las mezclas asfálticas, aumentando las exigencias de fabricación, tanto técnicas como económicas, ecológicas y de seguridad. Hay que resolver problemas de contaminación atmosférica por polvo, por óxido de nitrógeno, contaminación acústica en los tambores, quemadores y ventiladores, y el aprovechamiento de productos reciclados con alimentación de aditivos. En cuanto a la seguridad: protección en las instalaciones eléctricas, en las partes en movimiento y en las zonas calientes susceptibles de producir quemaduras; atención a los depósitos de ligante y de combustible, y a los quemadores.

Referencias:

Kraemer, C.; Del Val, M.A.; Pardillo, J.M.; Rocci, S.; Romana, M.G.; Sánchez, V. (2004). Ingeniería de Carreteras. Vol II. Mc Graw Hill, Madrid.

El Canal de Suez

Grabado realizado en 1881 del canal de Suez. Wikipedia

El canal de Suez es una vía artificial de navegación situada en Egipto que une el mar Mediterráneo con el mar Rojo. Su longitud es de 163 km entre Puerto Saíd (en la ribera mediterránea) y Suez (en la costa del mar Rojo). Esto hizo posible permitir un tránsito marítimo directo entre Europa y Asia, eliminando la necesidad de rodear toda África como venía siendo habitual hasta entonces, lo que impulsó un gran crecimiento en el comercio entre los dos continentes.

Las obras de excavación del canal se iniciaron oficialmente el 10 de abril de 1859 promovidas por el francés Ferdinand de Lesseps, autorizado por las autoridades egipcias de la época. Fue inaugurado en 1869. En el momento fue realizada una de las más grandes obras de la ingeniería del mundo por decenas de miles de nativos (fellahs) llevados por la fuerza desde todas las regiones de Egipto. Al principio no se disponía de maquinaria y todo tenía que hacerse a mano. Mueren miles de personas por fatiga, ritmo de trabajo, clima tórrido, cólera, zona sin agua, etc. El trabajo se aceleró después de la introducción de las dragas de cangilones. Al final de 1865 se contabilizan, entre Puerto Saíd y Suez 50 dragas, 20 grúas de vapor, 129 barcazas, 30 aparatos elevadores y 20 locomotoras. El 17 de febrero de 1867 un primer barco atravesó el canal, aunque la inauguración oficial se realizó el 17 de noviembre de 1869 con la presencia de la emperatriz Eugenia de Montijo.

La construcción del canal de Suez marcó un hito en la historia de la tecnología ya que, por primera vez, se emplearon máquinas de excavación especialmente diseñadas para estas obras, con rendimientos desconocidos hasta esa época. En algo más de dos años se excavaron más de 50 millones de metros cúbicos, de los 75 millones del total de la obra.

Vista del Canal de Suez. http://olinalzin18.wordpress.com/

La ingeniería española también estuvo implicada en la construcción del canal con Cipriano Segundo Montesino, Eduardo Saavedra y Nemesio Artola. En este enlace podéis leer un poco más al respecto. Para conocer más detalles sobre el Canal de Suez, puedes visitar la web oficial de Suez Canal Authority (en inglés, pero altamente recomendable).

Algunos datos desde su inauguración:

  • 1869, inauguración
  • 1875, gobierno británico compra las acciones egipcias
  • 1888, por convenio internacional canal abierto a todas las naciones
  • 1936, Británicos reciben los derechos de mantener fuerzas militares en el canal
  • 1948, egipcios regulan uso de canal por barcos que sirven a puertos israelitas
  • 1954, acuerdo para retirada británica a los 7 años
  • 1956, junio, retirada británica
  • 1956, 26 de julio, Egipto nacionaliza el canal
  • 1956, 31 de octubre, ataques de Francia y Gran Bretaña para abrir el canal a todos los barcos. Egipto amenaza con hundir 40 barcos que había en el canal
  • 1957, marzo, reapertura del canal, O.N.U. interviene
  • 1967, junio, guerra de los seis días, cierre del canal
  • 1975, 5 de junio, reapertura del canal
  • 1979, uso sin restricciones para Israel tras acuerdo de paz

Pero lo mejor será ver el vídeo que nos presenta la serie Megaestructuras, del Canal Historia. Espero que os guste.

También os dejo un “timelapse” sobre el recorrido del canal.

 

Efectos estructurales del megaterremoto de Chile

Terremoto de Chile de 2012. Wikipedia

Acabamos de conocer la noticia de un nuevo terremoto en el norte Chile a las 20.46 hora local del martes 1 de abril de 2014, de magnitud 8,2 en la escala de Richter y de larga duración. Esta noticia sirve de nexo para analizar el megaterremoto que tuvo lugar en el 2010. En efecto, el Terremoto de Chile de 2010 fue un sismo ocurrido a las 03:34:08 hora local (UTC-3), del sábado 27 de febrero , que alcanzó una magnitud de 8,8 MW. El epicentro se ubicó en el Mar chileno, frente a las localidades de Curanipey Cobquecura, cerca de 150 kilómetros al noroeste de Concepción y a 63 kilómetros al suroeste de Cauquenes, y a 30,1 kilómetros de profundidad bajo la corteza terrestre. El sismo tuvo una duración de 3 minutos 25 segundos, al menos en Santiago y en algunas zonas llegando a los 6 minutos. Fue percibido en gran parte del Cono Sur con diversas intensidades, en lugares como Buenos Aires y São Paulo por el oriente.  Las víctimas llegaron a un total de 525 fallecidos. Cerca de 500 mil viviendas están con daño severo y se estiman un total de 2 millones de damnificados, en la peor tragedia natural vivida en Chile desde 1960. El sismo es considerado como el segundo más fuerte en la historia del país y el sexto más fuerte registrado por la humanidad. Sólo es superado a nivel nacional por el cataclismo del terremoto de Valdivia de 1960, el de mayor intensidad registrado por el ser humano mediante sismómetros. El sismo chileno fue 31 veces más fuerte y liberó cerca de 178 veces más energía que el devastador terremoto de Haití ocurrido el mes anterior, y la energía liberada es cercana a 100.000 bombas atómicas como la liberada en Hiroshima en 1945.

Este terremoto causó graves daños en las edificaciones del centro del país.  Se ha visto en la práctica el funcionamiento sísmico del universo de edificaciones existentes en la zona, en todos sus sistemas de estructuración, materiales y usos. En lo que compete a la Ingeniería Estructural ha sido un tiempo de aprendizaje, de observación de los distintos tipos de fallas, del comportamiento variado de los materiales y también de los defectos constructivos. Ha generado la necesidad de confeccionar un catastro de las edificaciones, basándose en su daño estructural, estudiar edificios completamente colapsados, otros que han quedado con serios problemas estructurales y aquéllos que mediante reparaciones menores, podrán seguir siendo habitados. Las edificaciones que requieran ser demolidas, precisan la realización de proyectos de ingeniería, la disposición de importantes recursos económicos y técnicos, y medidas de seguridad extremas para salvaguardar a la población. Este escenario obliga a poner en ejercicio las diferentes técnicas de reparación, de acuerdo a los distintos materiales de construcción y sobre la base de las tecnologías existentes. El objetivo planteado ha sido darles nuevamente las características de resistencia que eviten su colapso ante nuevas solicitaciones sísmicas.

A continuación os paso un vídeo realizado por la Universidad Politécnica de Madrid donde Richard Leonardo Zapata Garrido explica este terremoto y sus consecuencias desde el punto de vista ingenieril. Espero que os guste y os sea útil.

La construcción románica

Exterior de la Colegiata de Santa Cruz en Castañeda, en Cantabria. Wikipedia

Se llama estilo románico en arquitectura al resultado de la combinación razonada y armónica de elementos constructivos y ornamentales de procedencia latina, oriental (bizantinos, sirios, persas y árabes) y septentrional (celtas, germánicos, normandos) que se formó en la Europa cristiana durante los primeros siglos de la baja Edad Media como consecuencia de la prosperidad material y de la renovación espiritual y abarca los siglos XI al XIII.

No es el objetivo de este post desarrollar las características de este estilo arquitectónico. Lo que pretendo es presentar un vídeo donde Peridis nos presenta el proceso completo de la construcción de esta época a través de algunas iglesias románicas de Castilla-León: la elección del lugar, la contratación del maestro albañil, la búsqueda y traslado de los materiales y, finalmente, la construcción del templo. Espero que os guste.

 

 

 

La construcción de las grandes catedrales

Catedral de León. https://es.wikipedia.org/wiki/Catedral_de_Le%C3%B3n

El cristianismo hizo desarrollar la construcción en expresiones tan maravillosas y sacras como las catedrales góticas y el Islam las construcciones y mezquitas musulmanas. Los ingenieros medievales elevaron la técnica de la construcción, en la forma marco gótico y los arbotantes, hasta alturas desconocidas por los romanos. La mayoría de las catedrales góticas presenta una estructura optimizada desde el punto de vista geométrico y compositivo ante las necesidades resistentes motivadas por la acción gravitatoria. Sus constructores supieron extraer el mayor provecho del material para ellos disponible, otorgando a los elementos unas dimensiones y unas esbelteces que prácticamente se hallan en el extremo de lo razonablemente posible. Lo más admirable es que dichos constructores no tuvieron la capacidad de cálculo de la que se dispone en la actualidad.

Los estilos arquitectónicos de la Edad Media, el románico y el gótico, se caracterizan fundamentalmente por la utilización de la bóveda de piedra para cubrir los espacios públicos, tanto religiosos como civiles. El románico utiliza la bóveda de cañón y la bóveda por arista, y el gótico las bóvedas nervadas de crucería.

Os dejo a continuación un par de vídeos sobre la construcción de las grandes catedrales, que espero os gusten.

La prefabricación revoluciona los procedimientos constructivos

Hábitat 67. Moshe Safdie, Montreal 1967

En ocasiones asociamos la prefabricación con una baja calidad cuando pensamos en los típicos barracones de obra. Sin embargo esta visión se encuentra alejada de la realidad. Lo cierto es que el control de calidad en fábrica y las modernas técnicas constructivas permiten realizar construcciones prefabricadas con una fiabilidad igual o mayor que la conseguida con la construcción tradicional.

Después de la II Guerra Mundial las necesidades de reconstrucción llevaron a diversos países a intentos sucesivos de dar el salto para industrializar la propia construcción. De este modo se desarrolla la prefabricación, con el objeto de reproducir en la edificación lo que en los años veinte había conseguido Ford con los automóviles, si bien los primeros antecedentes hay que buscarlos en el año 1905, cuando los establecimientos Edmond Coignet iniciaron la prefabricación de piezas moldeadas de hormigón. Hacia el año 1925 hizo su aparición el procedimiento de fabricación de tubos por centrifugación. En la Unión Soviética y en los países de su órbita, aunque también en Israel y, en menor medida, en países occidentales, como Francia, se desarrolló una prefabricación pesada, cerrada en sí misma, que consiguió racionalizar procesos y abaratar costes, con el inconveniente generalizado de caer en la repetición y la monotonía. En España se vieron ejemplos en la proliferación de pasos superiores de vigas prefabricadas con la construcción de las primeras autopistas de pago en la década de los 70 y 80. Más inteligente y con más posibilidades fue el desarrollo de una prefabricación abierta, donde diversos componentes pueden utilizarse en sistemas abiertos y variados.

Os dejo algunos vídeos donde se han conseguido batir récords constructivos con la prefabricación, como el que ha conseguido realizar un hotel en sólo dos días en China. Espero que os gusten.