Una chimenea es una excavación de dimensión reducida y una inclinación superior a los 45º. Son típicas en minería y su longitud pueden superar los 100 m. Normalmente, se utilizan para unir galerías de distinto nivel cerrando los circuitos de ventilación para el paso de mineral y estériles.
Un método para la excavación de chimeneas es el denominado “Jaula Jora”, que consiste en una máquina construida por Atlas Copco específicamente para este fin. Sus principales componentes son la plataforma de trabajo, la jaula de transporte, el mecanismo de elevación y en chimeneas inclinadas el carril guía.
El procedimiento constructivo consta de varias fases. En la primera se perfora un barreno piloto (75-100 mm de diámetro) y en la segunda se montan los equipos y herramientas. Posteriormente, en la tercera fase, tiene lugar la perforación y la voladura.
El campo propicio para este método está entre los 30 y 100 m. El problema que podemos tener es la desviación del barreno piloto. Además, en cada pega debe desengancharse la jaula. El barreno central tiene la ventaja de que permite la entrada de aire fresco y de que sirve de hueco de expansión en los cueles paralelos, con los que se consiguen avances de entre 3 y 4 m por disparo.
Dulcinea (Herrenknecht EPB Shield S-300). 4.364 toneladas de peso, longitud: 100 m (aprox.), diámetro exterior: 15,20 m, empuje: 316.000 kN, rendimiento máximo: 36 m/día y una potencia de 22.000 kW
Las tuneladoras EPB (en inglés, Earth Preasure Balance), son escudos de presión de tierras que se utilizan normalmente en la excavación de terrenos cohesivos. Pertenecen al grupo de tuneladoras que denominamos escudos, y que se diferencian de los topos por la carcasa metálica exterior que sostiene provisionalmente el frente de avance hasta que se coloca el sostenimiento definitivo. Los escudos EPB han sido utilizados con éxito en la construcción de túneles, aunque también puede utilizarse con la técnica de hinca de tubos. Como ventajas se encuentran sus elevados rendimientos, trabajando incluso bajo el nivel freático, su versatilidad y respeto medioambiental, aunque requieren de una elevada inversión económica.
El sostenimiento del frente de excavación se realiza con la propia tierra excavada, que se aloja en una cámara de extracción para mantener la presión sobre el frente y minimizar asientos en superficie. Esta función se puede reforzar añadiendo espumas al material extraído, lo cual amplía la aplicabilidad de la máquina, al aumentar la plasticidad de los terrenos.
El material se extrae mediante un tornillo de Arquímedes, que en función de su velocidad de extracción y bajo el control de la fuerza de avance proporcionada por los cilindros de propulsión, permite controlar la presión de balance de las tieras. El material excavado se deposita en una cinta transportadora a través de un tornillo sinfín. El transporte del material al exterior se realiza mediante vehículos sobre raíles o camiones.
El sostenimiento definitivo del túnel se consigue mediante un revestimiento de dovelas prefabricadas, formadas normalmente por unas siete piezas. En el siguiente enlace, se muestra un esquema con los componentes principales de nuestra tuneladora EPB para la colocación de dovelas.
Esquema básico de un escudo EPB
1. Rueda de Corte.
2. Accionamiento.
3. Cámara de excavación.
4. Sensor de presión.
5. Esclusa de aire comprimido.
6. Erector de dovelas.
7. Dovelas.
8. Cilindros de propulsión.
9. Cinta transportadoras
10. Sinfín de extracción.
Esta máquina puede dividirse en tres partes principales: el escudo y rueda de corte, el back up y el tren de avance. El escudo es la parte principal, donde se encuentra la rueda de corte, los cilindros de empuje y los de guía; también se aloja en esta parte el tornillo sinfín y el erector de dovelas, entre otros. El back up, que normalmente tiene más de 80 m de longitud, aloja la cabina de mando, los motores principales, la cinta de extracción de tierras, la ventilación, el transformador eléctrico, el equipo inyector de espuma y mortero así como las vías del tren. Por último, el tren dispone de vagones para el escombro, un vagón para el mortero de relleno y algún vagón para el transporte de material o personal.
Pero una imagen vale más que mil palabras. Os paso varios vídeos sobre el funcionamiento de estas máquinas que espero os gusten.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
La plataforma trepadora ALIMAK se emplea, desde 1957, en la perforación de chimeneas donde no es posible el acceso superior (frente al Jaula Jora o Raise Boring), necesitando un nivel de trabajo en el subsuelo. Es un método flexible y económico. Consta de los siguientes elementos: jaula, plataforma de trabajo, motores de accionamiento, carril guía y elementos auxiliares. La elevación de la plataforma se realiza a través, de un carril guía curvado empleando motores de aire comprimido, eléctricos o diésel. La fijación del carril a la roca se lleva a cabo con pernos de anclaje, y tanto las tuberías de aire como de agua necesaria para la perforación, ventilación y el riego se sitúan en el lado interno del carril guía para su protección.
Las fases en la construcción de la chimenea son las siguientes:
perforación y carga de los barrenos (operación realizada con martillo perforador)
descenso de la plataforma y voladura (cada vez que hay una voladura, hay que retirar la plataforma)
ventilación y riego
elevación de la plataforma y saneo del techo.
Entre las ventajas de estos equipos se encuentran las siguientes: se pueden usar en chimeneas de pequeña o gran longitud y en cualquier inclinación (la chimenea más larga efectuada hasta ahora tiene 1.040 m y una inclinación de 45º; es posible cambiar la sección y geometría de la chimenea cambiando la plataforma; se pueden excavar secciones desde 3 a 30 m²; es posible cambiar la dirección e inclinación de las chimeneas mediante el uso de carriles curvos y, además, es fácil extraer los detritus.
Os dejo un pequeño vídeo donde se puede ver este procedimiento constructivo.
Referencias:
López Jimeno, C. (1994). Manual de perforación y voladura de rocas. 2ª edición. Instituto Tecnológico Geominero de España, IGME. Madrid.
Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.
Malla triple torsión reforzada con cable de acero galvanizado y bulones de anclaje con placa y tuerca. http://gesprotal.com/malla-reforzada-con-cable/
Las mallas de triple torsión cubren la totalidad de la superficie de un talud que pueda presentar desprendimientos, impidiendo la salida de cualquier fragmento rocoso al exterior. La malla se sujeta en la coronación del terraplén mediante correas de anclaje, lastrándose en el pie del mismo con barras de acero o gaviones. Además, se recomienda disponer puntos de anclaje cada 2 o 3 m a lo largo del talud para ajustar la malla al terreno, aunque no excesivamente para evitar bolsas de acumulación de fragmentos. El material desprendido se queda atrapado o acumulado en el pie del talud, en un espacio previsto para ello.
Os dejo varios vídeos donde podéis ver los trabajos de colocación de este tipo de protección de taludes.
Los micropilotes son pilotes de pequeño diámetro de perforación (< 30cm) y se componen de una barra, tubo de acero o de armadura de acero que constituye el núcleo portante, el cual se recubre normalmente de lechada inyectada de cemento que forma el bulbo. Las características técnicas de los materiales y modo de ejecución de estos micropilotes permiten lograr altas capacidades de carga (30 a 150 t) tanto a la tracción como a la compresión con deformaciones mínimas. Se consigue así, un elemento resistente en el que predomina la longitud y resistencia por rozamiento o fuste.
En esta entrada vamos a dejar un par de documentos relacionados realizados por el Comité de Seguridad de AETESS con las medidas de seguridad a adoptar en la ejecución de esta unidad de obra. Se trata de la Guía Técnica de Seguridad AETESS para Micropilotes y Anclajes de la Asociación de Empresas de la Tecnología del Suelo y Subsuelo (AETESS) (link) y de un vídeo descriptivo de la ejecución de micropiloles (www.aetess.com). Espero que ambos documentos os sean de utilidad.
Un pilote ejecutado «in situ» consiste en realizar una perforación en el suelo a la cual, una vez terminada, se le colocará un armado en su interior y posteriormente se rellenará con hormigón.
En esta entrada os dejo el vídeo descriptivo realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la Seguridad Laboral en el sector de las cimentaciones especiales (www.aetess.com), además de un enlace a la guía técnica de seguridad realizada por esta misma asociación respecto a los pilotes ejecutados «in situ» (link).
El pilote prefabricado es un pilote de desplazamiento, introducido por hinca en el terreno, que produce la compactación del terreno a la vez que evita la generación de detritus de excavación. Estos pilotes se clavan en el terreno por medio de golpes que efectúa un martinete o con una pala metálica equipada para hincada del pilote. Son una buena alternativa para la cimentación de estructuras en terrenos flojos o blandos, funcionando muy bien como pilotes columna, es decir, transmitiendo la carga en punta a una capa lo suficientemente firme como para soportar la solicitación sin peligro de rotura del estrato.
A continuación os dejo un enlace a la Guía Técnica de Seguridad AETESS de pilotes prefabricados y un vídeo descriptivo de la ejecución de la actividad de pilotes prefabricados (hinca de pilotes) en seguridad realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la seguridad laboral en el sector de las Cimentaciones Especiales. www.aetess.com. Espero que os sea de utilidad.
Existen dos posibilidades a la hora de realizar una perforación a rotación: la rotación con circulación directa y la rotación con circulación inversa. La diferencia entre ambas estriba en el sentido de circulación del fluido de perforación. En la circulación inversa, objeto de este post, el fluido de perforación y el detritus se eleva a la superficie por el interior del varillaje hasta una balsa de lodos. En este depósito, el lodo se recupera para volver a introducirlo en la perforación por el espacio anular comprendido entre el varillaje y la perforación. La principal diferencia entre los equipos de rotación directa o los de rotación inversa es que, mientras los primeros utilizan una bomba de lodos, los segundos utilizan un compresor, que generalmente suele llevar su propio motor. En ambos casos, estos elementos suelen ir montados sobre el propio chasis de la máquina, aunque a veces, debido al tamaño de los compresores, suelen ir en remolques independientes.
Este sentido inverso de circulación es adecuado cuando el diámetro de la perforación es elevado (un diámetro habitual de trabajo es de 600 mm, pudiendo ser mayor). El método de perforación por Circulación Inversa depende del potencial del agua para contener las paredes de la perforación, precisando un mínimo de 3 metros de columna desde el fondo de la perforación. Ante suelos de alta transmisividad, igualmente puede ser requerido un elevado ratio de bombeo de fluido de perforación, dadas las perdidas, o bien se puede necesitar algún aditivo para impermeabilizar las paredes de la perforación, que posteriormente deberá ser eliminado mediante el debido desarrollo.
Figura 2. Perforación inversa. Imagen: Sondeos Martínez (Villena, Alicante)
Para entender mejor este sistema, os dejo a continuación unos vídeos explicativos que espero os gusten.
[politube2]65114:450:358[/politube2]
Referencias:
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
La sustitución dinámica o «puits ballastés» constituye una variante diferenciada de la compactación dinámica en la cual la energía de compactación sirve para constituir inclusiones granulares de gran diámetro, como refuerzo de los terrenos compresibles, de los que se necesitan varios metros de espesor sobre un estrato de terreno con capacidad portante suficiente.
Se punzona en este caso el terreno con una maza pequeña y pesada que se deja caer desde cierta altura. Este procedimiento crea un cráter que se rellena con material granular, que se golpea nuevamente con el objeto de desplazar el terreno y hacer penetrar dicho material granular. Con este procedimiento se consigue rigidizar el terreno creando puntos de apoyo que presentan una mayor carga admisible. Además, la ventaja adicional es que constituyen drenes verticales, aunque no muy profundos, por lo que podrían combinarse con tratamientos de mejora de precarga, de forma que se reducirían los tiempos de consolidación del suelo.
Esta técnica combina, por tanto, las ventajas de la compactación dinámica y de las columnas de grava.
Aplicaciones:
– Terrenos cohesivos (arcillas y limos blandos o muy blandos), apoyados sobre un sustrato rocoso
– Necesidad de estabilización y reducción de los asientos de terraplenes viarios y ferroviarios
– Estructuras con distribución heterogénea de grandes cargas repartidas y puntuales
Principales características:
– Tasa de incorporación de material claramente superior a la obtenida por medio de columnas de grava (hasta 20 a 25%)
– Muy alta compacidad de las inclusiones constituidas
– Cada «columna» granular puede soportar cargas importantes de hasta 150 t
– Mejora de las características mecánicas de las capas superficiales del terreno entre las columnas en un 25% y entorno al 50% en los estratos más profundos
– Funcionamiento de las inclusiones como drenes verticales reduciendo así el tiempo de consolidación y acelerando los asientos antes de la construcción
Ventajas:
– Fuerte incremento del módulo de deformación, de la capacidad portante y de la capacidad drenante del terreno
– Técnica bien adaptada a grandes cargas
– Muy alta resistencia interna al corte del material granular que constituye la inclusión
– A diferencia de las columnas de grava, aplicación adaptada a suelos evolutivos (turbas, orgánicos…) debido a su reducida esbeltez.
La profundidad del terreno mejorado con esta técnica depende tanto de las características del terreno como de la energía de los impactos. A este respecto, Menard nos facilita la siguiente fórmula para calcular dicha profundidad (García Valcarce et al., 2003):
D2 ≤ 10·M·h
donde:
D: Espesor a compactar (m)
M: Peso de la maza (kN)
h: Altura de caída de la maza (m)
Aunque la máxima profundidad afectada quedaría limitada por la siguiente expresión:
D = 0,44·√10Mh
Os paso a continuación un Polimedia explicativo de esta técnica que espero que os guste:
Os dejo a continuación el folleto explicativo de Menard.
GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.
Una forma de construir un túnel consiste en ir empujando, mediante gatos, tramos sucesivos. Este método es similar al de los cajones empujados.
A continuación os paso una infografía realizada por Hispana y Estudio da Vinci, en León, sobre este procedimiento constructivo empleado por la empresa española OPEMA. Espero que os guste.
Referencia:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.