Técnica de creatividad: 6-3-5

CkVgW4HWEAE8F03Ayer estuve en un curso de creatividad organizado por nuestra Universitat Politècnica de València dirigida a sus profesores. Entre muchas de las herramientas que nos enseñaron quiero destacar la técnica de creatividad 6-3-5, que explicó la profesora Llanos Cuenca, muy útil para desarrollar la creatividad y enriquecer un problema, un proyecto o cualquier objetivo en el que tengamos que plantear nuevas perspectivas. Es una técnica basada en la “tormenta de ideas” (brainstroming), pero de forma organizada, por escrito y con un tiempo tasado, por lo que algunos describen el método como “brainwriting“. Este método lo creó el psicólogo alemán Bernd Rohrbach en 1968 y consiste en reunir a seis personas y sacar tres ideas cada una de ellas por turnos de cinco minutos. Se hacen rondas y se pasan las hojas al compañero de la derecha, que deberá rellenar, de forma concisa y breve, nuevas ideas sin repetir las que ya escribió y sin que coincidan con las que ya hay escritas. De esta forma se generan 18 ideas diferentes en cada hoja, que multiplicadas por 6 hojas, son un total de 108 ideas en media hora por cada grupo. Finalmente, se analizarán todas las ideas aportadas, eliminando las duplicadas, dedicándose para ello unos 30-40 minutos.

Para que el método sea eficaz, previamente se habrán discutido los puntos principales del asunto para asegurarse de que cada integrante comprenda bien de qué se trata. El motor de la técnica es que, al leer las anotaciones anteriores, el cerebro descubre nuevas ideas. Al igual que ocurre con la lluvia de ideas, en este método 6-3-5 lo importante es la cantidad de ideas, más que su calidad. Luego se pueden aplicar otras técnicas para discutir, mejorar y filtrar las ideas hasta quedarse con unas pocas de mayor calidad.

Os voy a poner un ejemplo donde creo que esta técnica va a ser muy interesante como herramienta de aprendizaje. Supongamos que queremos explicar a una clase de unos 30 alumnos los conceptos básicos de Lean Construction. La idea es hacer reflexionar sobre las pérdidas de todo tipo que existe en una obra de construcción por muy distintos motivos. Esas pérdidas influyen notablemente en la calidad, plazo y coste de la obra.

Descargar (PDF, 30KB)

Las cinco S y los siete desperdicios

Las cinco S constituye una práctica de Calidad ideada en Japón referida al “Mantenimiento Integral” de la empresa, no sólo de maquinaria, equipo e infraestructura sino del mantenimiento del entrono de trabajo por parte de todos.  Se inició en Toyota en los años 1960 con el objetivo de lograr lugares de trabajo mejor organizados, más ordenados y más limpios de forma permanente para generar una mayor productividad y un mejor entorno laboral.

El método de las 5S utiliza una lista de cinco palabras japonesas que empiezan por S. La lista describe la forma de organizar un espacio de trabajo de un modo eficiente y eficaz mediante la identificación y almacenamiento de los componentes utilizados, la conservación adecuada de la zona de trabajo y los elementos almacenados, y el mantenimiento del nuevo estado.

El proceso de toma de decisiones por lo general proviene de un diálogo sobre la estandarización que se basa  en un claro entendimiento entre los empleados sobre cómo se debe trabajar. También se pretende involucrar en el proceso a cada uno de los empleados.

El beneficio más evidente del método es la mejora de la productividad dado que todos los componentes están perfectamente localizados. Los operarios ya no tienen que perder tiempo buscando herramientas, piezas, documentos, etc.; esta es la forma más frustrante de pérdida de tiempo en cualquier empresa. Los elementos más necesarios se almacenan en el lugar más accesible; la adopción correcta de la normalización implica que se devuelven a la ubicación correcta después de su uso.

Imagen1

 

La implementación de cada una de las 5S se lleva a cabo siguiendo cuatro pasos:

  • Preparación: formación respecto a la metodología y planificación de actividades.
  • Acción: búsqueda e identificación, según la etapa, de elementos innecesarios, desordenados, suciedad, etc.
  • Análisis de la mejora realizada.
  • Documentación de conclusiones en los estándares correspondientes.

El resultado se mide tanto en productividad como en satisfacción del personal respecto a los esfuerzos que han realizado para mejorar las condiciones de trabajo. La aplicación de esta técnica tiene un impacto a largo plazo.

Os dejo unos vídeos que explican estas técnicas relacionadas con la gestión de la calidad. Espero que os gusten.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

 

¿Qué es la metodología de la superficie de respuesta?

La Metodología de la Superficie de Respuesta (RSM) es un conjunto de técnicas matemáticas y estadísticas utilizadas para modelar y analizar problemas en los que una variable de interés es influenciada por otras.  El propósito inicial de estas técnicas es diseñar un experimento que proporcione valores razonables de la variable respuesta y, a continuación, determinar el modelo matemático que mejor se ajusta a los datos obtenidos. El objetivo final es establecer los valores de los factores que optimizan el valor de la variable respuesta. Esto se logra al determinar las condiciones óptimas de operación del sistema.

La diferencia entre (RSM) y un diseño experimental corriente estriba en que un diseño experimental por si solo tiene como objetivo localizar el tratamiento “ganador” entre todos aquellos que se han probado. En cambio, RSM pretende localizar las condiciones óptimas de operación del proceso. Ello supone un reto para el investigador, requiere una estrategia más completa e incluye la posibilidad de efectuar varios experimentos secuenciales y el uso de técnicas matemáticas más avanzadas.

Os dejo a continuación un vídeo explicativo que espero os aclare la metodología.

Otro vídeo complementario al anterior es el siguiente:

Referencias:

  • Box, G. E. P., Wilson, K. G. (1951), On the experimental attainment of optimum conditions,Journal of the Royal Statistical Society, B 13, 1-45
  • Cornell, John A. (1984), How to apply Response Surface Methodology, American Society for Quality Control, Milwaukee, WI.
  • Kuehl, Robert O. (2001) Diseño de Experimentos, 2a. Edición, Thomson Learning.
  • Melvin T. A. Response Surface Optimization using JMP Software, < http://www2.sas.com/proceedings/sugi22/STATS/PAPER265.PDF>
  • Montgomery, D. C. (2002), Diseño y Análisis de Experimentos, Editorial Limusa, Segunda Edición.
  • http://www.cicalidad.com/articulos/RSM.pdf
  • http://catarina.udlap.mx/u_dl_a/tales/documentos/lii/peregrina_p_pm/capitulo2.pdf

¿Qué es la calibración de un equipo de medida?

¿Estamos seguros de que cuando medimos lo hacemos correctamente? ¿No habéis tenido la sensación de que los resultados de un ensayo parece que son imposibles o son poco esperables? Es posible que os encontréis ante un equipo de medición mal calibrado. En este post continuamos con otros anteriores referidos a los errores de medición y a las unidades de medida y su materialización. Vamos a repasar, de forma muy sintética, algunos de los conceptos más importantes relacionados con la calibración de los equipos.

Se denomina calibración al conjunto de operaciones que establecen, en unas condiciones especificadas, la relación existente entre los valores indicados por un instrumento o sistema de medida o los valores representados por una medida materializada, y los correspondientes valores conocidos de una magnitud medida. Esta actividad, llevada a cabo por medios y procedimientos técnicos, permite determinar, por comparación con un patrón o con un material de referencia o por métodos absolutos, los valores de los errores de un medio o un instrumento de medida. El proceso de calibración comprende la medición del patrón o instrumento cuyo valor queremos determinar por comparación con un patrón de referencia, comprobar si el valor obtenido está dentro de los límites establecidos para la función a realizar, y en caso de estar fuera de los límites, efectuar el correspondiente ajuste o calibración del patrón o equipo de medición.

El certificado de calibración de un patrón deberá recoger el valor o los valores asignados como resultado de la calibración, así como la incertidumbre. A su vez, el certificado debe indicar la incertidumbre de los patrones o instrumentos empleados en la calibración, el número de reiteraciones efectuadas y los valores obtenidos, o un índice de su dispersión. El certificado de calibración de un instrumento deberá indicar los puntos del campo de medida calibrados, la incertidumbre del patrón o instrumento empleado en cada punto de calibración, la corrección de calibración obtenida en cada uno de ellos, el número de reiteraciones efectuadas en cada punto de calibración y su dispersión, y la incertidumbre asociada a la corrección de cada punto de calibración, para un factor de incertidumbre que también se indicará. Los patrones e instrumentos se calibran cuando salen de la línea de fabricación, pero es necesario un programa de calibración que de forma periódica asegure el mantenimiento de la exactitud. Los intervalos de calibración son función de la utilización de los equipos.

 

Los instrumentos de medida se clasifican en instrumentos de referencia y en instrumentos de trabajo, sirviendo los primeros para calibrar los últimos. Cada instrumento calibrado obtiene un certificado de calibración que garantiza la exactitud y trazabilidad, no debiendo incluir recomendación alguna sobre el intervalo de recalibración. El desgaste y envejecimiento de los equipos de medición son los que marcan los intervalos de calibración.  Cada instrumento de medición deberá tener visible una etiqueta de calibración, que indican si el mismo puede utilizarse, tiene limitaciones en su uso o si están fuera de servicio.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Caracterización estadística y prueba de normalidad en muestras de hormigón


Una tarea básica en cualquier trabajo científico o tecnológico que requiera el análisis de una muestra de datos es su caracterización estadística y la comprobación de la normalidad de dicha muestra. Dado un conjunto de datos, por ejemplo 20 resultados de rotura a compresión simple de una probeta normalizada de hormigón a 28 días, deberíais ser capaces de calcular lo siguiente:

  1. Calcular la media aritmética muestral, la desviación típica muestral, la varianza muestral , el coeficiente de variación muestral, la mediana y la moda
  2. Determinar el intervalo de confianza para la media muestral y para la desviación típica muestral para un nivel de confianza del 95%.
  3. Determinar las medidas de forma –coeficientes de asimetría y curtosis-.
  4. Determinar el recorrido o rango de la muestra. También el recorrido relativo de la muestra.
  5. Representar el histograma con un número de barras que sea la raíz cuadrada del número de datos
  6. Calcular la desviación media respecto al valor mínimo.
  7. Determinar el primer, segundo y tercer cuartil, así como el rango intercuartílico.
  8. Determinar el cuantil del 5%, del 50% y del 95%.
  9. Dibujar el diagrama de caja y bigotes y determinar los valores atípicos potenciales.
  10. Establecer con un nivel de confianza del 95% si la muestra procede de una población normal mediante la prueba de normalidad de Kolmogorov-Smirnov.

Para ello podéis utilizar cualquier programa estadístico. Para facilitar vuestro aprendizaje, os dejo un vídeo tutorial sobre cómo extraer datos estadísticos básicos con el programa SPSS. Espero que os sea útil.

Control de ejecución en cimentaciones

El control de ejecución de una obra es un aspecto fundamental que garantiza la durabilidad y el funcionamiento según el proyecto previsto. Un aspecto especialmente importante es el control de ejecución de las cimentaciones. En este post os dejo información al respecto.

Un enlace muy interesante que trata sobre el control de la ejecución de las cimentaciones superficiales es de Enrique Alario:  http://www.enriquealario.com/ejecucion-de-cimentaciones-superficiales/

Os paso un Polimedia de la profesora Esther Valiente relacionada con el control de calidad en la ejecución de las cimentaciones. Espero que os guste.

También lo tenéis en inglés:

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La capacidad de un proceso y su aplicación a la construcción

Los procesos constructivos están sujetos a variabilidad. Las causas que justifican los distintos resultados a veces dependen de factores comunes y otras veces de factores aleatorios. Sin embargo, en las obras normalmente se aborda el control de la calidad una vez está el producto o la unidad de obra terminada. Es lo que se conoce como control de producto terminado. Mejor sería abordar el control de calidad del proceso. Herramientas no nos faltan, pero no son habituales en las obras. Abordamos en este post el concepto de “capacidad de un proceso” para entender mejor la necesidad del control estadístico antes de tener un producto terminado.

No siempre una máquina o un proceso es capaz de alcanzar la calidad exigida por un cliente o por otro proceso. Hay que tener esta idea muy clara pues existe cierta variabilidad debida a causas comunes que sólo se podrá solucionar si se cambia la máquina o el proceso, lo cual implica una decisión por parte de la alta dirección. Este aspecto lo hemos explicado en un post anterior.

Después de comprobar que el proceso está bajo control, el siguiente paso es saber si es un proceso capaz, es decir, si cumple con las especificaciones técnicas deseadas, o lo que es lo mismo, comprobar si el proceso cumple el objetivo funcional. Se espera que el resultado de un proceso cumpla con los requerimientos o las tolerancias que ha establecido el cliente. El departamento de ingeniería puede llevar a cabo un estudio sobre la capacidad del proceso para determinar en que medida el proceso cumple con las expectativas.

La habilidad de un proceso para cumplir con la especificación puede expresarse con un solo número, el índice de capacidad del proceso o puede calcularse a partir de los gráficos de control. En cualquier caso es necesario tomar las mediciones necesarias para que el departamento de ingeniera tenga la certeza de que el proceso es estable, y que la media y variabilidad de este se pueden calcular con seguridad. El control de proceso estadístico define técnicas para diferenciar de manera adecuada entre procesos estables, procesos cuyo promedio se desvía poco a poco y procesos con una variabilidad cada vez mayor. Los índices de capacidad del proceso son solo significativos en caso de que el proceso sea estable (sometidos a un control estadístico).

Para aclarar estas ideas, o paso un Polimedia explicativo que espero os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Causas de variabilidad de un proceso

Image9245El enemigo de todo proceso es la variación, siendo la variabilidad inevitable. Cuando se fabrica un producto o se presta un servicio, es materialmente imposible que dos resultados sean exactamente iguales. Ello se debe a múltiples motivos, más o menos evitables. Por un lado existen múltiples causas comunes, aleatorias y no controlables que hacen que el resultado cambie siguiendo habitualmente una distribución de probabilidad normal. Se dice que dicho proceso se encuentra bajo control estadístico, siendo éste el enfoque que sobre el concepto de calidad propugna Deming y que vimos en un artículo anterior. Por otra parte, existen unas pocas causas asignables, que ocurren de forma fortuita y que podemos detectarlas y corregirlas. Ocurren de forma errática y, afortunadamente se solucionan fácilmente. Las causas comunes son difíciles de erradicar porque precisan de un cambio del proceso, de la máquina o del sistema que produce los resultados, siendo ese cambio una responsabilidad de la gerencia. Kaouru Ishikawa decía que el 85% de los problemas en un proceso son responsabilidad de la gerencia, siendo mal recibido dicho comentario por parte de la alta dirección de las empresas.

Para aclarar y entender estos conceptos, os dejo un Polimedia explicativo, de poco más de siete minutos, que espero os guste.