UPV



edificación


Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, medios auxiliares, procedimientos de construcción    

http://www.lineaprevencion.com

Un edificio de varias plantas constituye una estructura evolutiva, que va cambiando en configuración y en resistencia conforme se va construyendo. Uno de los aspectos más importantes en la economía y seguridad del proceso constructivo de un edificio es el relacionado con el cimbrado y descimbrado de las plantas sucesivas. No hay que olvidar que durante la construcción se producen esfuerzos que pueden ser más desfavorables que los esfuerzos en servicio. Por tanto, las dos preguntas clave son qué cargas se generan durante la construcción y a qué edad el hormigón está preparado para resistir las cargas por sí mismo.

Sobre este problema se han realizado numerosos estudios que intentan evaluar de forma precisa la transmisión de las cargas entre los forjados y los puntales. Se trata de un problema complejo, pues aspectos tales como las características de la estructura (tipo de hormigón y cargas de cálculo), los cambios de temperatura y humedad ambiente o la distribución de las cargas entre forjados y puntales originado por el propio procedimiento constructivo, entre otros, son determinantes en este tipo de cálculos. Para aclarar algunos aspectos de este tema, vamos a definir los distintos procedimientos empleados, analizaremos brevemente la normativa aplicable y remitiremos a referencias actuales sobre este tema para aquellos de vosotros interesados en profundizar más. Ya os podemos adelantar que la normativa que aborda el plazo de descimbrado es muy genérica y utiliza criterios muy conservadores.

Por ejemplo, el método simplificado de Grundy y Kabaila (1963) es fácil de aplicar y suele estar del lado de la seguridad, pues supone una rigidez infinita de los puntales y que todos los forjados se comportan elásticamente y presentan la misma rigidez, con una cimentación infinitamente rígida, con cargas uniformemente distribuidas sobre el encofrado y los puntales y despreciando el efecto de la retracción y la fluencia del hormigón. Sin embargo, la rigidez infinita de la cimentación (“efecto suelo”) implica que absorbe un nivel de solicitación importante, lo que provoca a su vez una sobrecarga en los puntales. Esto lleva a que, mientras el efecto dura, las cargas en los puntales se acumulan, pudiendo llegar a constituir la situación más desfavorable de todo el proceso. Una vez que este efecto desaparece, las solicitaciones en puntales pueden disminuir significativamente, lo que lleva a diseños poco optimizados si se aplica el mismo criterio en todas las alturas de la estructura. Este método simplificado nos lleva a distribuciones de cargas que, curiosamente, son independientes de algunos parámetros importantes como son la distancia entre pilares, la altura libre entre plantas, el ritmo constructivo, las dimensiones de los forjados o la resistencia característica del hormigón empleado. Es un método que solo depende del esquema constructivo empleado, es decir, del número de plantas apuntaladas y reapuntaladas.

Encofrado de Mesas VR con Puntal SP. https://www.ulmaconstruction.es/es-es/encofrados/puntales-cimbras/puntales/puntal-acero-sp

Se pueden distinguir tres procedimientos constructivos principales:

Cimbrado y descimbrado: Es el procedimiento más simple, pero que requiere de más material. Se descimbra toda la planta lo cual significa que deben existir tantos juegos de cimbras como plantas. Se pueden tener dos, tres o más plantas consecutivas cimbradas. Hay que tener cuidado, pues aumentar el número de juegos de puntales incrementa las cargas máximas en forjados, por lo que suele convenir n=2.

Cimbrado, clareado y descimbrado: El clareado o descimbrado parcial es una técnica muy empleada en España. Consiste en retirar el encofrado y la mitad o más de los puntales que soportan el forjado pocos días después del hormigonado. En este sistema los puntales no pierden nunca el contacto con la estructura. La ventaja es que se reduce el material necesario en la obra. Todo el encofrado y al menos la mitad de los puntales se recuperan entre los 3 y 5 días. Sin embargo, este procedimiento introduce estados de carga intermedios en los forjados que deben comprobarse.

Cimbrado, recimbrado y clareado: Se retira el apuntalamiento de una planta para que se deforme libremente y se redistribuyan las cargas entre los forjados. Luego se vuelven a poner en carga, de forma que colaboren con los incrementos de carga posteriores. Con este procedimiento, los forjados, a edades tempranas, y cuando se recimbran, soportan únicamente su peso propio. Esta técnica permite reducir notablemente las cargas en los puntales, el inconveniente es que es una operación complicada y delicada, que aumenta el número de operaciones a realizar, y por tanto, el coste de mano de obra. En este caso, aumentar el número de juegos de puntales reduce las cargas máximas en forjados. Este procedimiento precisa de un control de calidad muy intenso, pues se descimbra a edades tempranas. Esta técnica es poco usada en España, aunque es la técnica principal en Estados Unidos.

Como vemos, los tres procedimientos tienen sus ventajas e inconvenientes. Por ejemplo, una crítica al recimbrado es que los forjados se someten a altas cargas a edades tempranas. Además, cuando el “efecto suelo” deja de tener incidencia, los efectos beneficiosos del recimbrado dejan de producirse. Por tanto, si lo que se quiere es optimizar, habría que combinar las técnicas de recimbrado en las plantas inferiores con las de clareado en las superiores. La instrucción EHE 08, a la vista de las implicaciones que tiene los procesos constructivos de descimbrado, carga la responsabilidad en el proyecto. En efecto, en su artículo 94.3, indica que “en general, se comprobará que la totalidad de los procesos de montaje y desmontaje, y en su caso el de recimbrado o reapuntalamiento, se efectúan conforme a lo establecido en el correspondiente proyecto“. Al lector preocupado por el cálculo e hipótesis de estas técnicas le recomendamos el libro del profesor Calavera (2002), que es una de las referencias obligadas.

El descimbrado no se debe realizar hasta que el hormigón haya alcanzado la resistencia necesaria. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca. La EHE 08, en su artículo 74 propone determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Pórtland, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias:

Donde:

Q es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva

G es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar

T es la temperatura media en ºC de las máximas y mínimas diarias durante los j días

j es el número de días desde el hormigonado hasta el descimbrado

La EHE 08 recoge la Tabla 74 donde se indican los periodos mínimos de desencofrado y descimbrado de elementos de hormigón armado. Esta tabla se puede utilizar cuando no se disponga de datos suficientes y en el caso de haber utilizado cemento de endurecimiento normal. En el caso de períodos de helada durante el endurecimiento del hormigón, se deben incrementar convenientemente estos valores. También se incrementarán estos valores cuando se quiera limitar la fisuración a edades tempranas o sea necesario reducir las deformaciones por fluencia.

Tabla 74 EHE 08. Periodos mínimos de desencofrado y descimbrado de elementos de hormigón armado

Por último, debemos apuntar algunas de las conclusiones derivadas de las medidas experimentales de la transmisión de cargas entre puntales y forjados derivadas de la tesis doctoral de Gasch (2012). Estas conclusiones son importantes a efectos prácticos:

  • El reparto de cargas entre puntales no es uniforme. Los puntales de centro de vano presentan valores de carga máxima para cada una de las operaciones constructivas.
  • Las operaciones no previstas durante el procedimiento constructivo implican fuertes modificaciones de la transmisión de cargas esperada entre forjados y puntales.
  • Pequeñas variaciones en el apriete de los puntales pueden tener gran influencia en la distribución de cargas.
  • Al hormigonar cada forjado, la totalidad de la carga se transmite a los puntales.

 

Referencias:

Buitrago, M. (2014). Desarrollo de una aplicación informática de apoyo al cálculo del proecso constructivo de cimbrado/descimbrado de edificios en altura hormigonados in situ. Optimización del proceso aplicando técnicas de optimización heurística. Trabajo de Investigación CST/MIH. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

Calavera, J. (2002). Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas-hormigón metálicos y mixtos. Intemac Ediciones, Madrid.

Díaz-Lozano, J. (2008). Criterios técnicos para el descimbrado de estructuras de hormigón. Tesis doctoral. Departamento de ingeniería civil: construcción. Universidad Politécnica de Madrid.

Gasch, I. (2012). Estudio de la evolución de cargas en forjados y estructuras auxiliares de apuntalamiento durante la construcción de edificios de hormigón in situ mediante procesos de cimbrado, clareado y descimbrado de plantas sucesivas. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

Grundy, P.; Kabaila, A. (1963). Construction loads on slabs with shored fromwork in multistory buildings. ACI Structural Proceedings, 60(12): 1729-1738.

25 abril, 2018
 

Publicada By  Víctor Yepes Piqueras - Docencia, edificación, estructuras, hormigón, medios auxiliares, procedimientos de construcción    

By СТАЛФОРМ Инжиниринг [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

La norma UNE-EN 12812:2008 define los requisitos de comportamiento y diseño general de las cimbras.

Esta norma no solo recoge las acciones típicas a considerar en los cálculos, sino que además cataloga y diferencia dos tipos de cimbra, las denominadas como clase A y clase B.

 

 

 

 

 

Clase de diseño A: es aquella cimbra cuya estabilidad está avalada por la experiencia y buenas prácticas ya establecidas y que se puede considerar que satisface los requisitos de diseño. Son cimbras de utilización estándar y con limitaciones de altura y cargas. Las más habituales son puntales para forjados de edificación y las torres cuajadas en puentes. El proyecto de la cimbra debe incluir una copia de los ensayos y cálculos realizados por el proyectista del material estándar con las limitaciones de uso y montaje que deben respetarse. Esta documentación deberá estar firmada por el suministrador del material y por el laboratorio que haya realizado el ensayo. Estos montajes requieren un análisis simplificado basado en los materiales de los elementos que conforman la cimbra (puntales, bases, cabezales de cimbra y arriostramientos). Su utilización se basa normalmente en la aplicación de tablas de uso y manuales de uso generales y no suelen requerir de cálculos ni ensayos específicos. Habitualmente sólo entran dentro de esta clasificación los apeos con puntal. Según la norma, la clase A se puede adoptar solo cuando:

  1. las losas tengan un área de sección transversal inferior a 0,3 m2 por metro de anchura de losa
  2. las vigas tengan un área de sección transversal inferior a 0,5 m2
  3. la luz libre de las vigas y las losas no supere los 6,0 m
  4. la altura de la estructura permanente en la cara inferior no supere los 3,5 m

Clase de diseño B: la estabilidad y el diseño se deben estudiar de acuerdo con los Eurocódigos (EN 1990, EN 1991 hasta EN 1999) y con los apartados de la UNE-EN 12812, debido a que se debe realizar un diseño estructural completo.  Por tanto, se deben comprobar los estados límites últimos y de servicio, así como las uniones y detalles. Además, se deben incluir planos que determinen la cimbra en planta para poder realizar el replanteo, los alzados y las secciones, así como los detalles importantes. Dentro de esta clase se incluyen todas las cimbras realizadas con material a medida y todas aquellas de material estándar pero con usos que se salen de sus condiciones de utilización. La clase B2 permite un cálculo más simplificado que la clase B1 para determinar la distribución de la carga, basado en las áreas de influencia que recoge cada vertical o montante de la cimbra. Este cálculo simplificado alcanza el mismo nivel de seguridad. En la clase B1 se supone que el montaje se lleva a cabo con un nivel de destreza apropiado para la construcción permanente (ver normas EN 1090-2 y EN 1090-3 para estructuras metálicas).

Fuera de estas dos clases de diseño, mencionaremos las cimbras especiales, destinadas a la construcción de grandes estructuras (cimbras autolanzables, lanzadores de vigas y dovelas o carros de voladizos sucesivos). se caracterizan por ser cimbras-máquina, es decir, con movimiento, por lo que se precisa de un cálculo muy detallado en todas las posiciones de trabajo.

By STALFORM Engineering [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

21 abril, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, BIM, ciclo de vida, edificación, empresas constructoras, ingeniería civil, innovación, maquinaria, materiales, medios auxiliares, optimización, Planificación, procedimientos de construcción, seguridad, sostenibilidad, toma de decisiones    

http://constructioncitizen.com/blog/get-smart-construction-video/1510211

Se está poniendo de moda el concepto “inteligente” para nombrar todo tipo de cosas. Por ejemplo, “smart buildings“, “smart cities“, “smart beach“, “smart tourism destination“, “smart food“, etc. Como siempre, cada vez que se empieza a hacer viral un concepto, al final se acaba por difuminar y perder el sentido original de lo que se quería decir. Este tipo de modas ya han pasado por conceptos tan importantes como “calidad”, “sostenibilidad”, “innovación”, etc. Al final, aplicado a productos o servicios, se menoscaba el significado por culpa del marketing y con ello se quiere atraer al consumidor hacia lo “bueno”, “guay”, “saludable” o similares.

Espero que el término de “construcción inteligente” tenga algo más de recorrido y pueda suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos.

Uno que me interesa mucho es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

https://pixabay.com/es/sitio-de-construcci%C3%B3n-edificio-1205047/

Sin embargo, y este es un punto crucial, para que se pueda hablar de verdad de “construcción inteligente”, no solo vamos a necesitar incorporar las nuevas tecnologías, sino que también va a ser necesario elaborar un sistema que permita la participación de todas las partes implicadas en el proceso proyecto-construcción, alimentando de información de calidad a este sistema de forma que soporte la toma de decisiones mediante la inteligencia artificial. El BIM puede ser un buen punto de partida para ello, pero se hace necesario integrar la inteligencia colectiva de forma que, aunque se apoye el sistema de una rigurosa alimentación de datos en tiempo real, el decisor tome sus decisiones asumiendo la responsabilidad última de sus acciones.

Dejo abierto este tema por si alguno de mis estudiantes quieren realizar su Trabajo Fin de Máster, e incluso atreverse a la realización de una tesis doctoral sobre este tema.

Os voy a dejar algunos vídeos relacionados con el tema, algunos os gustarán más que otros, pero es una buena forma de acercarse al concepto de construcción inteligente.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, procedimientos de construcción    

http://www.edingaps.com

Los forjados de losa postesa o forjados postensados son forjados que han sido elaborados mediante la técnica de tesar cables de acero (armadura activa), después del fraguado del hormigón y cuando éste ha alcanzado una resistencia suficiente para soportar las tensiones provocadas por dicho tesado. Se requieren hormigones y aceros de alta resistencia. Como consecuencia del trazado curvo de los tendones también aparecen fuerzas de desviación que pueden llegar a equilibrar el peso propio de la estructura, las cargas muertas e incluso parte de las sobrecargas. Existen dos variantes de la técnica: armadura postesa adherente y armadura postesa no adherente. Para forjados de edificación se suelen emplear armadura no adherente, por lo estricto de los cantos y por la facilidad de montaje. Este tipo de losas se utilizan en estructuras de edificios en altura, estructuras por debajo de la cota de rasante, cimentaciones por losa, parkings, puentes, depósitos, estructuras de edificaciones industriales, etc.

http://www.edingaps.com

Algunas de las ventajas del uso de estos sistemas son las siguientes:

  • Reducción de los materiales de construcción ( hasta un 40% de hormigón y un 75% de acero).
  • La reducción de peso de la estructura permite reducir el espesor y el armado de la losa de cimentación.
  • Aumento de altura libre entre plantas al reducir a la mitad el canto de la losa comparado con un forjado tradicional.
  • Continuidad estructural que permite un menor número de juntas de hormigonado y dilatación, asi como una mayor integridad estructural.
  • Reducción considerable del número de pilares y aumento de los vanos.
  • Evita la aparición de fisuras y es impermeable al estar el hormigón comprimido.

 

A continuación os dejo un vídeo donde se explica la ejecución de una losa postesada en un edificio de viviendas en Madrid. El proyecto de la estructura se debe a la empresa CALTER INGENIERÍA.

4 septiembre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - ANDECE, ciclo de vida, economía, edificación, hormigón, prefabricación, sostenibilidad    

BIM: Digitalización productos/sistemas constructivos

Resumen: En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Palabras clave: prefabricado, hormigón, BIM, DAP’s, inercia térmica, sostenibilidad

Referencia:

LÓPEZ-VIDAL, A.; YEPES, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

6 julio, 2017
 

Publicada By  Víctor Yepes Piqueras - cimentaciones, edificación, estructuras, geotecnia, mejora de terrenos, procedimientos de construcción    

Juan José Rosas Alaguero

Por su interés, os recomiendo el decálogo que Juan José Rosas, ingeniero de caminos consultor en geotecnia aplicada, nos ofrece en relación con la rehabilitación y refuerzo de cimentaciones. Este decálogo lo hizo público en un curso sobre reparación y refuerzo de cimentaciones en rehabilitación de edificios, del cual os dejo el vídeo.

DECÁLOGO:

  1. Antes de actuar, se ha de estabilizar.
  2. No confundas la enfermedad con los síntomas.
  3. Un minuto o un euro en fase de diagnóstico (establecer el o los escenarios que explican los hechos así como los riesgos e incertidumbres soportadas) son horas y cientos de euros en fase de proyecto (determinación de protocolos de actuación y dimensionado de elementos) así como días y miles de euros en fase de construcción.
  4. Enfoca tus prospecciones a descartar escenarios no a buscarlos. Contempla como posibles todos los escenarios que no hayas descartado.
  5. Establece protocolos de actuación que analicen y gestionen los riesgos en todas las fases constructivas siendo éstos suficientemente flexibles para adaptarse a cambios de escenarios.
  6. Si no has acertado en el diagnóstico, al menos, que tu actuación no empeore la situación (anclaje pasivo y activo).
  7. Lo que ha funcionado suele tener tendencia a seguir funcionando, por ende, lo que no ha funcionado difícilmente pasará a funcionar.
  8. La conexión de los elementos nuevos y los antiguos es el punto más crítico de la actuación, trátalo como tal.
  9. Todo lo que puedas medir, mídelo. De las pocas cosas que puedes fiarte es de los datos de pruebas de carga y de la auscultación, luego ausculta.
  10. A veces únicamente puedes optar por soluciones paliativas.

 

Referencias:

ROSAS, J.J. GEOJUANJO: Una visión pragmática y personal de la geotecnia aplicada. http://geojuanjo.blogspot.com.es/

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp.

11 enero, 2017
 

Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, maquinaria, procedimientos de construcción    

Técnica “lift-slab”. www.joostdevree.nl

Las losas de hormigón postesado en edificación pueden encontrarse ya en el año 1955 en los Estados Unidos cuando apareció un sistema de construcción denominado “lift-slab”, patentado por Tom Slick, que consistía en hormigonar las losas en la planta baja de forma que sirvieran de encofrado para las otras, y elevarlas hasta su posición definitiva tras sucesivas operaciones de izado. En pocos años, entre los años 50 y 60, los constructores emplearon este método constructivo, que se hizo con una parte muy importante del mercado de la edificación americano.

Inicialmente, las losas eran de hormigón armado, lo que generaba dos problemas básicos:
– Las losas tendían a pegarse las unas con las otras en el momento del izado y se fisuraban debido al peso propio añadido al tratar de despegarlas.
– En vanos de 8,5 a 9 m los espesores de las losas oscilaban entre 20 y 25 cm., por lo que las deformaciones eran un problema importante.

Los ingenieros que trabajaban con este método constructivo tenían conocimiento del pretensado y del modo como podía evitar las deformaciones. En estas primeras realizaciones el postesado empezó a solucionar los problemas del aligeramiento del peso para reducir flechas y la fisuración. La técnica del postesado ya se utilizaba por aquellos años en Europa en puentes y otras tipologías constructivas.

Los sistemas más conocidos de izado de forjados son el Jack Block en el que los gatos están situados en la parte inferior y el Lift-Slab en el que los gatos se colocan sobre los pilares. En el caso del Lift-Slab los forjados se construyen unos sobre otros, eliminándose así todo encofrado, interponiéndose entre dos consecutivos unas láminas de separación. Este procedimiento permite ejecutar los forjados en óptimas condiciones, sobre un plano horizontal sin puntales ni encofrados, a cambio de una elevación cuidadosa de cada una de las placas y la ejecución de las uniones de elementos ya terminados, donde a veces es difícil establecer la continuidad.

Os dejo a continuación un vídeo donde podemos ver los principios básicos de este procedimiento constructivo. Espero que os guste.

 

7 septiembre, 2016
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - edificación, sostenibilidad, toma de decisiones    

Hanging gardens of One Central Park, Sydney. Wikipedia

Hanging gardens of One Central Park, Sydney. Wikipedia

Abstract: Much of the efforts towards low carbon built environment focus on the building energy performance and the relationship between occupant behavior and efficient supply facilities, arguing that impacts are higher during operational stage. However little progression has been The ongoing study aims to provide a simplifed method to decide upon constructive systems for structural slabs based on hierarchical multicriteria weights applied to a set of criteria through a value function: durability, resource depletion, climate impact, investment cost, user comfort and functional design. The main function of slabs as load distribution layers of the structural frame used to be the solely priority of design practice. Other functions of the building as a dynamic system interact within the environment and occupants along time. Currently dealing with sustainable materials and life cycle inventories we aim to provide with a reproducible method for early election of the type of slab by embedding environmental (resource efficiency) and social (durability and performance) criteria among the design criteria. First, we seek for a way to hierarchically distribute the criteria and sub-criteria among the goals against resource depletion and the diverse alternatives. AHP-based MCDM is chosen to build a multi-level hierarchical structure of objectives, criteria, subcriteria, and alternatives. The analysis outlines the expert preferences for factors of buildability and cost premium of implementation of high environmental value of project design. Further analysis will focus on interrelation among factors.

Keywords: 

AHP-based MCDM, value function, environmental impact, construction cost, resource depletion, functionality,   construction systems elicitation.

Reference:

MOLINA-MORENO, F.; YEPES, V. (2015). Success factors for integration of sustainable practices at high performance building processes through AHP-based MCDM. 23rd International Conference on Multiple Criteria Decision Making. 2nd-7th August 2015, Hamburg, Germany, 7 pp.

Descargar (PDF, 372KB)

Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, sostenibilidad    

forSe presenta una caracterización estadística de una muestra de 126 de forjados reticulares de hormigón armado empleado en edificación con objeto de establecer fórmulas de predimensionamiento económico y medioambiental de este tipo de elementos estructurales. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de los consumos de materiales y de los costes económicos y medioambientales. Los resultados muestran que es posible obtener beneficios medioambientales significativos sin penalizar en exceso el coste económico. Así, una reducción media del 12% en las emisiones de CO2 conlleva una disminución media del coste del orden del 5%. De forma análoga, una contracción máxima del coste del 6% comporta un descenso en torno al 11% en la emisión de estos gases.

 

Referencia:

BALLESTER, M.; VEA, F.J.; YEPES, V. (2011). Análisis multivariante para la estimación de la contribución a la sostenibilidad de los forjados reticulares. V Congreso ACHE, Barcelona, 10 pp.

Descargar (PDF, 480KB)

 

Publicada By  Víctor Yepes Piqueras - edificación, estructuras, hormigón, maquinaria, prefabricación    

Mesa-basculante-12

Mesa basculante para paneles prefabricados. Vía http://moldtechsl.es

Los paneles de hormigón prefabricado se han usado en las fachadas de los edificios desde los años 50 del siglo XX bajo el impulso de importantes arquitectos como Le Corbusier, Ropius, Aalto y otros. Desde ese momento, los paneles prefabricados de fachada han evolucionado fuertemente, con tendencia hacia unidades cada vez de mayor tamaño y peso. Hoy día se incorporan a dichas piezas el aislamiento y los acabados interiores y exteriores.

Las mesas basculantes permiten la prefabricación de estos paneles de hormigón al facilitar la basculación la extracción de las piezas. Esta basculación se realiza mediante cilindros hidráulicos telescópicos. Suelen contar las mesas con una o dos bandas laterales, que pueden ser fijas, abatibles o regulables en altura, según el tipo de panel a fabricar. Las mesas basculantes presentan un sistema de vibración eléctricos o neumáticos para la compactación del hormigón. También es posible incorporar sistemas de tuberías de calefacción para acelerar el curado del hormigón.

Aquí os paso un vídeo de una línea de producción de paneles de hormigón.

16 diciembre, 2015
 

Página siguiente »

Universidad Politécnica de Valencia