Evaluación del ciclo de vida de muros óptimos de contrafuertes

s09596526Nos acaban de publicar un artículo que versa sobre la evaluación del ciclo de vida de muros óptimos de contrafuertes. En este estudio se han analizado 30 muros optimizados de varias alturas (4-13 m), con terrenos de distintas capacidades portantes (0,2; 0,3 y 0,4 MPa). Os paso la referencia, el resumen y el enlace al artículo. Espero que os sea de interés.

NOTICIA: Hasta el 21 de diciembre de 2016 podéis descargaros gratis el artículo directamente en:

http://authors.elsevier.com/a/1Tz-03QCo9JQWX

Aprovecha la oportunidad para no pagar los costes de descarga.

Highlights

  • A life cycle assessment over 30 optimized earth-retaining walls is conducted
  • Concrete presents the highest contribution to all impact categories
  • Steel significance on every impact increases with wall size
  • The recycling rate influences each impact category to different degrees
  • Savings on abiotic resource depletion with 70% recycled steel are about 72%

 

l-31-fig31-3-counterfort-retaining-wallsAbstract:

In this paper life cycle assessments are carried out on 30 optimized earth-retaining walls of various heights (4–13 m) and involving different permissible soil stresses (0.2, 0.3 and 0.4 MPa) in Spain. Firstly, the environmental impacts considered in the assessment method developed by the Leiden University (CML 2001) are analyzed for each case, demonstrating the influence of the wall height and permissible soil stress. Secondly, this paper evaluates the contribution range of each element to each impact. The elements considered are: concrete, landfill, machinery, formwork, steel, and transport. Moreover, the influence of the wall height on the contribution of each element over the total impact is studied. This paper then provides the impact factors per unit of concrete, steel, and formwork. These values enable designers to quickly evaluate impacts from available measurements. Finally, the influence of steel recycling on the environmental impacts is highlighted. Findings indicate that concrete is the biggest contributor to all impact categories, especially the global warming potential. However, the steel doubles its contribution when the wall heights increase from 4 m to 13 m. Results show that recycling rates affect impacts differently.

Keywords

Life cycle assessmentRetaining wallSustainability; Buttressed wall

Referencia:

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

 

Appraisal of infrastructure sustainability by graduate students using an active-learning method

file.FeedFileLoaderAppraisal of infrastructure sustainability by graduate students using an active-learning method

Abstract:

Currently many university programs in the construction field do not take sustainability into account from a holistic viewpoint. This may cause a lack of sensitivity from future professionals concerning sustainability. Academics in construction must endeavor to instill a culture of sustainability in the curricula of their students. Therefore, this study proposes an active-learning method that allows graduate students in the construction field to take into consideration infrastructure sustainability from a variety of perspectives in a participatory process. The students applied an analytical hierarchical process to determine the appraisal degree of each criterion. A cluster statistical analysis was carried out, aiming to identify the profiles that influence decision-making. This method was applied to two classes of graduate students enrolled in the Master of Planning and Management in Civil Engineering at the Universitat Politècnica de València. This method identified a correlation between the profiles toward sustainability and the characteristics of the chosen infrastructure. It was also found that the method fulfills educational purposes: most of the students obtained more than 65% of the target learning outcomes. This approach promotes awareness and sensitivity to different points of view of the sustainability in a participatory context. It can be replicated in other contexts so as to obtain appraisals regarding various criteria that help enhance decision-making.

Highlights

  • Proposal of a method that allows students to consider infrastructure sustainability.
  • Participatory learning method that promotes integral sustainability.
  • Students profiles’ identification influencing decision making toward sustainability.
  • The profiles of evaluators influence the prioritization among alternatives.

Reference:

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010

Os dejo a continuación la versión autor del artículo:

Descargar (PDF, 593KB)

A first approach: Towards a sustainable civil engineering works with precast concrete solutions

I section beam. One of the most common profiles to design and build the deck bridge
I section beam. One of the most common profiles to design and build the deck bridge

LÓPEZ-VIDAL, A.; YEPES, V. (2016). A first approach: Towards a sustainable civil engineering works with precast concrete solutions. II International Conference on Concrete Sustainability, ICCS16, 13-15 June 2016, Madrid (Spain), pp. 1134-1143. ISBN: 978-84-945077-7-9

Abstract. Most of the advances carried out to set standardized methodologies to quantify the contribution to “sustainabilize” the construction are linked to buildings rather than infrastructures, and much more in particular to housing [1]. Global impact on housing are the widest and highest one, gathering the three sustainable axis: environmental (greenhouse gas emissions derived from heating or cooling to reach indoor comfort conditions), social (home is a basic need for families) and economic (it usually represents the main expense over the life of people). Meanwhile civil engineering work has not evolved as long on this topic. Although we generally refer to greater constructions, sustainable impacts are more diffused and don´t have such a direct repercussion into the citizens and daily life. For this reasons, there is no as many literature and investigation as in housing. It may implies a technical and promotional handicap to promote a higher use of precast concrete elements in a field governed by engineers that appreciate better their performance advantages. This paper is intended to describe the strengths (and weaknesses) that precast concrete construction will have into the upcoming standards for civil engineering, in order to enhance their possibilities to reach a greater market share. Sustainable indicators on current draft standards will be assessed.

Key words: precast concrete, industrialization, sustainability, civil engineering works

Descargar (PDF, 426KB)

 

 

El profesor Dan M. Frangopol de estancia con nosotros en la Universitat Politècnica de València

Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.

El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.

De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”

A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/

Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.

Descargar (PDF, 108KB)

Gestión sostenible de pavimentos

trr.2015.issue-2523.coverLa gestión sostenible de los pavimentos supone la integración de aspectos económicos, técnicos y medioambientales en la toma de decisiones. A continuación dejo el resumen y la referencia de un artículo que nos acaban de publicar al respecto. El artículo completo lo podéis solicitar a la siguiente dirección: https://www.researchgate.net/publication/291373081_Sustainable_Pavement_Management

ABSTRACT:

Sustainability, which is founded on the reconciliation of economic, environmental, and social aspects, has become a major issue for infrastructure managers. The economic and environmental impacts of pavement maintenance are not negligible. More than $400 billion are invested globally each year in pavement construction and maintenance. These projects increase the environmental impacts of vehicle operation by 10%. Because maintenance should be technically appropriate, infrastructure managers must integrate technical, economic, and environmental aspects in the evaluation of maintenance alternatives over the life cycle of a pavement. However, these aspects are normally assessed in measurement units that are difficult to combine in the decision-making process. This research examined and compared methods for the integrated consideration of technical, economic, and environmental aspects, and this study aimed to assist highway agencies, researchers, and practitioners with the integration of these aspects for the sustainable management of pavements. For this purpose, a set of maintenance alternatives for asphalt pavements was evaluated. Methods for the integration of these aspects were explored and led to recommendations for the most suitable methods for different scenarios. As a result of this analysis, the analytic hierarchy process (AHP) is recommended when the number of alternatives is small. In these situations, the AHP leads to results that are similar to those of the weighting-sum and multiattribute approaches that are frequently used for intuitive selection. However, when the number of alternatives is large, pair comparison becomes difficult with the AHP and the weighting-sum method becomes more appropriate.

Figura 1
Efectividad de las diferentes alternativas de tratamiento

Reference:

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, No. 2523, Transportation Research Board, Washington, D.C., 2015, pp. 56–63. DOI: 10.3141/2523-07

Os dejo a continuación la versión autor:

Descargar (PDF, 338KB)

 

Towards sustainable civil engineering works using precast concrete solutions

CV ARTICULOMost of the achieved advances related to define standardized methodologies to quantify the contribution to “sustainabilize” the construction are linked to buildings rather than infrastructures, and much more in particular to housing. Global impact on housing is the widest and highest one, gathering the three sustainable axis: environmental (greenhouse gas emissions derived from heating or cooling to reach indoor comfort  conditions), social (home is a basic need for families) and economic (it usually represents the main expense over the life of people). Meanwhile civil engineering work has not evolved as long on this topic. Although we generally refer to greater constructions, sustainable impacts are more diffused and don´t have such a direct repercussion into the citizens and daily life. For this reasons, there are not as many assessment methods for civil engineering works as there are for buildings, or even any literature regarding this field. Therefore it may implies a technical and promotional handicap to promote a higher use of precast concrete elements in a sort of constructions governed by engineers that usually appreciate better their performance advantages. This article pretends to describe the strengths that precast concrete construction will have into the upcoming standards for civil engineering works, in order to enhance their possibilities to reach a greater market share. Sustainable indicators on current draft standards will be assessed.

Reference:

López-Vidal, A.; Yepes, V. (2015). Towards sustainable civil engineering works using precast concrete solutions. Concrete Plant International, 5: 18-24. (link)

Descargar (PDF, 2.31MB)

Environmental Assessment of Concrete Structures

2014-11-12 16.38.05In recent decades, with the objective of reaching a more sustainable development, worldwide society has increased its concern about environmental protection. Nevertheless, there are still economic sectors, such as the construction industry, which produce significant environmental impacts. Life Cycle Assessment (LCA) is a tool that enables identifying environmental issues related to both finished products and services, and allows focusing efforts to resolve them. The main objective of this paper is to asses LCA applicability on concrete structures so that construction’s environmental performance can be improved. For this purpose, an attempt is made to provide a decision-making tool for construction-sector stakeholders with reliable and accurate environmental data. The research methodologies used in this paper are based on a literature review and are applied to a case study. This review was performed to collect information on LCA methodologies currently in use and their practical application. The case study subsequently described in this paper involved identification of the most sustainable type of slab for a reinforced concrete structure in a residential building, using two different databases. It was observed that, depending on the database selected and inherent assumptions, results varied. Therefore it was concluded that in order to avoid producing incorrect results when applying LCA, it is highly recommended to develop a more constrained methodology and grant access to reliable construction-sector data. (link)