La calidad visual a través del color

Os paso a continuación el último artículo publicado en el número 11 de la revista Cuadernos de Diseño en la Obra Pública. Se trata de una reflexión sobre el diseño, el color y la obra pública. Es, sin duda, un tema complejo, sujeto a amplio debate, con fuertes implicaciones que inciden, incluso, en el derecho que tienen los autores sobre su obra, especialmente cuando se habla de obras públicas. Dejo el artículo completo para vuestra descarga.

De nuevo, agradezco a Modesto Battle la sugerencia de escribir el artículo. Además, en la Red Universitaria Iberoamericana de Territorio y Movilidad Ruitem (www.ruitem.org) podréis descargar todos los números publicados de la revista. En este número 11, también participan Manel Reventós, Florentino Regalado y Ángel Aparicio Mourelo.

 

Referencia:

YEPES, V. (2019). La calidad visual a través del color. Cuadernos de Diseño en la Obra Pública, 11:4-10. ISSN: 2013-2603.

 

 

Descargar (PDF, 567KB)

La teoría del color y la estética en ingeniería

Figura 1. Puente Juan Bravo, en Madrid. Crédito: Guillem Collell Mundet, http://www.dobooku.com/2017/10/el-puente-juan-bravo-en-madrid/

Existe un interés creciente por las obras de ingeniería, que no solo deben ser funcionales y económicas, sino también estéticas. Sin embargo, saber valorar la estética o la calidad visual de una obra plantea algunos interrogantes. Se trata de un tema controvertido para muchos ingenieros, no suficientemente tratado en los planes de estudios. Resulta llamativa la reflexión realizada por Modest Batlle (2005) en relación con un mecanismo de autodefensa del ingeniero: “si no soy capaz de diseñar bien, mi alternativa es plantear que el diseño no tiene importancia; que lo hagan los otros“.

Javier Manterola (2010) reflexionaba en “Saber ver la ingeniería” sobre el lenguaje propio de cada una de las manifestaciones artísticas como la pintura, la escultura, la música, la arquitectura, el cine, la fotografía o la ingeniería. Si bien la forma de entender el arte se ha configurado a lo largo del tiempo, no son lenguajes independientes, aunque un pintor no tenga porqué saber nada de ingeniería o viceversa. La ingeniería va creando y modificando el paisaje donde se inserta, y es el espectador el que puede calibrar el valor intrínseco de la obra si entiende su lenguaje propio. David P. Billington (2013) acuña el término “arte estructural” como manifestación del arte del ingeniero de estructuras, que se muestra con claridad en puentes, rascacielos y cubiertas de gran luz. Podría pensarse que en estas estructuras, o en cualquier manifestación de la ingeniería civil (carreteras, presas, etc.), la belleza es una función más. Pero, como bien indica Juan José Arenas (1995), “contraponer funcionalidad y belleza es tomar el camino equivocado“.

Estos planteamientos conducen a la búsqueda de la verdad estructural como base de los valores estéticos de una estructura. Como dice Billington, “La forma controla las fuerzas y, cuanto más claramente pueda el proyectista visualizarlas, tanto más seguro se sentirá de esa forma“. También Eduardo Torroja acuñó su célebre frase “La lógica de la forma“, en el sentido que era la función que ha de cumplir una estructura su guía de diseño. El arco o la catenaria serían bellos en sí mismo porque expresan en sí mismos cómo se transmiten las cargas. Por tanto, fuera cualquier adorno superfluo. La estética de Torroja surge “del deseo último de fundir en un mismo ser la forma artística con la resistente“, lo cual es independiente del paisaje, resultando su integración más de la economía y simplicidad de formas y materiales, que de unos deseos explícitos de relacionar la obra con el paisaje (Nárdiz, 2001).

Sin embargo, ¿es suficiente el rigor de la ciencia estructural para alcanzar el nivel de calidad de diseño y construcción que pueda considerarse como “arte”? Arenas lo niega con rotundidad al afirmar que los mejores ingenieros buscan una síntesis “entre arte y tecnología, entre forma y mecanismos resistentes, entre claridad de expresión externa y limpieza y eficiencia del comportamiento estructural interno“. Miguel Aguiló (1999), reflexionando sobre el paisaje construido, sostiene que “normalmente se construye con una finalidad pero, algunas veces, lo construido trasciende a su propio uso y adquiere significados“. Es ahí donde está la clave, ¿qué significado tienen las obras de ingeniería?, ¿cómo valora el observador la imagen construida?, ¿es necesario un lenguaje específico para valorar la estética o el arte en ingeniería?

Figura 2. Presa de Aldeadávila. Difícil no emocionarse ante este arco gravedad. Crédito: Raiden32 (Imagen cedida por onmeditquenosvies, miembro del foro embalses.net) – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=9884054

Es difícil entrar en este campo de la estética y de la calidad visual de las infraestructuras. Aspectos como la armonía con el entorno, la esbeltez, el orden o la proporción se unen a la eficiencia económica y estructural en la valoración de la belleza de la obra pública. Pero no todos los espectadores utilizan el mismo lenguaje para valorar lo bello. Además, la subjetividad se acrecienta con las modas y con el contexto histórico y cultural en un ámbito determinado. Se trata, por tanto, de una respuesta emocional del observador (Figura 2). Con todo, ¿podemos utilizar algunos aspectos del lenguaje de la pintura, la fotografía o la escultura para entender mejor por qué existen imágenes u objetos que nos emocionan más que otros? ¿Se puede hablar, por tanto, de emoción en las obras de ingeniería?

Una de las formas universales, aunque no la única, de aproximarse a la realidad es el lenguaje visual. Se trata de un lenguaje mucho más universal que las lenguas escritas, aunque dispone de sus propias normas gramaticales y ortográficas que conviene conocer para transmitir lo que deseamos. Este lenguaje está presente en el diseño gráfico, industrial o la arquitectura, trasciende las bellas artes, la pintura, la fotografía y llega a la publicidad o a las redes sociales. Estamos en inmersos en un universo visual al que no es ajeno la ingeniería civil. Por tanto, existe cierta labor de alfabetización visual necesaria para entender el valor o demérito de una infraestructura y su contexto. Se trata de que el espectador pase a observador, transite sucesivamente de ver a mirar, para llegar a observar lo que se le presenta. Un correcto lenguaje visual permite al espectador dirigir la vista al objeto y formarse un juicio sobre él, por tanto, depende tanto de lo que se mira como de la experiencia previa.

Gran parte del conocimiento actual sobre la percepción humana y cómo interactúa con el significado visual nació en Europa en el primer tercio del siglo XX con la psicología de la Gestalt. Se comprobó cómo el principio básico de la organización perceptual es que el todo supera a la suma de las partes. Nuestro cerebro aprehende de la realidad simplificándola, analiza los componentes y los organiza en estructuras como pueden ser formas, objetos o secuencias. Entre el sujeto y el fondo, el cerebro crea un contraste que exagera las diferencias. Distinguimos sensaciones en la luz como el brillo, el contraste o la degradación tonal, así como el tamaño, la textura, la masa estimada o la localización espacial de lo que vemos. Incluso cuando falta información, nuestro cerebro crea incluso realidad mediante ilusiones ópticas.

El diseño puede considerarse como la expresión visual de una idea. Esta idea se transmite en forma de composición. Las formas (sus tamaños, posiciones y direcciones) constituyen la composición en la que se introduce un esquema de color. El lenguaje visual presenta, por tanto, unos elementos básicos como el punto, la línea, las superficies y el volumen. Todo ello crea formas, volúmenes, que en la obra pública se integran en el paisaje, transformándolo. Cómo disponer de estos elementos básicos forma parte de lo que se denomina “composición”, todo un arte dentro de la pintura o la fotografía, pero cuyos principios básicos también forma parte de la visión subjetiva del espectador del paisaje y sus infraestructuras.

Figura 3. Círculo cromático en la teoría tradicional del color

La forma ha sido un clásico en la estética, fundamentalmente en las estructuras, tal y como hemos visto anteriormente. Sin embargo, en este artículo vamos a centrarnos solamente en uno de los aspectos básicos de la calidad visual, que es la materia prima fundamental: la luz. Es la visión el sentido de la percepción del sujeto que consiste en la habilidad de detectar la luz e interpretarla. El espectro electromagnético visible por el ojo humano comprende longitudes de onda entre los 380 nm hasta los 780 nm, es decir, desde el violeta hasta el rojo. El color como tal no existe, son las células sensibles de la retina las que reaccionan de forma distinta con la longitud de onda de la luz reflejada por los objetos y que permite distinguir los colores. El ojo humano presenta tres tipos de células que transforman las longitudes de onda en los colores azul, rojo y verde, y de esta combinación se percibe el resto de gama de colores. Estos tres colores constituyen los colores primarios, de cuya combinación se puede producir la luz blanca, se trata del modelo de color RGB. Sin embargo, también existe el modelo CMYK formado por los pigmentos cian, magenta y amarillo, de cuya combinación se produce el negro. No obstante, la tradición del arte y en especial de la pintura, nos lleva al modelo de color RYB, donde los colores primarios son el rojo, el amarillo y el azul (Figura 3). Al conjunto de reglas básicas en la mezcla de colores para conseguir el efecto deseado se le denomina teoría del color.

En la Figura 3 se muestra el círculo cromático tradicional. En él los colores primarios (rojo, amarillo y azul) se combinan en la misma proporción para obtener los colores secundarios (violeta, naranja y verde). Incluso se obtienen los colores terciarios como combinación de primarios y secundarios (rojo violáceo, rojo anaranjado, amarillo anaranjado, amarillo verdoso, azul verdoso y azul violáceo). Los colores tienen tres atributos básicos: el matiz o tono, que es el propio color, la luminosidad, que es la mayor o menor cercanía al blanco o al negro, y la saturación o pureza del color, que es la concentración de gris. Por ejemplo, en el caso de mezclar colores opuestos en el círculo cromático, se obtienen grises.

Si bien el color se ha usado con maestría en la pintura, la fotografía, la arquitectura, no se podría decir lo mismo con la ingeniería, donde existe un desconocimiento absoluto sobre el fenómeno perceptivo con inagotables posibilidades espaciales. La fascinación por el blanco llegó a considerar el color como algo “casi delictivo”. Incluso no faltan los que opinan que el color en la obra pública es un ornato innecesario cuando se cambian los tonos naturales de los materiales, incluso se tacha de decoración. Le Corbusier argumenta al respecto en torno a tres ideas que quedan respaldadas con ejemplos de sus propios edificios construidos: “el color modifica el espacio”, “el color clasifica los objetos” y “el color actúa psicológicamente sobre nosotros y reacciona fuertemente sobre nuestros sentimientos”. El color tenía una gran importancia en la docencia de los primeros cursos de la Bauhaus, escuela que sentó las bases normativas y patrones de lo que hoy conocemos como diseño industrial y gráfico. El color interfiere en las propiedades visuales de la forma (puente, edificio, etc.) para mimetizar o singularizar las estructuras con el paisaje urbano o para integrar o desintegrar sus elementos componentes, para describir aspectos relacionados con la función o la composición de la forma, para vincularse con la cultura local de un contexto determinado, para incorporar un valor artístico añadido, etc. (Serra, 2013). No tiene sentido proyectar una obra y luego pensar cómo la pintaremos.

Por tanto, ¿tiene sentido colorear una obra de ingeniería? ¿No sería mejor dejar los colores naturales de los materiales? ¿Qué importancia tiene el código de color en la restauración? En el caso de las estructuras metálicas, el coloreado es casi obligatorio para su protección; en hormigones o aglomerados asfáticos se pueden agregar pigmentos; incluso el color puede conseguirse por biofilia, incorporando especies vegetales a la obra creada. Si bien cada individuo tiene una forma diferente de ver el mundo, en el fondo todos tenemos muchísimo en común. Los colores influyen en la emoción del observador, pues unos son fríos (tranquilos, estáticos, introvertidos) y otros más cálidos (energéticos, extrovertidos, dinámicos). Los colores neutros (gris, negro, blanco) son muy versátiles. El peso visual tiene un fuerte componente emotivo: se valora como más pesado el objeto de mayor tamaño, las superficies con textura pesan más que las lisas y homogéneas, los colores cálidos, saturados o claros se perciben como más densos que los fríos, desaturados y oscuros. Además, la investigación y la experiencia en la pintura a lo largo de la historia del arte permite disponer conjuntos de colores que armonizan de una forma especial entre ellos o bien contrastan. Ambas, armonía y contraste, son las dos formas compositivas del color.

  • Los colores complementarios son los que se encuentran en puntos opuestos en el círculo cromático, es decir, proporcionan el máximo contraste. Por ejemplo, el amarillo y el azul. Los complementarios son colores que se refuerzan mutuamente, de forma que un mismo color parece más vibrante si se asocia a su complementario. Son una buena herramienta para llamar la atención y para aquellos proyectos donde se quiera un fuerte impacto. Pero hay que tener cierta precaución, pues el resultado puede ser caótico si se usa la misma cantidad de cada color, por lo que se aconseja que un color sea el dominante.
  • La armonía doble de complementarios consiste en utilizar dos colores y sus complementarios, es decir, dos pares de colores contrastados. También puede ser algo arriesgada, sobre todo si se eligen porcentajes iguales de cada color.
  • Los complementarios divididos o adyacentes constituye una variante de los colores complementarios, pero con un menor contraste. En lugar de utilizar el complementario al color dado, se usan los situados en posiciones inmediatamente adyacentes. Por ejemplo, el azul y el rojo naranja y amarillo naranja. A veces basta utilizar dos de los colores. Esta armonía se utiliza mucho para acabados decorativos.
  • La armonía de análogos son los colores próximos en la rueda del color. Como son parecidos, armonizan muy bien entre sí. Estas combinaciones son muy habituales en la naturaleza. Por tanto, obras de ingeniería que intenten armonizar con el paisaje del entorno casan bien con colores armónicos.
  • Las tríadas o armonías de tres colores son aquellos que son equidistantes en el círculo cromático. Se podrían utilizar incluso figuras más complejas de cuatro o cinco lados, siempre con colores equidistantes entre sí.
  • La armonía monocromática es la basada en un solo color y sus diferentes tonos, con adición de blanco, negro y gris, es decir, variando su saturación y luminosidad. Es muy simple, y da sensación de sobriedad y elegancia, dando un efecto unificador y armonioso. Aunque a veces puede ser “excesivamente armónica”, monótono y aburrida, lo cual se puede evitar con alguna pizca de color complementario. Una forma de no fallar es utilizar el blanco, pues funciona de forma armónica, pero siempre que el resto de colores de la familia tonal correspondiente. Muchos de los puentes modernos puentes actuales acaban siendo blancos por este motivo.
Figura 4. Formas compositivas del color. Crédito: V. Yepes
Figura 5. Puente de La Vicaria, en Yeste. Crédito: Jesús from Albacete, España – Líneas (Puente de la Vicaría), CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=14935472

En las obras de ingeniería, el color es lo más económico y lo más visible (Batlle, 2005). El color cumple su función en la composición de una construcción. Puede integrar por mimetismo la obra con su entorno; por contra puede llamar la atención usando colores saturados o claros (por ejemplo en los puentes destaca el color el flujo de fuerzas). Sirve para ocultar elementos, como puede ser la imposta de un puente para aparentar mayor esbeltez. O incluso puede servir como signo identitario de un ámbito geográfico o sectorial, como es el caso del color azul del TGV en España.

Vamos a comentar algunas fotografías para descubrir la armonía o el contraste entre los colores. En la Figura 5 (puente de La Vicaría) se pueden observar los colores rojo anaranjado del arco y del suelo, los azules de la barandilla y el cielo, junto con los verdes del paisaje. Se trata de una armonía de dobles complementarios que funciona bien en el paisaje. Este rojo anaranjado es característico del acero Corten, muy utilizado en estructura mixta, tal y como se puede ver (Figura 1) en el puente Juan Bravo, en Madrid, diseñado por los ingenieros José Antonio Fernández OrdóñezJulio Martínez Calzón y Alberto Corral López-Dóriga. En este caso, el color del acero autopatinable y el blanco proporcionan una sensación de ligereza visual al tablero que resulta atractiva. Este material es especialmente interesante en cuanto a su integración paisajística, pues presenta tonos análogos a los tostados y marrones propios de la naturaleza.

Otro caso es la deliberación en el uso del color para destacar la singularidad de una obra. Un puente rojo o amarillo puede destacar sobre un paisaje natural, o bien mimetizarse en él si el color es verde o gris. Existe un gran riesgo de equivocación en el caso de una fuerte atracción visual. Por ejemplo, el rojo ligeramente anaranjado característico del Golden Gate, en San Francisco, funciona perfectamente destacando la singularidad de la estructura. Se trata de un color cálido que sintoniza bien con el entorno natural, con colores cálidos del terreno y que contrasta con los colores fríos del cielo y el mar. Además, proporciona una buena visibilidad a los busques en tránsito, pues el puente se encuentra cubierto de una espesa niebla muchos días al año. La propuesta de este icónico color fue de Irving Morrow, arquitecto asociado al proyecto, que pensó que la primera capa de pintura protectora presentaba una estética radical frente a los colores grises aluminio que se barajaban al principio. Este color (69% magenta, 100% amarillo y 6% negro), denominado como “Naranja Internacional” no pasa desapercibido, ya sea conduciendo, caminando o mirando la estructura desde la lejanía. Es simplemente maravilloso. Lo cual no significa que este color sirva en cualquier otro contexto y situación. ¡Qué suerte que la Armada estadounidense no impuso su opinión de pintar el puente de negro y amarillo para que fuera más visible! En la Figura 6 se ve la diferencia.

Figura 6. Puente colgante Golden Gate, en San Francisco. La segunda imagen corresponde al color que quería la Armada estadounidense. Crédito: Joan Campderrós-i-Canas/CC BY 2.0; Golden Gate Bridge, https://www.californiasun.co/stories/6-fascinating-facts-about-california-avocado-and-bumble-bee-bridge-edition/

También se puede utilizar el color en la iluminación ornamental de las infraestructuras. En ese sentido, tuve la experiencia personal de participar, desde la Generalitat Valenciana, en diversas iluminaciones como el Puente de San Jorge (Alcoy), tal y como puede verse en la Figura 7. Otras experiencias fueron la iluminación del casco urbano de Bocairent (Valencia), o las murallas de Xàtiva o Morella. En estos casos, la coloración puede ser más atrevida, ser cambiante y buscar efectos dinámicos, puesto que los cambios no son permanentes. Incluso en ocasiones se utilizan los fondos de determinados monumentos o fachadas como telón de fondo de actividades festivas o artísticas. Es, por ejemplo, el caso de las Torres de Serrano con motivo de la Crida, invitación a las Fallas de Valencia (Figura 8).

Figura 7. Iluminación ornamental del puente de San Jorge (Alcoy). Créditos: Waliwali21222324 – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66216027

 

Figura 8. Iluminación de las Torres de Serrano con motivo de la Crida fallera

Otras veces el color juega un papel deliberado de integración de una estructura en su territorio. Es el caso del puente Fernando Reig de Alcoy (Alicante). De este puente y de los derechos de autor de las obras de ingeniería, ya hablamos en un artículo anterior. En este caso, el proyecto lo suscribieron los ingenieros de caminos José Antonio Fernández OrdóñezJulio Martínez Calzón, Manuel Burón Maestro y Ángel Ortíz Bonet. Tal y como se dice en su memoria: “La pila central es el elemento fundamental del puente y, sin ella, todo el concepto estructural y estético perdería  su sentido“. El material de la pila está cuidadosamente descrito para alcanzar su objetivo: un hormigón especial formado por un cemento portland gris muy claro con áridos y arenas rojas, y posteriormente tratado al chorro de arena. Con ello se consigue un color rosa, muy parecido al de la piedra de sillería del cercano puente de María Cristina, lo cual añade aún más singularidad a lo que ya son las enormes dimensiones y potente forma de la pila. Además, se eligió pintar en color gris la parte inferior de los tirantes hasta la altura de la barandilla para no distorsionar la línea horizontal del tablero. En la Figura 9 se puede apreciar el aspecto del puente antes de su última reparación.

Figura 9. Puente Fernando Reig de Alcoy, antes de la remodelación. Crédito: RafaMiralles – http://taxialcoy.net, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42608270

Tras la renovación, el puente luce “prácticamente nuevo”, con una capa de pintura blanca en pilas, tirantes y tablero que desgarra la idea y concepción estética buscada por su autor. Se podrán argumentar razones técnicas, de durabilidad o de cualquier otro tipo. Pero estoy convencido de que se podría haber respetado la obra según la concibió su creador. Dejo la imagen del nuevo puente en la Figura 10. Como he dicho anteriormente, es el espectador el que tiene que valorar la obra pública, aunque en este caso, no tendrá ocasión de comprobar si lo que el autor quería transmitir se consiguió o no. Esa oportunidad de entender el significado de la obra se ha robado para las siguientes generaciones.

Figura 10. Puente Fernando Reig de Alcoy, tras su remodelación. Imagen: V. Yepes (2019)

Referencias:

AGUILÓ, M. (1999). El paisaje construido. Una aproximación a la idea de lugar. Colección de Ciencias, Humanidades e Ingeniería, nº 56. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

ARENAS, J.J. (1995). El arte y la estética en el diseño de puentes: ¿Puentes monumento u obra civil funcional?. Revista de Obras Públicas, 3344: 27-34.

BATLLE, M. (2005). Diseño y funcionalidad visual en la obra pública. Colección de Ciencias, Humanidades e Ingeniería, nº 78. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

BILLINGTON, D.P. (2013). La torre y el puente. El nuevo arte de la ingeniería estructural. Cinter Divulgación Técnica, Madrid.

MANTEROLA, J. (2010). La obra de ingeniería como obra de arte. Fundación Arquitectura y Sociedad. LAETOLI, Pamplona.

NÁRDIZ, C. (2001). El paisaje de la ingeniería, la estética, la historia, el análisis y el proyecto. OP ingeniería y territorio, 54:4-13.

NAVARRO, J.R. (editor) (2009). Pensar la ingeniería. Antología de textos de José Antonio Fernández Ordóñez. Colección ciencias, humanidades e ingeniería. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

SERRA-LLUCH, J. (2013). Three color strategies in architectural composition. Color Research and Application, 38, pp. 238-250.

YEPES, V. (2018). El derecho de autor en las obras de ingeniería: El puente Fernando Reig en Alcoy. https://victoryepes.blogs.upv.es/2018/05/17/el-derecho-de-autor-en-las-obras-de-ingenieria-el-puente-fernando-reig-en-alcoy/ 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Las fiebres tifoideas y los puentes de altura estricta de Carlos Fernández Casado

Carlos Fernández Casado (1905-1988)

No hay nada como un retiro obligado para que las mentes más brillantes reluzcan con todo su esplendor. Así, cuando en 1665 cerró la Universidad de Cambridge debido a la peste, Isaac Newton (1642-1727) tuvo que volver a casa natal de Woolsthorpe y, durante ese retiro, sentó las bases de sus teorías de cálculo y las leyes del movimiento y la gravitación. Algo similar ocurrió con uno de los ingenieros españoles más destacados y singulares del siglo XX, D. Carlos Fernández Casado. Recomiendo leer su biografía y obras a las nuevas generaciones de ingenieros, pues es todo un referente. Ingeniero de Caminos, Canales y Puertos con 19 años, también fue Ingeniero de Telecomunicaciones, Licenciado en Filosofía y Letras, Licenciado en Derecho a los 68 años, e incluso inició los estudios universitarios de Psicología. Con todo, su faceta humana y generosidad sobrepasan su inteligencia privilegiada y sus extraordinarios logros profesionales.

Pero la entrada de hoy tiene que ver con la relación existente entre el tiempo disponible forzado por un retiro, enfermedad o cualquier otra circunstancia, y la creación. Carlos Fernández Casado tuvo su primer destino profesional como ingeniero de caminos en Granada (1928-1932), lo que le permitió entrar en contacto con la intelectualidad de la época, cuya figura más visible fue Federico García Lorca, y con la Naturaleza en sus primeros trabajos, lo cual contribuyó a conformar su planteamiento intelectual y vital. Pues bien, al final de sus años en Granada enfermó con fiebres tifoideas, lo que le obligó a guardar cama durante varias semanas, propiciando esta situación la reflexión personal sobre lo que había hecho hasta el momento. Este hecho fue fundamental en su vida, pues significó un cambio de rumbo en su vida.

Fruto de estas reflexiones, a la temprana edad de 25 años, en 1930, Fernández Casado desarrolla la conocida “Colección de Puentes de Altura Estricta” (Manterola, 1988). El objetivo de esta colección era el diseño de puentes que pudieran salvar las luces prácticas más corrientes con la mínima pérdida de altura. Se trata de una de las mejores y más queridas obras realizadas por D. Carlos. Se refleja en esta colección la manera de concebir la ingeniería y el afán por lo estricto como planteamiento ético y estético. En una referencia recogida por su hijo, Leonardo Fernández Troyano (2007) publicada en la Revista de Obras Públicas, definía claramente esta concepción de lo estricto, concepción que ha calado en numerosas generaciones de ingenieros:

Este sentido de lo estricto -supresión de lo accesorio de la obra definitiva y a lo largo del proceso constructivo- elimina radicalmente lo decorativo, partiendo de lo funcional llegamos directamente a lo estructural” (Fernández-Casado, 1933).

La colección destila una simplicidad absoluta de sus elementos, con el uso exclusivo del plano y la línea recta, con la única excepción de las columnas cilíndricas, que encajan a la perfección al ser también ellos elementos estrictos, pues su forma interfiere mínimamente con el flujo hidráulico.

Pero esta simplicidad se hermana directamente con el amor que procesaba a la Naturaleza. El paradigma actual de la sostenibilidad, y que también tiene mucho que ver con mi pasión por la optimización multiobjetivo de los puentes, a la que tanto esfuerzo he dedicado. Todo un adelantado a su tiempo. En sus propias palabras:

Que se arranque lo menos posible el material de la mina, que la menor cantidad de piedra y arena se desvíen de su proceso evolutivo, que se consuma el mínimo de combustible en los transportes y se introduzcan las menos ideas nuevas en el paisaje” (Fernández-Casado,  1951).

La colección, muy ambiciosa morfológicamente, incluye pórticos sencillos (series I y II), pórticos en pi (series III y IV), puentes continuos de tres vanos (series V y VI), puentes continuos de tres vanos con articulaciones intermedias a media ladera (series VII y VIII). La sección transversal, por su parte, podía ser en losa, o en vigas T en la zona central del vano y cajones cerrados en las zonas laterales.

Los primeros tres puentes de esta colección se realizaron en Jaén, por encargo del ingeniero José Acuña y Gómez de la Torre. El primero fue el de Santo Tomé, el segundo el del río Onsares, y el tercero, el del río Guadalimar, construidos el primero en 1934 y los dos últimos, un año más tarde (Burgos et al., 2012). Se construyeron más de 50 puentes de la colección, tanto por Fernández Casado como por otros ingenieros. Como dice Javier Manterola en un artículo publicado a los pocos meses del fallecimiento de D. Carlos, (justo en el año en el que esto escribe terminó su carrera de Ingeniero de Caminos): “estos puentes son historia y en ellos nos reconocemos los que nos dedicamos a este quehacer” (Manterola, 1988).

Puente en Santo Tomé sobre el río de La Vega. Vista del puente en construcción. http://www.cehopu.cedex.es/cfc/pict/I-FC001-003.htm

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El concepto de puente

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)
Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Imagen: © V. Yepes

Los puentes pueden considerarse como una de las construcciones cuyos orígenes se pierden en los albores del tiempo. Son las obras civiles por excelencia. Sin embargo, son mucho más que simples construcciones, en palabras de Juan José Arenas, “un puente ha sido, y es, sin género de dudas, un elemento indispensable para el desarrollo de la civilización y de la cultura”.

Los puentes a lo largo de la historia han identificado paisajes y se han erigido en articuladores del espacio. Javier Manterola  recuerda que “el puente es un elemento del camino”, por tanto, no puede entenderse sin él, pero tampoco sin el obstáculo. Es el paradigma del esfuerzo de la razón en su pretensión de superar todo tipo de dificultad y contratiempo. Para Miguel Aguilólos puentes … expresan la superación de un obstáculo, de una incomunicación, de una situación comprometida”. Es el afán sempiterno por vencer los límites que amordazan la voluntad humana.

El puente es la metáfora perfecta de la unión entre las partes, de la comunicación, del intercambio y del progreso. También significa el paso o tránsito hacia el otro lado, hacia lo desconocido, con toda la carga de magia y misterio que lo rodea. Es la victoria de la razón sobre las fuerzas de la Naturaleza, aunque para otros es fruto de la intervención del maligno. Fernández-Troyano nos recuerda que la magia consiste en “sostener el camino en el aire”, dejándolo flotar contra todo pronóstico, sorteando el orden establecido.

Es un símbolo de poder para quien lo controla y un paso hacia la inmortalidad para quien lo construye. Para otros es propaganda, una “golosina visual”, una marca o un reclamo turístico. Sin embargo, para los ingenieros, un puente puede ser la más bella obra que la razón ha regalado a los humanos. Aprender a ver un puente, por tanto, va más allá de la simple contemplación; consiste en descubrir su verdad interna, aquello que el autor ha querido expresar y que, en esencia, es la posibilidad de crear una estructura sólida, bella y funcional, como diría Vitruvio.

Puente della Trinitá en Florencia.  Imagen: © V. Yepes

Para José Antonio Fernández-Ordoñez el paradigma vitruviano queda limitado en nuestra búsqueda de entender el lenguaje del puente, incluso si se añaden las componentes constructivas y económicas. En efecto, tal y como nos refiere él mismo, le “interesan especialmente otros tres aspectos menos tratados, pero no menos importantes, como son el estético, el histórico y el de integración con su entorno, es decir, la naturaleza”.

Un puente es una obra de arte que, más allá de su arquitectura, presenta una dialéctica tensional que, bien entendida e interpretada, permite escucharla como una composición musical, con todos sus matices, timbres y tonos. Sin embargo, como cualquier obra de arte, es imposible descifrarla fuera de contexto, sin su entorno, sin la sociedad que la creó. Un puente genera, por tanto, otra dialéctica, la visual con el paisaje, creando o destruyendo el lugar, lo cual implica que el puente debe ser algo singular, creado “ad hoc”, que no sirve para cualquier sitio o circunstancia, y que debe ser fruto de la sociedad que lo ha visto nacer. Santiago Hernández (2009:11) expresa claramente esta idea cuando habla del “alma de los puentes”, es decir, “de la capacidad de provocar sentimientos en quienes los han construido y en aquellos que, cuando los contemplan, pueden ver a todos quienes han hecho posible que su obra sirva a miles de personas durante siglos. El puente es más que un libro, más que una película, más que un relato, más que una herramienta… el puente nos permite vivir una ‘experiencia’ que nos une a su origen, su pasado, su presente y su futuro”.

El protagonista, por tanto, es ese lenguaje dialéctico, interno del puente y externo con el contexto y el paisaje. Cuando el propio puente, su autor o su promotor prevalecen deliberadamente sobre este lenguaje, el puente pierde gran parte de su valor, prostituyendo su esencia. A este respecto, Miguel Aguiló ya nos previene de estos peligros: “… lo puramente funcional va siempre acompañado de intenciones simbólicas, de emulación, de prestigio o de ostentación, y son precisamente estas finalidades no explícitas en la función las que fomentan o impulsan la desproporción”. Es quizás en este contexto cuando ciertas reflexiones de Florentino Regalado pueden adquirir mayor brillo: “una reflexión meticulosa, la reflexión y el sentido común, y unas ciertas dosis de humildad, se echan a faltar en lo que se proyecta y construye”.

Quizá Steinman y Watson fueron capaces de sintetizar lo que el puente significa para aquellos que los amamos profundamente, “porque un puente es algo más que una cosa de acero y piedra: es la concreción del esfuerzo de cabezas, corazones y manos humanas. Un puente es más que una suma de deformaciones y tensiones: es una expresión del impulso de los hombres —un desafío y una oportunidad de crear belleza—. Un puente es el símbolo del heroico esfuerzo de la humanidad hacia el dominio de las fuerzas de la naturaleza. Un puente es un monumento a la tenaz voluntad de conquista del género humano”.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aplicabilidad de la construcción de puentes empujados

peri_maut_millau_7_lg
Construcción del viaducto de Millau (Francia) mediante empuje de su tablero

El procedimiento de empuje consiste en fabricar o montar el tablero detrás del estribo en un parque fijo y después trasladarlo longitudinalmente sobre las pilas, por fases sucesivas, hasta alcanzar su posición definitiva al llegar al otro estribo, sin necesidad de cimbras. El tablero desliza con gatos sobre estribo y pilas, con ayuda de un pico de lanzamiento. Para que el procedimiento sea efectivo, el puente necesita un tablero de canto constante y un trazado en planta recto y pendiente nula o ascendente; sin embargo, con los actuales sistemas de retenida, se permiten pendientes descendentes y alineaciones circulares. Otro trazado imposibilita que cualquier parte del puente pase durante la traslación por los mismos puntos, complicando la ejecución. Al principio el procedimiento se utilizó con tableros metálicos, pero hoy se aplica también a cajones de hormigón.

Las solicitaciones propias del empuje requieren secciones en cajón con cantos importantes y constantes, en torno a relaciones canto/luz de 1/10 a 1/15. El procedimiento constructivo provoca una ley de momentos flectores con valores muy altos cuando está el vano entero en voladizo. Para reducir el peso del tablero, se dispone de un pico de avance o nariz metálica en la parte delantera del dintel del tablero.

Este sistema requiere de medios auxiliares de coste elevado y proporciona buenas calidades de ejecución al agrupar todas las operaciones en una zona específica. Su ventaja económica reside en preparar un parque de fabricación fijo, en el eje del puente, donde poder realizar una dovela de 10 a 25 m de longitud. En el caso de dovelas de hormigón, se realiza un pretensado inicial para absorber los esfuerzos del lanzamiento y se deja en una segunda fase el pretensado definitivo para soportar las cargas de servicio. Cada segmento normalmente se completa su ejecución en una semana. Posteriormente, se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque es habitual seguir con el empleo de dovelas. Existe la posibilidad de fabricar y empujar desde un solo lado o desde los dos lados del puente. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero, pues no necesita del cimbrado.

Esquema del proceso del lanzamiento del tablero de un puente
Esquema del proceso del lanzamiento del tablero de un puente

El empuje de puentes se desarrolló en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo, es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuje, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde solo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

El primer viaducto de segmentos de hormigones prefabricados empujados fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), con un vano principal de 96 m y terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. En este caso se utilizaron pilas intermedias para el lanzamiento para reducir la luz de lanzamiento. Este procedimiento encarece la construcción, pues no tiene sentido que las pilas provisionales no queden definitivas. Solamente podría plantearse el uso de una sola pila provisional en el caso de una luz de empuje extraordinaria. En España, el primer puente empujado de hormigón se construyó en 1972 en la línea férrea Almería-Linares, sobre el río Andarax (Almería), con un vano principal de 42,5 m.

Primer y Segundo Puente sobre el río Caroni (Venezuela). Diseñado por F. Leonhardt y H. Baur. Terminado en 1963, une San Félix y Puerto Ordaz
Primer y Segundo Puente sobre el río Caroni (Venezuela). Diseñado por F. Leonhardt y H. Baur. Terminado en 1963, une San Félix y Puerto Ordaz

Es un sistema costoso que solo resulta de interés económico para longitudes de puente superiores a 300 – 400 m (Ministerio de Fomento, 2000). Este procedimiento presenta ventajas claras en los puentes muy largos, pues permiten aplicar la construcción industrializada —según Pérez-Fadón (2004), es rentable a partir de los 600 m de longitud—, o bien se reutilice en varios puentes. Fuera de estos rangos, los medios auxiliares no se amortizan suficientemente.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 50 m, aunque de forma excepcional dicho intervalo se amplía desde los 25 a los 100 m. Normalmente, cuando se requieren luces altas, por encima de 50 m, se requieren apoyos o atirantamientos provisionales. Se han empleado luces de empuje superiores, por ejemplo en el acueducto de Alcanadre, de J. Manterola y L.F. Troyano, con una luz de 60 m debido a que el dintel debe soportar la sobrecarga del agua, lo que permite una mayor luz óptima.

En el caso de una luz muy grande, se puede construir el puente realizando un lanzado desde ambos apoyos y terminando en el centro de la luz con dos voladizos convergentes. Por ejemplo, Millanes y Matute (1999) describen la construcción de un viaducto con un tramo continuo singular compuesto por dos vanos de 40 m y un vano central de 80 m que se construyó mediante lanzamiento de las vigas mediante un carro. Se emplearon dos pilas provisionales y se tesó la losa para darle continuidad antes de eliminar dichas pilas.

El empuje de puentes entra en competencia con la construcción de tramos sucesivos con autocimbra. Por debajo de 30 m existen autocimbras en alquiler que abaratan los costes respecto a los puentes empujados. Sin embargo, por encima de dicho límite, los costes de la cimbra autoportante empiezan a crecer exponencialmente, quedando en desventaja por encima de 100 m. Por otra parte, las cimbras desmontables, con o sin pila auxiliar intermedia, compiten cuando existen luces repetitivas y un gran número de vanos, especialmente en puentes de baja altura y terrenos poco abruptos. El procedimiento de la cimbra autoportante presenta claras ventajas en puentes muy largos, donde se amortizan bien los medios auxiliares. Además, es un procedimiento que permite cualquier geometría en planta del puente, frente a los empujados.

Os paso una animación en 3D de Octavio Martins que explica muy bien el procedimiento constructivo. Espero que os sea útil.

También la empresa ULMA nos ofrece una animación de estas características.

Referencias:

MILLANES, F.; MATUTE, L. (1999). Viaducto sobre el río Lambre. Hormigón y Acero, 213: 33-39.

MINISTERIO DE FOMENTO (2000). Obras de paso de nueva construcción. Conceptos generales. Madrid, 94 pp.

PÉREZ-FADÓN, S. (2004). Construcción de viaductos para líneas de FFCC. Tableros empujados. Revista de Obras Públicas, 3445: 47-52.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La visión personal de Javier Manterola de los puentes

ManterolaEl Grupo Español de IABSE (International Association for Bridge and Structural Engineering) organizó, en colaboración con la Escuela de Ingenieros de Caminos, Canales y Puertos de Madrid – UPM, el Workshop on Bridge Design 2015, WoBD2015. Gracia a ello tenemos la ocasión de poder escuchar a Javier Manterola dando su visión personal sobre los puentes. Espero que os guste el vídeo.

 

Innovaciones en materia de tecnología de puentes, por Javier Manterola

Os paso a continuación una conferencia impartida por el profesor D. Javier Manterola Armisén sobre las innovaciones en materia de tecnología de puentes. Javier Manterola es doctor ingeniero de caminos, catedrático de puentes y Académico de número de la Real Academia de Bellas Artes de San Fernando, Madrid. Espero que os guste tanto como a mí.

 

Proceso constructivo del nuevo puente sobre la bahía de Cádiz

El Puente de La Pepa, diseñado por el ingeniero Javier Manterola, será uno de los puentes europeos de mayor altura  con un gálibo de 69 m y 3,15 km de longitud total. Será un puente atirantado con unas torres que tendrán 180 m de altura. Será también el segundo puente marítimo de mayor gálibo vertical del mundo, después del de Verrazano Narrows de Nueva York y por delante del Puente Golden Gate de San Francisco. Dará acceso a la ciudad de Cádiz desde el continente, en el término de Puerto Real, convirtiéndose en el tercer acceso a la ciudad, junto con el istmo a San Fernando y el Puente Carranza. Será un puente de gran capacidad de comunicaciones, con tres carriles de autovía por sentido y dos vías férreas, por las que transitará el Tranvía Metropolitano de la Bahía de Cádiz.

Su construcción ha sido contratada a la Unión Temporal de Empresas (UTE), formada por Dragados y DRACE (Construcciones Especiales y Dragados). El proyecto tiene un presupuesto de 273 millones de euros, y su plazo de ejecución se estimó en su momento en 42 meses. Sin embargo, diversos problemas económicos están retrasando la obra.

 

Debido a la singularidad de la obra, os dejo un vídeo explicativo que espero que os guste.

El izado del tramo de puente desmontable, de 150 m de luz entre ejes de apoyo, requirió procedimientos de elevación extraordinarios, desde el tablero a una pontona de transporte marítimo para dejar libre el paso de megaestructuras navales. Os dejo el vídeo del montaje  de este vano.

También os paso algún vídeo informativo que creo interesante.

Además, un timelapse sobre cómo han ido las obras.

Por último, os subo un documento de la oficina Fernández Casado S.L. donde describen los autores el puente.

Descargar (PDF, 818KB)