Hormigón precolocado: Prepakt y Colcrete

Figura 1. Hormigón precolocado. https://mvalarezo.files.wordpress.com/2014/01/fierro_valarezo.pdf

El hormigón precolocado, también llamado hormigón inyectado o de «empaquetado previo», es un procedimiento de construcción que consiste en disponer inicialmente áridos gruesos en el encofrado o molde previsto y rellenar después sus huecos. Para obtener un hormigón de calidad, es fundamental asegurar el completo relleno de todos los espacios, evitar la separación debida a la retracción del árido precolocado, prevenir la segregación y garantizar la retención adecuada de la humedad en la mezcla. Además, se requiere una fluidez óptima que evite obstrucciones en los conductos de inyección.

En la última etapa de la década de los cuarenta del siglo pasado, se alcanzó un hito significativo con la introducción de morteros de tipo coloidal, que lograron una dispersión efectiva de las partículas en la fase líquida y una estabilidad óptima tras la inyección. Estas suspensiones coloidales se lograban mediante métodos químicos, como en el caso de Prepakt, o bien, mediante procesos mecánicos, como los empleados en Colcrete o Colgrout.

En el procedimiento Colcrete, el mortero se batía en una máquina para laminarlo y evitar la formación de racimos de partículas de cemento, con lo que se lograba una suspensión uniforme. Por otro lado, en el hormigón Prepakt, el mortero estaba compuesto por cinco elementos: cemento, arena, agua, un agente químico y un polvo mineral o fíller con características fisicoquímicas específicas. El agente químico se utilizaba en cantidades mínimas para conferir al mortero una suspensión coloidal altamente fluida, inducir una ligera incorporación de aire y reducir la retracción. El fíller, en proporciones variables entre el 30 % y el 60 %, reemplazaba al cemento y presentaba un alto contenido de sílice amorfa, la cual reaccionaba con la cal liberada durante el proceso de fraguado. Esta sustitución reducía la retracción y disminuía el desprendimiento de calor durante el fraguado, aunque también provocaba una reducción de la resistencia inicial, mientras que la resistencia final permanecía inalterada. Además, incrementaba la resistencia a las aguas agresivas. La característica coloidal de la inyección facilitaba el hormigonado subacuático, sin ocasionar problemas de disolución apreciable.

El hormigón Prepakt presenta una serie de características distintivas: tiene una resistencia final equiparable a la del hormigón convencional y permite un ahorro de cemento notable, de entre el 30 % y el 60 %. Además, destaca por su elevada impermeabilidad y su mínima retracción endógena, llegando incluso a ser nula en algunos casos. Su retracción exógena es inferior al 50 % de la convencional y su menor contenido de cemento da lugar a una disminución significativa del desprendimiento de calor durante el proceso de hidratación. Asimismo, presenta una excelente adherencia tanto a superficies de hormigón antiguas como a rocas y muestra una excelente resistencia a los ciclos de hielo y deshielo. En particular, demuestra una alta resistencia a las aguas agresivas, incluida el agua marina.

Durante la década de 1940, el hormigón Prepakt se utilizó en las labores de reparación de los túneles-aliviaderos de la presa Hoover, en Estados Unidos. La experiencia acumulada en los años posteriores, especialmente en proyectos de presas, consolidó al Prepakt como material de elección para la construcción de estas estructuras, superando incluso su aplicación en obras marítimas. En España, durante la década de los 60, este hormigón se utilizó en la presa bóveda de Matalavilla y en la presa de gravedad de Tiétar, específicamente en la inyección de las juntas.

A continuación, se describe el procedimiento constructivo de este tipo de hormigón inyectado. El árido grueso, exento de arena, se asienta, si es posible, generalmente mediante vibradores. A continuación, se rellenan los espacios vacíos entre los áridos con una inyección de mortero de arena y cemento, de gran docilidad y plasticidad, que une los granos gruesos en contacto. Esta inyección se puede realizar tanto en el aire como en el agua, siempre procediendo de abajo hacia arriba. Para ello, se instalan tubos entre los encofrados, que se van retirando a medida que la superficie de la inyección asciende. A medida que el mortero fluye hacia la superficie, se controlarán las posibles fugas para garantizar que toda la masa quede rellenada de manera uniforme con el mortero de inyección.

A medida que el mortero sube, desplaza al agua, quedando una clara línea de separación entre ambos, lo que indica que el primero no se diluye y que la mezcla se conserva sin variación alguna. La compacidad del árido grueso debe ser la mayor posible y el mortero o papilla de inyección debe tener unas características especiales de plasticidad para rellenar con facilidad todos los huecos. Para ello, se prepara este mortero con fluidificantes. De esta manera, se logra un hormigón similar al convencional, pero mucho más compacto y con una retracción significativamente menor, aproximadamente la mitad.

El árido grueso, que se dispone antes del proceso, puede variar en tamaño desde los 6 hasta los 10 mm, o incluso más, si es necesario. Ya sea de origen natural o producto de trituración, el tamaño y la forma de sus componentes no afectan a la facilidad de manipulación ni a las propiedades finales. Esta disposición previa del árido genera un entramado rígido entre sus elementos, ya que se establece un contacto puntual entre ellos. Este entramado ayuda a evitar la retracción del hormigón, puesto que el mortero lo envuelve. Además, el porcentaje de huecos en el árido es considerablemente menor que en el hormigón convencional, aunque el módulo de elasticidad es ligeramente mayor que en el convencional, pues las propiedades del árido grueso tienen un mayor efecto en el hormigón precolocado.

Inicialmente, se empezó a utilizar en las reparaciones de estructuras de hormigón debido a su extraordinaria capacidad de adherencia con hormigones más antiguos, así como en casos en los que se precisa un hormigón con baja retracción. Conforme se fueron destacando sus cualidades, su aplicación se amplió a nuevas construcciones, particularmente en pilares de puentes, túneles y diques marítimos. También se ha empleado en estructuras muy armadas por sismo u otras razones.

Este método es especialmente útil en situaciones donde el acceso al área encofrada es complicado, en lugares donde hay corrientes de agua fuertes que atraviesan la zona de vertido del hormigón o en trabajos sujetos a la acción de las olas, donde el uso de métodos tradicionales de hormigonado bajo el agua está prohibido. También se utiliza para el recalce de cimentaciones o el relleno de cavidades de cimentación, que son poco comunes en la construcción convencional.

Para la inyección del mortero, se emplean tuberías que se insertan en la masa de árido grueso. Normalmente, tienen un diámetro de 20 a 30 mm para el hormigón estructural y de hasta 40 mm para el hormigón en masa. Estas tuberías deben colocarse verticalmente a menos de 150 mm de la base de la masa de árido, aunque también pueden insertarse horizontalmente a través del encofrado en distintos niveles.

Se trata de una técnica delicada, por lo que es conveniente emplear procedimientos ya experimentados. En cualquier caso, requiere mano de obra altamente especializada, especialmente dado que, en muchas ocasiones, resulta imposible inspeccionar el trabajo.

Puede encontrar una descripción más detallada del hormigón precolocado en la norma ACI 304.

Os dejo un artículo que creo os puede resultar de interés.

Descargar (PDF, 495KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de la ejecución de la inyección en el Código Estructural

Inyección lechada en vaina. https://www.youtube.com/watch?v=nR56Qlnr2xw

Continuamos analizando las novedades del Código Estructural respecto a la derogada Instrucción de Hormigón Estructural EHE-08. En este caso se trata del control de la ejecución de la inyección en las operaciones de pretensado, que recoge el Artículo 67.2. En la EHE-08 este mismo apartado se trataba en el Artículo 96.2. Existen pocas modificaciones en la nueva redacción de este artículo, pero alguna de gran trascendencia. Vamos a comentarlas a continuación.

  • Se ha sustituido “frecuencia diaria” por “cada jornada“. La Real Academia Española indica que jornada es “el tiempo de duración del trabajo diario“, por lo que parece que no existe un motivo de fondo para este cambio.
  • Se aclara en la nueva redacción que es el constructor, y no otro, el que cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, deberá realizar los ensayos de resistencia de la lechada o mortero y los de exudación y reducción de volumen.
  • Se verificará si el constructor ha realizado los ensayos mediante el “control de contraste“. La verdad es que el Código es poco claro al respecto. La primera vez que aparece este término, sin definir, es el Artículo 67.1. Hay que esperar al Artículo 101.1 para entender que el control de contraste lo efectúa, en su caso, la dirección facultativa. Por tanto, sin una definición explícita al respecto, supondremos que el control de contraste es un control que realiza, si así lo fuera, la dirección facultativa, sobre los controles que realiza el constructor. Nada hubiese costado ser más claro en la redacción de esta norma.
  • La novedad más relevante es la que obliga, de forma independiente, a la dirección facultativa y al constructor, a sendas inspecciones visuales de las vainas inyectadas transcurridos 7 días desde el final del curado. Se trata de comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado. Resulta evidente la importancia en este punto, pues el Código impone un control redundante del mismo.

Os dejo a continuación el Artículo 67.2 del Código Estructural para su consulta.

67.2 Control de la ejecución de la inyección.

Las condiciones que habrá de cumplir la ejecución de la operación de inyección serán las indicadas en el apartado 50.4.

Se controlará el plazo de tiempo transcurrido entre la terminación de la primera etapa de tesado y la realización de la inyección.

El constructor hará, cada jornada, los siguientes controles:

– del tiempo de amasado,
– de la relación agua/cemento,
– de la cantidad de aditivo utilizada,
– de la viscosidad, con el cono, en el momento de iniciar la inyección,
– de la viscosidad a la salida de la lechada por el último tubo de purga,
– de que ha salido todo el aire del interior de la vaina antes de cerrar sucesivamente los distintos tubos de purga,
– de la presión de inyección,
– de fugas,
– del registro de temperatura ambiente máxima y mínima las jornadas que se realicen inyecciones y en las dos jornadas sucesivas, especialmente en tiempo frío.

Cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, el constructor realizarán los siguientes ensayos:

– de la resistencia de la lechada o mortero mediante la toma de 3 probetas para romper a 28 días,
– de la exudación y reducción de volumen, de acuerdo con el apartado 37.4.2.2.

El control de contraste verificará que el constructor realiza estos controles.

En el caso de sistemas de pretensado en posesión de un distintivo de calidad oficialmente reconocido, la dirección facultativa podrá eximir de cualquier comprobación experimental del control de la inyección.

Una vez inyectadas las vainas, tanto el constructor como la dirección facultativa llevarán a cabo sendas inspecciones visuales, que deben ser independientes, de las protecciones ejecutadas en los anclajes del pretensado. Se efectuarán transcurridos 7 días desde el final del curado para comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado.

También os dejo el comentario que sobre este artículo deja el Código Estructural:

En los cables verticales se tendrá especial cuidado en evitar los peligros de la exudación siguiendo lo indicado en el apartado 50.4.1.4″.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante inyección de lechadas inestables

Figura 1. Inyección de lechada. Fuente: https://www.suelosingenieria.com/index.php/actividades/construccion/mejoramientos-de-suelos/inyecciones-lechada

La inyección de morteros o suspensiones inestables es el caso habitual de las lechadas de cemento (Figura 1). Se trata de una suspensión de cemento en agua cuya homogeneidad está condicionada a la agitación de la mezcla. Una vez cesa la agitación, se inicia la sedimentación del cemento. Esa sedimentación provoca el taponamiento de los poros y la inyección se obstaculiza. El cemento es un excelente material de inyección, pues no solo rellena los huecos, sino que, al fraguar, endurece el terreno o los macizos rocosos.

La aplicación habitual de la inyección de lechadas inestables es aumentar la resistencia de un macizo rocoso, aunque también se consigue impermeabilizar, especialmente si se emplean lechadas tratadas químicamente (estables). Lo habitual es que la inyección con lechadas de cemento sea por impregnación (2 a 5 MPa) o por fractura (9 a 10 MPa). También se podría realizar una inyección de compactación, pero requiere que el fluido sea muy denso, de forma que los bulbos de mortero fraguado desplacen y compacten la masa de suelo en sus alrededores.

La impermeabilización facilita tanto la ejecución de trabajos posteriores, como es el caso de la excavación de pozos o galerías bajo nivel freático que luego se revestirán, como para completar trabajos definitivos, como es la ejecución de pantallas estancas bajo presas, cuando se adivinan filtraciones de agua importantes (Figura 2). La inyección a alta presión no sería necesaria para garantizar la impermeabilización, sin embargo, es frecuente pues permite utilizar explosivos en la excavación posterior sin perjudicar la calidad del tratamiento.

Figura 2. Tratamiento de inyecciones en presa de hormigón. Adaptado de Houlsby (1990)

La consolidación mediante inyecciones de cemento en un macizo rocoso facilita la ejecución de trabajos posteriores, como es el caso de la perforación de galerías en terrenos difíciles y mejora la capacidad resistente de la cimentación de una obra, por ejemplo, bajo la pila de un puente, en los estribos de una presa bóveda, etc.

Figura 3. Formación de una bóveda a la entrada de un intersticio en un suelo granular

El prototipo de suspensión inestable es un mortero de un tipo análogo al de uso corriente, pero suficientemente diluido para que pueda ser inyectable. Es decir, un mortero muy fluido (lechada), inestable por el tamaño de los granos de cemento y por el proceso de fabricación. El grado de dilución en este tipo de suspensiones es variable, con relaciones máximas de 10 litros de agua/1 kg de cemento, y lo mismo que en los morteros estables pueden añadirse proporciones de arena. Las relaciones agua/cemento varían desde 0,5:1 hasta 10:1, aunque es habitual una proporción de 0,8:1 a 5:1 (Bell, 1993).

La penetrabilidad de las lechadas de cemento depende del tamaño de los granos de cemento, de la posibilidad de formación de un cúmulo de granos en bóveda al atravesar un intersticio (Figura 3) y de la velocidad del fluido con la que comienza la sedimentación del cemento. Es por ello una solución muy adecuada para materiales granulares gruesos como zahorras, gravas y arenas gruesas, o bien para la inyección de grietas en macizos rocosos. En cambio, resulta un procedimiento poco eficaz en arenas, excepto si lo que se pretende es la consolidación o compactación conseguida cuando se inyecta en cortos intervalos (Tomlinson, 1982). Se trata de una solución sencilla y de relativamente poco coste, pero que se encuentran limitadas por la permeabilidad del medio. El uso de cemento portland corriente y agua ya no es adecuado en suelos con una permeabilidad menor a 10-3 m/s.

Figura 4. Selección de inyección para consolidación y estabilización de suelos. Fuente: https://col.sika.com/dms/getdocument.get/8de57674-59ac-3af1-ada7-a6bddb323deb/CONSOLIDACION,%20ESTABILIZACION%20E%20IMP%20DE%20SUELOS%20Y%20ROCAS.pdf

Se pueden distinguir, entre las lechadas de cemento, las siguientes:

  • Suspensiones de cemento puro: con una relación cemento/agua que oscila entre 0,1 y 0,5 en peso.
  • Suspensiones de cemento rebajado: donde se reemplaza parte del cemento por un polvo inerte como una arena fina o cenizas volantes. Con el porcentaje de arena, la resistencia decrece rápidamente, pero no es problema si se pretende impermeabilidad. No obstante, las suspensiones de arena desgastan rápidamente las bombas de inyección.

El equipo empleado para la elaboración de las mezclas de cemento consta de un turbo mezclador de altas revoluciones (más de 1250 rpm); un mezclador de bajas revoluciones (de 60 a 80 rpm) que mantiene en agitación la mezcla durante la inyección; bombas de tornillo sinfín o de doble pistón con capacidad de inyección variable de 0 a 60 l/min y presión ajustable de 0 a 3 o 4 MPa; obturadores mecánicos, neumáticos o hidráulicos y manómetros registradores (Figura 5).

Figura 5. Esquema del equipo de inyección (Cambefort, 1968)

El tiempo de inyección está relacionado con la evolución de la viscosidad del material inyectado, con la presión de inyección admisible y con el radio efectivo (Bielza, 1999). En las suspensiones de cemento, el tiempo de inyección se limita a 2-4 horas. Cuando comienza la hidratación total, se inicia el fraguado del cemento. La lechada es bombeable desde la fase de agitación hasta que son inyectadas, también después del inicio de la hidratación. Sin embargo, tras ese comienzo la resistencia final del material se reduce. Por tanto, no se aconseja la inyección de suspensiones bajo condiciones de hidratación. Las resistencias normales a compresión simple oscilan entre 5 y 50 MPa a 28 días. El tiempo de fraguado aumenta con la relación agua/cemento. Así, las lechadas de cemento fraguan en unas 4-5 horas, pero si están muy diluidas, este periodo se puede alargar a las 10-15 horas. Incluso algunas lechadas con relaciones agua/cemento mayores a 10 nunca llegan a fraguar.

Como las lechadas de cemento son inestables, su velocidad de flujo baja rápidamente conforme crece la distancia desde la perforación hasta la zona de inyección, sedimentando las partículas en una proporción decreciente con la relación agua/cemento de la mezcla. Es decir, cuanta mayor dosificación tenga el mortero, más elevada será la velocidad crítica de sedimentación. Es por ello que se aconseja que la lechada inicial tenga poca dosificación, por ejemplo, una relación a/c de 10:1 a 15:1 para evitar los taponamientos prematuros. La dosificación ideal sería la más pequeña que permita alcanzar la contrapresión de rechazo establecida de antemano. En la práctica, la dosificación inicial se determina a partir del resultado del ensayo de agua (ensayo Lugeon).

Para aumentar la penetrabilidad se aconseja el empleo de cemento de alta finura de molido o micro cementos. Se evitan las bóvedas de granos al atravesar intersticios utilizando mezclas muy fluidas, denominadas mezclas medias. Sin embargo, el tratamiento de impregnación en masa no resulta aconsejable con este tipo de suspensiones inestables. Para que una inyección inestable sea factible, o no sea muy complicada, el tamaño mínimo de las partículas del terreno debería situarse entre 5 y 10 mm. Además, en terrenos con un 10% de finos ya no es factible inyectar cemento. En arenas y gravas se hincan tubos de punta perdida, un tubo de inyección cada 4 m2 aproximadamente, inyectándose por zonas de unos 50 cm de altura. Si las inyecciones son con lechadas de cemento de molido normal y tamaños muy diferentes (0 a 160 μ) no se pueden utilizar en fisuras de abertura inferior a 0,1 mm ni en suelos arenosos de tamaño inferior a 0,8 mm, pues se produce un filtrado de las partículas y la lechada no penetra en el terreno (Schulze y Simmer, 1978). Es decir, las arcillas no pueden ser inyectadas. Por el contrario, si son los huecos demasiado grandes, se deposita inmediatamente la lechada, dando a la inyección un radio de acción muy pequeño.

En cambio, la aplicabilidad de las lechadas de cemento se encuentra plenamente justificada en el caso de macizos rocosos fisurados (presencia de diaclasas, planos de debilidad, estratificación). La presión del fluido desciende con la distancia, y también la velocidad, con lo cual comienza la sedimentación. Son habituales taladros de 60 a 90 mm separados de 2 a 5 m, según la roca. La lechada de cemento se inyecta por capas de 3 a 5 m de espesor, según el porcentaje de finos a cerrar.

En rocas o materiales gruesos se puede realizar una excavación bajo nivel freático colocando una cortina de mortero inyectado. Tomlinson (1982) recomienda dos filas de perforaciones para una inyección primaria con sus centros separados de 3 a 6 m en ambas direcciones, con unos segundos taladros, incluso terceros, entre ellos (Figura 6). Una regla empírica habitual para inyectar pasta en las grietas de los estratos rocosos es el uso de 0,07 kg/cm2 por cada 30 cm de profundidad de la perforación. Se proporciona mayor presión en las inyecciones secundarias y terciarias en función de la eficacia de la inyección primaria.

Figura 6. Disposición de las perforaciones para formar una cortina impermeable con inyección de lechada de cemento alrededor de una excavación. Adaptado de Tomlinson (1982)

La presión de inyección de las lechadas inestables constituye uno de los parámetros de diseño más importantes, pues favorece la apertura de las fisuras en el caso de una roca fisurada. Esta presión puede alcanzar de 8 a 9 MPa. La presión facilita la expulsión del exceso de agua y permite corregir errores en la dosificación. Agranda tanto la longitud de penetración como las fisuras existentes, creando nuevas fisuras. Independientemente de la presión utilizada, la calidad del cemento depositado en las fisuras aumenta con la presión de inyección.

Por otra parte, la lechada discurre de forma casi paralela a los planos de estratificación o diaclasas del macizo rocoso. Las fisuras perpendiculares a la inclinación general del macizo son artificiales y ocurren en capas menos resistentes bajo la acción de presiones superiores a 10 MPa.

La mayor parte de los tratamientos de inyección en roca están relacionados con la construcción y mantenimiento de presas y túneles, y también en algunas aplicaciones en minería. Se trata de obras subterráneas donde las inyecciones tratan de reducir y controlar la filtración del agua. Suele ser habitual las lechadas de cemento, aunque en algunos casos se han realizado inyecciones químicas e inyecciones con resina.

Hay que apuntar, por último, que en la actualidad se utilizan las mezclas estables en la mayoría de los tratamientos de inyección y consolidación por sus mejores características reológicas. Sin embargo, si el terreno no presenta muchas dificultades, las inyecciones con lechadas inestables son un método económico y eficaz.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • HOULSBY, A.C. (1990). Construction and Design of Cement Grouting. John Wiley & Sons, Inc, New York.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos empleados en la inyección de terrenos

Figura 1. Inyección de una perforación por tramos (Cambefort, 1968)

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos, de las técnicas de inyección del terreno y de los tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los procedimientos empleados en la inyección del terreno.

Un tubo facilita la inyección y evita que la lechada escape al exterior del taladro por el camino más fácil, que suele ser el contacto entre el terreno y el tubo de revestimiento o bien entre el obturador y el exterior del tubo de inyección. La inyección se puede realizar mediante los siguientes procedimientos:

  • Inyección desde la boca de la perforación: se vierte la lechada por gravedad desde la boca del sondeo, obturando en la parte superior. Se utiliza la técnica en rocas con grandes huecos.
  • Inyección ascendente: primero se hinca un tubo y se inyecta a medida que se extrae por tramos de 30 cm. La inyección se realiza por tramos sucesivos, empezando desde la parte inferior del terreno a inyectar hasta la zona superior. Se obtura a distintas profundidades y se aplican presiones de inyección decrecientes. Es una técnica más rápida y barata que la inyección por fases decrecientes, permitiendo independizar la perforación de la inyección.
  • Inyección al avance o por fases descendentes: se perfora un tramo, se retira el varillaje y se inyecta. Tras el fraguado ligero de la lechada, se perfora el tramo inyectado y un tramo nuevo, continuando el proceso. La idea es ir creando techos sucesivos que permitan ir aumentando la presión de inyección. Es una técnica cara, que debe evaluarse bien antes de su uso.
  • Inyección por fases repetitivas mediante tubos-manguito: se perfora y se introduce un tubo ranurado de 50-60 mm de diámetro, sin reperforación, cuyos orificios exteriores se cierran con manguitos de goma que actúan como válvulas anti-retorno, por los que sale la lechada. Se puede inyectar a cualquier nivel y orden o reinyectar mediante un doble obturador. Si se conoce la granulometría de cada capa, se puede ajustar la mezcla de inyección. La lechada de sellado debe ser de baja resistencia (0,3-0,5 MPa) y frágil. Para disminuir la resistencia se puede añadir un 3-4% de bentonita.

A continuación se describe el uso de cada una de estas técnicas en función si la inyección se realiza en terrenos rocosos o bien en terrenos sueltos.

  • Inyección en terrenos rocosos: Lo más habitual es utilizar la inyección por etapas descendentes y la inyección por etapas ascendentes. En macizos de calidad baja se emplea la inyección por etapas descendentes; aquí no tenemos la seguridad de que las paredes de la perforación se sostengan, no van a poder aguantar la presión de inyección, o la estructura geológica puentee la lechada, cementándose los obturadores, con la consiguiente pérdida de obturadores y taladro. En rocas de calidad media o alta se usa la inyección per etapas ascendentes.
  • Inyección en terrenos sueltos: Se utilizan las inyecciones descendentes, las inyecciones armadas, la inyección con puntaza perdida y el jet grouting. En las inyecciones descendentes se procede como en roca, pero la perforación se realiza a rotación con corona del mismo diámetro que la varilla y la inyección se realiza a través del varillaje de perforación. En las inyecciones armadas se introduce un tubo de paredes lisas dentro del taladro, perforando cada cierta distancia de modo que estas perforaciones se cubren con un manguito de caucho que sirve como válvula anti retorno; el espacio anular entre el tubo y las paredes de la perforación se rellena con una mezcla bentonita-cemento, de poca resistencia, que hace de obturador longitudinal y evita que la lechada fluya por la corona anular del taladro pero que se rompe al inyectar; la inyección se hace situando un obturador doble a nivel del manquito que se quiera inyectar. En la inyección con puntaza perdida se perfora con una puntaza de diámetro mayor que la varilla, inyectándose conforme se retira el varillaje; es un método barato con ciertas limitaciones. Con el jet grouting se realizan inyecciones a muy altas presiones, siendo procedimiento que se verá en detalle en una lección posterior.

El procedimiento más habitual es la inyección ascendente, con unas presiones normales de 1 a 3 MPa, aunque este rango se puede ampliar desde los 0,5 a los 8 MPa. Los taladros se separan entre 1 y 4 m. La relación entre el volumen inyectado y el de huecos del terreno es muy variable, entre el 40% en el caso de gravas abiertas o rellenos flojos mal compactados, al 10-20% para terrenos arenosos relativamente compactos. En la inyección de suelos, la técnica más común es la de tubo-manguito.

La longitud máxima de cada tramo de tratamiento varía entre 5 y 10 m. En suelos, la longitud tratada no suele superar el metro de longitud. Los taladros se separan según el tipo de terreno y las presiones que puedan aplicarse. En la Tabla 1 se indica la separación recomendada entre taladros de inyección, para algunas de las aplicaciones habituales:

De todas formas, es importante controlar la presión de la inyección, pues una presión nula puede indicar una pérdida de inyección, una presión excesiva puede dar lugar a levantamientos o giros en el caso de estructuras próximas. Siempre que sea posible se debe realizar un control informatizado de la perforación, así como medir y controlar la presión, el caudal y el volumen de las inyecciones en cada punto.

Por último, hay que tener presente que la inyección del terreno es una operación “ciega”, en el sentido que no se conoce realmente por dónde fluye la mezcla, por ejemplo, por desconocer la red de fracturación. Por tanto, se suelen extraer testigos después de las inyecciones para comprobar los resultados.

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos

Figura 1. Inyección de suelos. https://www.keller.com.es/experiencia/tecnicas/inyeccion-de-macizos-rocosos-suelos

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos y de las técnicas de inyección del terreno. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los tipos de lechadas y la aplicabilidad de los materiales empleados en la inyección del terreno.

Se pueden distinguir tres tipos de lechadas:

  • Suspensiones inestables: Normalmente son mezclas de cemento diluido con agua en exceso en proporciones variables, no homogéneas, que sedimentan cuando cesa la agitación. Se emplean en rocas o materiales granulares gruesos.
  • Suspensiones estables: Se obtienen por disolución de arcilla y cemento en agua. Con la dosificación adecuada, con una fuerte agitación y con aditivos estabilizadores, se consigue que no se produzca la sedimentación durante la inyección.
  • Líquidos o disoluciones: No contienen partículas sólidas en suspensión, encontrándose en solución o en emulsión los componentes químicos en el agua. Están constituidos por productos químicos como silicatos, resinas orgánicas y productos hidrocarbonados puros. Mantienen constante su viscosidad, hasta el momento de la solidificación.

El sistema de inyección utilizado en cada caso depende de numerosos parámetros como la granulometría, la porosidad, la porosidad, la permeabilidad y las condiciones del agua subterránea, especialmente su composición química y velocidad de circulación. Además, existen numerosos productos en el mercado que se pueden adecuar en mayor o menor medida a las características específicas del terreno, por lo que suele ser habitual consultar a empresas especializadas.

En la Figura 2 se puede ver la aplicabilidad de distintos tipos de inyecciones atendiendo al tamaño de las partículas del suelo a inyectar. Se aprecia que el jet grouting se aplica, en general, a todo tipo de tamaño de partículas, excluyendo los bolos.

Figura 2. Aplicabilidad de distintos materiales de inyección según el tamaño de partículas del suelo (Kutzner, 1996)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de inyección del terreno

Figura 1. Tipos principales de inyección del terreno

En un artículo anterior se habló de los materiales empleados en la inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en las técnicas de inyección del terreno.

Todo proceso de inyección presenta dos facetas características (Sanz, 1981):

  1. Introducción y distribución en el medio de la mezcla de inyección. Para que ello sea posible debe adecuarse, de acuerdo con la morfología de los huecos del terreno, de una red de perforación auxiliar y de unas presiones de inyección adecuadas.
  2. Transformación de la mezcla, que endurece según un proceso químico que puede ser desde el fraguado en el caso del cemento, a la transformación sol-gel, en el caso de inyecciones químicas.

Las técnicas de inyección se pueden dividir en los siguientes grupos (Figura 1):

  • Rellenos de huecos y fisuras: Se inyecta lechada en las fracturas, diaclasas o discontinuidades de las rocas; o se rellenan los huecos con una lechada con un alto contenido de partículas. En este caso, el producto se introduce básicamente por gravedad hasta colmatar los huecos. Con grandes huecos, conviene introducir en las lechadas áridos o productos de alto rendimiento volumétrico.
  • Inyecciones de impregnación: No existe rotura del terreno. Se emplean mezclas muy penetrantes, cuyo objetivo principal es disminuir la permeabilidad del terreno rellenando poros y fisuras. Se sustituye el agua o el gas intersticial con una lechada inyectada a baja presión para no producir desplazamientos de terreno.
  • Inyecciones de compactación o de desplazamiento: Se introducen morteros de alta fricción interna que comprimen el terreno flojo y lo desplaza lateralmente de forma controlada, sin que el material inyectado se mezcle con él.
  • Inyecciones de fracturación hidráulica o por tubos manquito: Se fractura el terreno mediante la inyección de la lechada a una presión que supere su resistencia a tracción y su presión de confinamiento. La lechada no penetra en los poros, sino que se introduce en las fisuras creadas por la presión utilizada, formándose lentejones que recomprimen el terreno. Esta técnica también se llama hidrofracturación, hidrofisuración, “hidrojacking” o “claquage”. Son útiles en inyecciones de consolidación, de compensación de asientos, e inyecciones armadas. Para ello se suelen realizar con tubos manguito.
  • Inyección de alta presión: Se excava y mezcla el terreno con un chorro de lechada a alta velocidad (jet-grouting).

Las propiedades más importantes de las mezclas de inyección son las siguientes (Muzas, 2007):

  • Estabilidad y posibilidad de segregación: una velocidad pequeña del fluido puede sedimentar la mezcla y paralizar la inyección.
  • Viscosidad del producto: determina la presión y la velocidad de inyección.
  • Propiedades reológicas: comportamiento de la lechada a lo largo del tiempo.
  • Tiempo de fraguado: limita el plazo de utilización del producto en la inyección.
  • Volumen del producto fraguado: en las mezclas con agua, puede haber decantación o pérdida de agua al terreno contiguo, con disminución del volumen final.
  • Resistencia del producto fraguado.
  • Durabilidad: permanencia del producto fraguado a largo plazo.

En cuanto a los parámetros de la inyección, los más importantes son la velocidad de la inyección, el volumen de inyección, y la presión de inyección. La presión está muy relacionada con el tipo de terreno y con la viscosidad del producto, aconsejándose un valor límite.

Figura 2. Esquemas de algunas técnicas de inyecciones (ROM 5.05)

He preparado un pequeño vídeo donde os explico brevemente estas técnicas de inyección de terrenos.

Os dejo un vídeo donde vemos la instalación de tubos-manguito para trabajos de inyección de compensación.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales empleados en la inyección de terrenos

Figura 1. Proceso de colmatación de los huecos mediante inyección del terreno

La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).

El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.

Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.

Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.

En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.

Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:

  • Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
  • Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
  • Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
  • Agua
  • Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.

En la Tabla 1 se relacionan los distintos tipos de productos:

Os paso a continuación un vídeo explicativo de los materiales empleados en la inyección de terrenos.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante inyección de lechadas estables

Figura 1. Inyección de impregnación. https://www.bacsol.co.uk/solution/permeation-grouting/

Los morteros estables son suspensiones en agua que no producen sedimentación durante un periodo dilatado de tiempo cuando se inyectan en el terreno (mínima exudación) y que tampoco producen el efecto bóveda al llegar a los intersticios. Esta propiedad permite que no se vayan cerrando las fisuras y se pueda aumentar a la vez la presión. Por eso se puede inyectar a baja presión, reduciendo el caudal lo necesario. Las lechadas estables son económicas en el caso de gravas y arenas finas, pues si los granos son demasiado finos (inferiores a 1 o 2 mm), el cemento no podrá penetrar en los huecos. También resultan convenientes para el taponamiento de grandes fisuras en macizos rocosos.

La estabilidad de una mezcla de inyección, que se refiere a la propiedad de mantener los granos de cemento en suspensión, es relativa, pues la estabilidad es suficiente si mantiene estas características durante la inyección. Normalmente se determina en el laboratorio la estabilidad mediante una prueba de sedimentación o de decantación. El artículo 676 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras considera que una suspensión es estable si cuando se coloca un litro en un cilindro graduado, al cabo de cuatro horas, el volumen superior de agua clara que sobre nada es inferior al 4% del volumen total.

Una mezcla con una fuerte dosificación de cemento consigue una sedimentación nula, pero es un fluido muy viscoso y no se puede inyectar (Cambefort, 1968), por lo que es necesario un estudio de laboratorio que permita conocer las proporciones adecuadas de cemento con otros componentes como la bentonita, que presenta propiedades coloidales, y aditivos, con propiedades estabilizadoras en función del peso del cemento.

Una mezcla estable se puede conseguir con una lechada de cemento activada. Se consigue de esta forma una dispersión óptima del cemento, bien por vía química con la utilización de aditivos, o bien por vía física con calentamiento y sobreagitación. Sin embargo, también se puede conseguir una suspensión estable con una mezcla de arcilla, fundamentalmente bentonita y silicato con cemento. Estas últimas lechadas, además de no sedimentar, presentan un fraguado muy lento, superior a las 24 horas.

Las suspensiones estables son, por lo general, una combinación de arcilla, cemento y arena que proporciona impermeabilidad una vez han endurecido. Tanto si la suspensión es estable o inestable, estas lechadas presentan una baja resistencia al corte por sí solas, por lo que al combinarla con las partículas del suelo se incrementa la resistencia al corte de la masa. Ello se debe a que una vez el fluido comienza a solidificarse, se generan fuerzas capilares en los granos, densificando el terreno y disminuyendo el volumen de huecos.

Es importante inyectar a baja presión en zonas a 5-10 m para evitar resurgencias y levantamientos. No obstante, como esta baja presión y la débil sedimentación no abren las fisuras, por ejemplo, en un macizo rocoso, resulta de interés inyectar un mortero inestable a alta presión después del fraguado del mortero estable. También es muy común, tras inyectar una lechada estable en gravas o arenas, inyectar una lechada inestable para rellenar los pequeños huecos que quedan de la casi despreciable sedimentación de la primera suspensión, así como un lavado a presión del macizo rocoso.

Las mezclas funcionan prácticamente a viscosidad constante, como verdaderos fluidos que se podrían bombear indefinidamente, por lo que se debe controlar la admisión de material, más que la presión. Ello se debe a que este tipo de inyecciones presentan un fraguado muy lento, no hay sedimentación de mortero ni taponamiento de huecos, por lo que el volumen de mortero estable inyectado no está limitado por los aumentos de presión tal y como ocurre con los morteros inestables. Por tanto, el sistema requiere cerrar el recinto a inyectar mediante taladros previos de contorno, avanzando el tajo de forma centrípeta.

Dentro de los morteros estables, se pueden distinguir los siguientes tipos, García Valcarce et al. (2003) distingue los siguientes tipos: bentonita-cemento, cemento-silicato, cemento-bentonita-silicato, cemento activado, suspensiones de arcilla, arcilla-cemento y arcilla-cemento-arena.

Si atendemos a los grupos más destacados de suspensiones estables, distinguimos los siguientes (Bielza, 1999):

  • Mezclas de cemento-bentonita: La bentonita constituye el principal aditivo para mejorar la estabilidad y penetración de la lechada de cemento. La bentonita es capaz de reducir la sedimentación de las partículas de mayor tamaño que componen la mezcla, y además reduce su coste aumentando el volumen de la lechada. Las lechadas de cemento y bentonita son útiles en la inyección de depósitos de gravas y arenas gruesas. Para estabilizar totalmente un cemento de inyección se precisa entre un 2 y un 5% de bentonita sódica; no debe superarse estas proporciones para no obtener productos esponjosos con baja resistencia a compresión y fraguado lento. La relación cemento/agua, en peso, varía de 1 a 2 para un 2% de bentonita, en cuyo caso la sedimentación es nula si c/a ≤ 1,4. Este rango varía de 1 a 1,7 para un 4% de bentonita, en cuyo caso la decantación es nula. La bentonita actúa como lubricante debido a su finura, lo que permite bombear suspensiones con una baja relación a/c, quedando rellenos los huecos o poros en una sola operación. Hay que tener presente que la adición de bentonita baja la resistencia e incrementa la plasticidad de la mezcla. Por otra parte, a veces se puede separar la bentonita del cemento, lo que puede ocasionar algunas fracturas rellenas solo de bentonita. Si es terreno es muy permeable, se puede añadir a la lechada silicato de sodio en 1 a 2% en relación al peso del cemento para acelerar el fraguado. Sin embargo, la dosificación debe determinarse en laboratorio.
  • Mezclas de cemento-silicato: Si se añade silicato de sodio a un mortero de cemento, se aumenta la rigidez, siendo esta mejora tanto más importante cuanto más fuerte es la dosificación del cemento. Además, si este tipo de mezcla permanece en reposo, la rigidez crece con el tiempo. Esto es muy evidente al cabo de una hora, donde existe una aceleración del fraguado del cemento debida al silicato. Estos morteros no son homogéneos, pues el silicato forma grumos. Para evitar estos grupos, sería necesario un periodo muy largo de agitación, por lo que son morteros que se utilizan poco.
  • Mezcla de cemento-bentonita-silicato: La adición de bentonita a una lecha de cemento retarda el fraguado y disminuye la resistencia mecánica, pero proporciona, como se ha visto anteriormente, un mortero homogéneo. El silicato acelera el fraguado pero produce un mortero grumoso. Por tanto, resulta interesante combinar ambos productos. La combinación da un mortero homogéneo que tiene una rigidez inicial más importante que solo con la bentonita, teniendo un comportamiento claramente tixotrópico.
  • Mortero de cemento activado: Una dosificación fuerte de cemento hace más débil la decantación, llegando incluso a una decantación nula. El problema es que este mortero no podría inyectarse. Sin embargo, con ciertos tratamientos, se obtiene la defloculación de los coloides de la suspensión y se obtienen morteros activados. Esta activación permite inyectar morteros de elevada dosis en cemento, que tengan una ligera o nula sedimentación. Además, esta activación hace el mortero menos deslavable y prácticamente no miscible en el agua.
  • Suspensiones de arcilla-cemento o inyecciones en suspensión: Es una mezcla compuesta de cemento portland, con una relación a/c entre 10 y 2,5 y lodo de arcilla. La arcilla aumenta el contenido de finos y mejora la penetrabilidad de la suspensión en el terreno, economizando cemento y mejorando la estabilidad y viscosidad de la suspensión como consecuencia de la capacidad de la arcilla para formar geles. La arcilla disminuye la sedimentación y la pérdida de agua de la suspensión. La estabilidad mejora con la calidad de la arcilla y con su proporción en la mezcla. El límite líquido y el índice de plasticidad de la arcilla deben ser inferiores a la de la bentonita (es decir, la arcilla no debe ser montmorillonita). Esta arcilla no afecta tanto a la viscosidad como la bentonita, por lo que se puede añadir a la mezcla en una mayor proporción. Además de la arcilla, se puede agregar arena, serrín, polivinilo, celofán o poliéster para mejorar sus propiedades. Las lechadas de arcilla-cemento son las más adecuadas para la impermeabilización, además de utilizarse en rocas fisuradas, incluso siendo muy porosas o presentando grandes cavidades. También se usan en suelos de una permeabilidad superior a 10-3 m/s, como es el caso de terrenos aluviales gruesos, siendo adecuados como pretratamiento. En estos casos la merma de fluidez que aporta las gruesas partículas de cemento no es tan trascendente, pues se utilizan en terrenos suficientemente permeables.
  • Mezclas de cemento especial (microcemento): Se utiliza el polvo de cemento microfino con una finura alrededor de 1,7 veces menor que la del cemento portland ordinario. Ello provoca una mayor superficie específica que mejora las propiedades físicas y reológicas, como la viscosidad y su evolución con el tiempo, el rendimiento, la resistencia a corte y la capacidad de penetración al emplear el microcemento con un agente dispersante. Es necesario en este tipo de mezclas un agente dispersante para que las partículas y los flóculos se mantengan entre 1 y 20 μm. Son mezclas muy útiles en la inyección de todo tipo de cimentaciones, especialmente en túneles y presas, pero son de muy elevado coste, comparable con el de las mezclas químicas. Las lechadas de microcemento pueden penetrar en arenas medias, pudiendo resistir umbrales de gradiente hidráulico superiores a 260. A diferencia de las mezclas químicas, con una capacidad de penetración similar, proporciona al medio una mayor resistencia adherente.
  • Suspensiones de arcilla: La penetrabilidad de las suspensiones de arcilla es función de su proceso de defloculación, que está regida por los coloides. Las consecuencias de la floculación es que las suspensiones presentan un tamaño demasiado grande, aumenta la viscosidad y por tanto disminuye la penetrabilidad. La arcilla que se inyecta debe presentar un límite líquido superior a 60. En caso contrario, se deben añadir coloides.
  • Suspensiones de arcilla-cemento-arena: La adición de arena a un mortero de cemento estable da un mortero inyectable. A más dosificación de arena, más fácil es que permanezcan en suspensión los granos más gruesos.

En la actualidad, las inyecciones de cemento con bentonita en cimiento de presas se está reemplazando por un sistema, ideado por Lombardi y Deere en 1993, denominado método GIN (Ground Intensity Number). Las características básicas de este sistema es que las lechadas de inyección no pueden llevar bentonita que evita la decantación, sino superfluidificantes que bajen la viscosidad, bajen la cohesión y asimilen la lecha a un fluido de Bingham. De esta forma se tiene una única mezcla de lechada para todo el proceso de inyección. Por otra parte, para reducir el riesgo de hidrofracturación, además de limitar la presión y el volumen inyectado, el intervalo de inyección se restringe por la hipérbola P·V=cte. La idea es que la finalización de la inyección basada en alcanzar una presión de cierre o un volumen de cierre estaba muy del lado de la seguridad. Este método se puede aplicar tanto a la inyección por tramos descendente, como ascendente, así como mediante el uso del tubo-manguito. El método GIN no solo es una forma de definir y seleccionar el valor de la intensidad de las inyecciones, sino que se considera como una práctica referida a la inyección de masas rocosas fisuradas para mejorar su resistencia y reducir su deformabilidad y permeabilidad.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué son los micropilotes?

Figura 1. Micropilotes

Los micropilotes son pilotes de pequeño diámetro de perforación, normalmente de 80 a 300 mm, compuestos por una barra, un tubo de acero o una armadura de acero que constituye el núcleo portante, el cual se recubre normalmente de lechada de cemento que forma el bulbo. Esta inyección favorece el trabajo por rozamiento lateral del fuste. No obstante, también se denominan micropilotes a aquellos elementos hincados por golpeo o hincados mediante vibración, con un diámetro no superior a 150 mm. Los micropilotes aparecieron en los años cincuenta con los «pali-radicci» o pilotes-raíz, para solucionar los problemas de recalces de edificios o estructuras. Se trataba de perforaciones con un diámetro pequeño (de 3 pulgadas o menos), donde se introducía un redondo de acero y se inyectaba con una lechada de cemento.

Los micropilotes estructurales actuales son de mayor diámetro, entre 100 y 150 mm, e incorporan una armadura. Las características técnicas de los materiales y el modo de ejecución de estos micropilotes permiten lograr altas capacidades de carga, normalmente entre 100 y 150 kN, tanto a la tracción como a la compresión, con deformaciones mínimas. De este modo, se consigue un elemento resistente en el que predomina la longitud y la resistencia por rozamiento o fuste. Además, presentan la ventaja de no requerir grandes volúmenes de excavación del terreno. El uso de micropilotes es especialmente interesante cuando existen cargas dispersas de poca importancia, terrenos y cimientos heterogéneos, condiciones difíciles de ejecución en espacios reducidos, con restricciones en altura, o zonas congestionadas, y donde se alternan las cargas en tracción y compresión.

Las cuatro grandes áreas de utilización de los micropilotes son las siguientes:

  1. Como cimentación o recalce de estructuras, trabajando fundamentalmente a compresión
  2. Formando cortinas o muros discontinuos para contener terrenos o excavaciones profundas
  3. En la corrección de corrimientos o deslizamiento, trabajando a flexión, tracción o flexotracción
  4. Como paraguas de sostenimiento en bocas de túneles, como paso de terrenos muy difíciles o para recuperar tramos con hundimientos.

Hoy en día también se utilizan micropilotes de gran capacidad, con diámetros de 300 mm o, en casos excepcionales, incluso mayores, en los que se introduce como elemento resistente un perfil metálico, generalmente tubular, capaz de resistir 2000 kN o más. Posteriormente, se inyecta mortero de cemento para rellenar la sección interior del perfil y sellar la corona exterior entre el perfil metálico y el terreno. Con perforación a rotopercusión, se alcanzan rendimientos de 50 a 100 m por turno. Sin embargo, los costes de este sistema son superiores a los de otros pilotes y solo se justifica cuando hay que atravesar zonas rocosas.

La maquinaria empleada para ejecutar los micropilotes presenta varias ventajas respecto a la de los pilotes. Es más accesible y maniobrable en espacios pequeños, reduce los movimientos durante la ejecución y, por tanto, las deformaciones en estructuras vecinas, se puede adaptar a suelos duros, heterogéneos y con obstáculos y mantiene bien la verticalidad. Sin embargo, no son tan aptos en terrenos saturados o con un nivel freático superior a la cota inferior de la cimentación. En la figura 2 se muestran algunas máquinas empleadas para ejecutar micropilotes.

Figura 2. Maquinaria empleada en la ejecución de micropilotes. Fuente: http://www.civogal.com/

La armadura debe colocarse inmediatamente después de finalizar la perforación del taladro. Para ello, se habrá comprobado que no hay obstáculos en el taladro. La armadura se ubicará sin que se muevan los centradores o los manguitos. Los centradores garantizan la colocación correcta de la armadura y aseguran un recubrimiento mínimo frente a la corrosión, de modo que no impidan la inyección. Se deben instalar, al menos, dos centradores, a distancias que no superen los 3 m. El límite elástico del acero de la armadura tubular suele ser de 560 MPa, mientras que el de las barras corrugadas suele ser de 500 MPa.

Tras la colocación de la armadura, debe inyectarse el micropilote lo antes posible (preferiblemente, en menos de 24 horas) con lechada o mortero de cemento. El objetivo es doble: por un lado, ejecutar el fuste y la punta del pilote propiamente dichos, rellenando tanto el espacio entre el tubo y la perforación como el interior del tubo y, por otro, protegerlo de la corrosión. La relación agua/cemento, en peso, de la lechada debe situarse entre 0,40 y 0,55, y la resistencia característica no debe ser inferior a 25 MPa.

En ocasiones, las pérdidas de inyección son tan elevadas, de 2,5 a 3 veces el volumen teórico necesario, que es necesario realizar una inyección previa con lechada o mortero de cemento que habrá que reperforar para continuar con el micropilote.

La inyección del micropilote se realiza por circulación inversa, bombeándose desde la central de fabricación de lechada mediante el empleo de batidoras de alta turbulencia. La inyección se realiza desde el interior de la armadura hasta el fondo del taladro, ascendiendo por el espacio anular existente entre la armadura y el varillaje de perforación, desplazando al exterior el posible detritus de perforación. Según su forma de ejecución, los micropilotes pueden estar inyectados a baja o a alta presión. En los primeros, se reproduce la técnica del pilote de gran diámetro y se inyecta mortero o mezcla cementicia de forma que se recubre el elemento de acero que constituye la armadura. Los micropilotes inyectados a alta presión se realizan en una o varias etapas a través de válvulas antirretorno, colocadas en la parte más profunda del micropilote, de forma que se conforme un bulbo que transmita las cargas en profundidad. Esta última técnica es similar a la inyección de terreno no cohesivo, que forma una serie de bulbos que, en su conjunto, conforman el elemento de transmisión de la carga del micropilote al terreno.

Se utilizan distintos tipos de inyección con los micropilotes:

  • (IU) “Global única”: Se inyecta en una fase desde la base inferior del tubo de armado, desde donde asciende el material de relleno entre las paredes de este y la del encamisado, si lo hay, o del terreno, si no lo hay. La presión de inyección debe ser superior a la mitad de la presión límite del terreno e inferior a dicha presión límite. Es adecuado para rocas más o menos sanas, suelos cohesivos muy duros y suelos granulares.
  • (IR) “Repetitiva única”: La inyección se realiza en dos fases: la primera, como en el caso del IU, y posteriormente a través de rejillas practicadas a lo largo del tubo. Una vez terminado el proceso, se realiza una inyección final de relleno de la armadura tubular. La presión en la boca del taladro debe cumplir las mismas condiciones que en el tipo IU. La inyección se realiza entre 500 kPa y la mitad de la presión límite del terreno. Es adecuado para rocas blandas y fisuradas, así como para materiales granulares gruesos de compacidad media.
  • (IRS) “Representativa o repetitiva selectiva”: Se utilizan válvulas antirretorno dispuestas a lo largo de la tubería de armado. Se puede inyectar más de dos veces, en función de la admisión de lechada. La presión de inyección es alta, entre 1000 kPa y la mitad de la presión límite del terreno. Una vez finalizado el proceso, se realiza una inyección final de relleno de la armadura tubular. Es adecuada para suelos cohesivos no muy duros, suelos de consistencia baja o media y suelos granulares en los que se intenta crear un bulbo.

Al inyectar una lechada, debe guardarse una relación entre el diámetro efectivo y el teórico. En bolos y gravas es 2 veces el diámetro teórico de perforación, mientras que en arcillas es 1,4 veces y en arenas, 1,2 veces.

Los micropilotes también se pueden realizar hincando una única tubería y sin inyección de lechada. Es el caso de una cimentación provisional o cuando posteriormente se vaya a excavar, dejando los micropilotes a la vista. Al ser de acero, esto permite soldar una estructura de arriostramiento. Incluso se pueden formar «muros-pantalla» de micropilotes (figura 3) que contengan tierras en un vaciado, en cuyo caso se descubre la lechada para soldar vigas metálicas a los tubos como estructura auxiliar para el arriostramiento y el apuntalamiento provisional del muro.En un artículo anterior podéis ver qué medidas de seguridad se deben adoptar en la ejecución de este tipo de cimentación profunda.

Figura 3. Pantalla de micropilotes con anclajes. Fuente: http://www.geotec262.com/micropilotes-anclajes

A continuación os dejo un vídeo explicativo sobre micropilotes de goetecnia.ONLINE

Os dejo un par de animaciones de Keller sobre la ejecución de micropilotes.

También resulta de interés este vídeo de geotecnia.online sobre pruebas de carga en micropilotes.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes inyectados

Existe una variedad de pilotes en los que se inyecta mortero o microhormigón sobre pilotes hincados o perforados. Normalmente, la lechada contiene aditivos, con una relación agua/cemento de entre 0,4 y 0,55. Entre pilotes, podemos distinguir los siguientes:

  • Pilotes “prepacked”: Se rellena la perforación con un árido de tamaño máximo de 25 mm y una granulometría que permita la entrada de una inyección de lechada. La inyección se realiza a través de tubos que suelen llegar hasta el fondo del pilote. A medida que avanza la inyección, se retiran los tubos, pero permanecen sumergidos en la lechada para asegurar su distribución uniforme.
  • Inyección de base o de fuste: En los pilotes ejecutados en obra se pueden dejar alojados tubos permanentes, fijados a las armaduras, para inyectar la lechada con el hormigón endurecido. Esta inyección puede realizarse tanto en el fuste como en la base.
  • Inyección de pilotes de desplazamiento: Se dispone de un azuche de diámetro suficiente para dejar un espacio alrededor del pilote que permita la inyección.

Os dejo un vídeo explicativo al respecto:

Referencias:

AENOR (2016). UNE-EN 156:2011+A1. Ejecución de trabajos geotécnicos especiales. Pilotes perforados.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.