Sistemas de entibación por presión hidráulica

Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

El sistema de entibación por presión hidráulica está formado por una cámara compuesta por paneles, del tipo tablestacas. Su profundidad recomendada de trabajo es de hasta 7 m y su anchura máxima de 1,70 a 4,70 m. Una viga accionada hidráulicamente hinca e iza los paneles, por lo que no se recomienda en terrenos rocosos o con bolos. Ambas caras de la cámara están apuntaladas y sostenidas por unas secciones especiales situadas en los bordes.

Es un sistema especialmente diseñado para reparar conductos o instalar tuberías. También se recomienda para trabajos de arqueología y en cascos antiguos, pues no transmite vibraciones. Una vez instaladas las tuberías, una excavadora mueve la cámara a lo largo de unos carriles hasta la siguiente sección.

Entibación por presión hidráulica. https://www.sbh-verbau.de/es/entibacion-trench-shoring-perfiles-sbh/entibacion/pressbox.html

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Zapata continua bajo muro

Figura 1. Detalle de zapata corrida bajo muro. Imagen: V. Yepes

La zapata continua o corrida bajo muro presenta una gran longitud comparada con las otras dimensiones (ver Figuras 1 y 2). Suele usarse como base de muros portantes y cimentación de elementos lineales. Se busca la homogeneidad en los asientos y la reducción de las tensiones en el terreno frente a una solución por zapatas aisladas. Además, presenta una mayor facilidad constructiva.

Figura 2. Zapata corrida bajo muro

La cimentación superficial corrida para muros portantes, aunque puede ser de mampostería (Figura 43) o de hormigón en masa, u hoy en día se construyen de hormigón armado (Figura 3). El canto mínimo en el borde es de 40 cm en zapatas de hormigón en masa y 30 cm si son de hormigón armado. En época calurosa se disponen juntas de hormigonado separadas 16 m si el clima es seco, y de 20 m si es húmedo. En época fría, dichas distancias serán de 20 y 24 m, respectivamente. No debe olvidarse nunca el llamado hormigón de limpieza, que tiene como objetivos evitar la desecación del hormigón estructural durante su vertido, así como una posible contaminación de este durante las primeras horas de su hormigonado. Suelen bastar unos 10 cm de este hormigón antes de empezar el ferrallado de la cimentación.

Figura 3. Zapata corrida de mampostería para muros portantes. Fuente: http://www.aguascalientes.gob.mx/

Os dejo a continuación un vídeo donde podréis ver el procedimiento constructivo de un muro de hormigón con su correspondiente zapata. Como curiosidad podéis ver que no se cumplen las medidas de seguridad en algunos casos, así como errores en la ejecución. Podéis hacer una lista.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Zonas de un anclaje

Figura 1. Componentes de un anclaje activo

Un anclaje es el elemento capaz de transmitir esfuerzos de tracción desde la superficie del terreno hasta una zona interior del mismo. En artículos anteriores vimos el concepto y la clasificación de los anclajes, la forma de ejecutar un anclaje y aspectos relacionados con la seguridad en su ejecución. En este artículo vamos a describir brevemente las diferentes zonas de un anclaje.

En los anclajes se distinguen las siguientes zonas (Figura 1):

  • Zona o bulbo de anclaje: es la parte solidaria al terreno en profundidad, encargada de transferirle los esfuerzos. Tiene características muy distintas dependiendo del procedimiento constructivo empleado. Teóricamente, se trataría de una parte fija, es decir, que no se movería ni durante el tesado ni durante la movilización del empuje activo. En la práctica se puede mover algo, pero no debe despegarse del terreno, pues entonces desaparecería la capacidad del anclaje.
  • Zona libre: es la parte en la que la armadura es independiente del terreno que la rodea, de forma que está libre su deformación al tensionarse. En efecto, la capacidad de deformación de esta zona libre es la que provoca la progresiva puesta en carga del anclaje. Conviene una longitud mínima de unos 5 m para que el esfuerzo aplicado se vea poco afectado por los posibles desplazamientos de la cabeza respecto a la zona de anclaje al terreno. Puede garantizarse la independencia del anclaje respecto al terreno en esta zona mediante camisas de PVC o metálicas. Sin embargo, debe garantizarse su protección contra la corrosión.
  • Cabeza: es la unión de la armadura a la placa de apoyo, sobre la que se ejerce la fuerza estabilizadora sobre la estructura. Dependen de cada fabricante y son similares a las utilizadas en hormigón pretensado.

En la Figura 2 se puede observar la cabeza para un anclaje de 8 torones.

Figura 2. Cabeza para un anclaje de 8 torones. https://publicworkstoolscad.blogspot.com/

Os dejo una animación de Keller Cimentaciones respecto a la ejecución de una inyección.

Referencias:

AETESS (2006). Guía Técnica de Seguridad AETESS. Micropilotes y anclajes.

DIRECCIÓN GENERAL DE CARRETERAS (2001). Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera. Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Muro de fábrica

Figura 1. Muro de mampostería. Fuente: http://www.generadordeprecios.info/

Los muros de fábrica están constituidos por piedras naturales, ladrillos o bloques de hormigón, que se construyen de forma manual.

Se denominan muros de sillería aquellos formados por piedras labradas finamente, de forma que las piedras se sostienen mutuamente por yuxtaposición, asentándose sobre otras mediante mortero.

Los muros de mampostería están formados por piedras sin labrar o labradas toscamente, que se colocan en dos paramentos, realizándose posteriormente su relleno (Figuras 1 y 2). La forma en la que se disponen las piezas se denomina aparejo. Los mampuestos pueden unirse mediante una argamasa o mortero o bien sin ella, en los llamados muros secos.

Figura 2. Arquitectura popular. Muro de mampostería de granito, La Torre (Ávila). Fuente: https://commons.wikimedia.org/wiki/File:Mamposter%C3%ADa_1.JPG

Os dejo a continuación un vídeo corto sobre cómo se construye un muro de piedra.

Aquí os dejo cómo se hace un muro de piedra en Los Pedroches. Destaca este oficio que se pierde en el tiempo.

Hay intentos de industrialización de este tipo de muros, pero no acaban de generalizarse. Os dejo un artículo al respecto, pero en este caso, restringido a la técnica del tapial.

Descargar (PDF, 2.44MB)

Referencias:

VON MAG, A.; RAUCH, M. (2011). Paredes de tapial y su industrialización (encofrados y sistemas de compactación). Informes de la Construcción, 63:523, 35-40.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ejecución de un anclaje

Figura 1. Perforación para anclaje en muro de micropilotes. Imagen: V. Yepes

En un artículo anterior se repasó el concepto y la clasificación de los anclajes. A continuación, se van a comentar brevemente los aspectos más relevantes de la ejecución de un anclaje.

Para ejecutar un anclaje, se introduce la armadura en una perforación previamente realizada en el terreno, quedando ambas unidas con la lechada de cemento que se inyecta a continuación. Las operaciones son las siguientes:

  1. Perforación.
  2. Colocación del cable o bulón y ejecución del bulbo de anclaje para su fijación en el fondo de la perforación.
  3. Tensado del cable, en su caso.
  4. Inyección de la lechada y cierre de la cabeza del anclaje.

La perforación, que normalmente se realiza a rotación o rotopercusión, tiene un diámetro de entre 68 y 200 mm para barras de 25 mm, y de más de 200 mm para anclajes más complejos. En cuanto al resto de sus componentes, los anclajes pueden ser diferentes en función de la resistencia del propio anclaje y del terreno. La figura 1 muestra la perforación de una viga riostra sobre un muro de micropilotes para realizar un anclaje al terreno. Las Figuras 2 y 3 muestran detalles de la maquinaria empleada para realizar las perforaciones de los anclajes.

Figura 2. Maquinaria de perforación a rotopercusión. www.desdeelmurete.com

 

Figura 3. Detalle de la perforación para anclaje en muro pantalla. www.desdeelmurete.com

En los anclajes activos es primordial que el cable quede sujeto en el fondo de la perforación antes de tesar. Para ello, se emplean diversos sistemas en función del tipo de anclaje, con dispositivos que aíslan el bulbo de anclaje del resto de la perforación. De esta forma, se impide que la lechada inyectada en la zona de empotramiento se extienda al resto del cable antes del tensado. El dispositivo más frecuente es un obturador o casquillo expansivo. La inyección en esta zona se realiza a través de una tubería de PVC situada en el interior de la vaina que cubre el cable, a una presión que puede llegar a unos 2,5-3,0 MPa. Estas tuberías van provistas de válvulas antirretorno que pueden taponarlas a diferentes profundidades para obtener una mayor penetración al inyectar.

Una vez asegurado el empotramiento, se tensa el cable con gatos hidráulicos, se bloquea el extremo en la placa de anclaje con tuercas o conos de anclaje y se controla el diagrama de tensiones-alargamientos, que debe coincidir con el teórico si la fijación en el fondo es efectiva (ver Figura 4).

Figura 4. Tesado de cables de un anclaje activo. http://www.fernandeztadeo.com/anclajes.htm

Con el cable en tensión, se inyecta la lechada en el resto de la perforación a una presión de alrededor de 3 MPa. No deben pasar más de 8-12 horas tras la perforación para que las paredes del terreno se alteren y se descompriman lo menos posible. Cuando la rosca está sana, los esfuerzos del cable pueden transmitirse al terreno directamente a través de la lechada; en caso contrario, que es lo más común, los esfuerzos se transmiten de forma independiente al terreno mediante una vaina en la que se inyecta la lechada y los productos anticorrosivos. La lechada se dosifica con abundante cemento, con una relación agua/cemento entre 0,4 y 0,6 (0,4 para el sellado entre la armadura y las vainas anticorrosión) y una resistencia mínima a compresión simple de 25 MPa. Es necesario el uso de aditivos. El fraguado tarda entre 3 y 7 días. En la Tabla 1 se reflejan las características de los cables más empleados.

Tabla 1. Características de los cables más empleados actualmente (Y 1860 S7 15.20)

Límite elástico (N/mm2) 1670
Carga de rotura (N/mm2) 1860
N.º de alambres 7
Diámetro nominal (pulgadas – milímetros) 0,6 – 15,2
Área (mm2) 140
Límite elástico unitario (kN) 260
Módulo de deformación (N/mm2) 200 000

 

En los anclajes pasivos, el diámetro de las armaduras está comprendido entre 16 y 40 mm. Se emplean aceros dúctiles que presentan alargamientos en rotura superiores al 4 % para reducir la probabilidad de rotura frágil del perno. En estos anclajes, la transferencia de esfuerzos entre la armadura y el terreno es directa a través de la lechada. Su ejecución es más sencilla que la de los anclajes activos. La armadura se introduce en la perforación y, una vez fijada (algunos pernos van provistos de un casquillo expansivo situado en su extremo que los fija en el fondo de la perforación), se rellena inyectando una lechada con una dosificación similar a la de otros anclajes.

La longitud de un bulón, por razones constructivas, suele estar comprendida entre 1,5 y 10 m. Se colocan en el interior del terreno desde una superficie libre mediante un taladro. Sin embargo, la fuerza que puede soportar cada bulón es relativamente reducida, lo que implica una densidad de aplicación elevada. Es habitual usar barras de acero de 20 a 40 mm de sección, con cargas de entre 10 y 25 t.

En el caso de los cables, la lechada los protege y transmite las tensiones entre la armadura y el terreno. Se colocan centradores que garantizan la correcta colocación del tirante, con un recubrimiento mínimo de 10 mm entre el terreno y el elemento metálico. Por lo general, las tensiones de trabajo de los aceros de los anclajes permanentes son del 60 % de su límite elástico y del 75 % en los anclajes provisionales. En la Tabla 2 se indican las características de las barras de anclaje más comunes.

Tabla 2. Características de las barras de anclaje más habituales.

Tipo de barra Límite elástico (N/mm2) Carga de rotura (N/mm2)
Corrugada, Gewi o similar 500 550
Dywidag 850 1050

Os he preparado un vídeo explicativo que espero que os resulte interesante.

Os dejo a continuación algunos vídeos que espero sean de vuestro interés.

Referencias:

AETESS (2006). Guía Técnica de Seguridad AETESS. Micropilotes y anclajes.

DIRECCIÓN GENERAL DE CARRETERAS (2001). Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera. Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Concepto y clasificación de los anclajes

Figura 1. Detalle de un anclaje pasivo formado por un bulón. http://cimentacionesyaplicaciones.blogspot.com.es

Los anclajes son dispositivos constituidos por tirantes o por barras rígidas que, integrados en un talud de roca o en ciertas partes de una obra (muros, zapatas, etc.), pueden aumentar su resistencia y estabilidad al trabajar a tracción (Figura 1). Lo habitual es que estén constituidos por armaduras metálicas alojadas en perforaciones realizadas en el terreno, cuyo fondo se ancla mediante inyecciones o dispositivos mecánicos expansivos, y luego se fijan en el exterior de la estructura o en placas que se apoyan directamente en la superficie del terreno. Los anclajes se utilizan para arriostrar estructuras de contención, estabilizar el terreno, reforzar estructuras o absorber esfuerzos en la cimentación de estructuras (Figura 2).

Figura 2. Ejemplos de aplicación de los anclajes

Los anclajes permiten la movilidad en la obra y son más económicos que los arriostramientos para grandes vaciados y superficies. Por otra parte, ofrecen seguridad por estar tesados y, por consiguiente, haberse realizado una prueba de carga in situ. Sin embargo, una deficiente instalación de los anclajes puede ocasionar fallos estructurales. Además, pueden surgir problemas jurídicos si nos salimos de los límites de la propiedad al realizar los anclajes.

Por su forma de trabajar, los anclajes pueden clasificarse en activos, pasivos y mixtos:

  • Anclaje activo: una vez instalado, se pretensa hasta llegar a su carga admisible. De esta forma, el terreno se comprime entre la zona de anclaje y la estructura o placa de apoyo. Se utilizan cables tensados.
  • Anclaje pasivo: entra en tracción por sí solo, al presentarse la fuerza exterior y oponerse la cabeza al movimiento del terreno o de la estructura (Figura 3). En consecuencia, puede sufrir grandes desplazamientos. Se utilizan barras de acero, denominadas bulones o pernos. Normalmente, no pasan de 10 m de longitud.
  • Anclaje mixto: se pretensa la armadura por debajo de la carga admisible, reservando una parte de su capacidad resistente para otras posibles solicitaciones. Se utilizan cables tensados.
Figura 3. Anclaje pasivo con bulón. http://cimentacionesyaplicaciones.blogspot.com.es

En función del tiempo de actuación, los anclajes pueden ser temporales o permanentes:

  • Anclaje temporal: es un medio auxiliar en la construcción que permite estabilizar la estructura durante el tiempo necesario (de 9 meses a 2 años, dependiendo de las normas) para disponer otros elementos resistentes que los sustituyan.
  • Anclaje permanente: se dimensionan con mayores coeficientes de seguridad. Uno de los mayores peligros es la corrosión, tanto para las zonas de bulbo y alargamiento libre, como para la cabeza de anclaje. La Figura 4 muestra un anclaje permanente al terreno.
Figura 4. Anclajes permanentes al terreno. http://www.micros.es/anclajes-permanentes.asp

He grabado un pequeño vídeo explicativo sobre el concepto y la clasificación de los anclajes.

Os dejo un vídeo de Ingeosolum donde se puede ver cómo se realiza el tesado de anclaje para IngeoNAIL provisional de 3 m de altura en Pamplona.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Altura crítica de una excavación sin entibación

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar.

A continuación os dejo el planteamiento de la estabilidad del corte vertical en condiciones drenadas. En el caso de un suelo puramente cohesivo en condiciones no drenadas, C = Cu y φ = 0, que corresponde a la estabilidad a corto plazo.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

Os dejo a continuación un vídeo al respecto:

Referencias:

http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf

http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf

http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html

http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Muros de gaviones flexibles

Gaviones flexibles. Fuente: http://gavionesflexibles.com/

Los muros de gaviones propiamente dichos consisten en un recipiente de forma prismática rectangular, relleno de material granular de distintos tamaños, de enrejado metálico de malla hexagonal, que puede ser de triple torsión o electrosoldada dependiendo de las características de la obra.

Sin embargo, se pueden fabricar muros flexibles utilizando la misma idea pero con otros materiales. Son los llamados muros de gaviones flexibles. Consisten en unas celdas realizadas con materiales geosintéticos, que permiten su relleno con tierras u otros materiales como mezclas de grava-cemento, de tierras con cal, etc. Se obtiene de esta forma un muro de tierra sostenida, que funciona por gravedad. Además, constituyen barreras de contención muy flexibles que pueden resultar de gran interés en actuaciones de emergencia como ante desbordamiento de ríos. También pueden ser de gran interés como complemento de obras civiles o ambientales.

Gaviones flexibles. Fuente: http://gavionesflexibles.com/

Os dejo unos vídeos de la empresa Contflexdique gaviones flexibles donde se puede ver cómo se monta un muro flexible de estas características. Espero que os gusten:

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fallo por desplazamiento en muro de contención

British Geological Survey
British Geological Survey

A continuación os dejo un vídeo muy didáctico donde se explica un fallo muy habitual en muros de contención. En el vídeo se puede ver el caso típico de un muro construido para soportar un suelo arenoso seco sobre el que existen construcciones previas. Este caso es muy habitual en carreteras o vías férreas donde se construye un muro para soportar una excavación. Si el muro se desplaza, se puede observar claramente lo que ocurre en superficie y con las edificaciones existentes.

El vídeo lo ha elaborado el British Geological Survey y podéis encontrar más información en su página web: www.bgs.ac.uk

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Muros de tierra mecánicamente estabilizada: Tierra Armada®

Figura 1. Muro de Tierra Armada®. Fuente: http://www.tierra-armada.cl/sistema.html
Figura 1. Muro de Tierra Armada®. Fuente: http://www.tierra-armada.cl/sistema.html

La Tierra Armada® es una técnica patentada por el francés Henri Vidal de construcción de muros altos con problemas de cimentación, en espacios abiertos y siempre que se pueda ocupar el terreno de trasdós (ver Figura 1). Consiste en colocar de forma ordenada bandas de acero de refuerzo en un terraplén, en planos horizontales, que se unen a unas placas prefabricadas que conforman el paramento del muro. Las bandas o armaduras suelen ser de chapa metálica de varios metros de longitud (aproximadamente un 80% de la altura del muro), de 2 a 12 cm de anchura y de 3 a 5 mm de espesor (ver Figura 2). El relleno debe ser granular para garantizar el rozamiento con las armaduras. Con esta técnica se consiguen muros verticales de hasta 25 – 30 m de altura.

Figura 2. Detalle de las bandas y la placa de un muro de Tierra Armada®. http://www.tierra-armada.com/
Figura 2. Detalle de las bandas y la placa de un muro de Tierra Armada®. http://www.tierra-armada.com/

La tierra armada debe su resistencia interna al refuerzo, con todo, externamente actúan como estructuras masivas de gravedad. Permite muros en suelos con poca capacidad portante, tolera asientos diferenciales y puede demolerse o repararse fácilmente. Además de una ejecución rápida y un coste de ejecución competitivo, las placas prefabricadas son de calidad y permiten ser elementos decorativos. Sin embargo, hay que asegurarse de usar un relleno de calidad, cuidar la corrosión de las bandas de refuerzo y tener presente que este tipo de muros está sometido a patentes.

A continuación os paso un vídeo (en inglés) de Sand Castle Holds Up A Car! – Mechanically Stabilized Earth dedicado a los suelos reforzados o estabilizados mecánicamente. Resulta muy interesante la prueba que hacen de resistencia.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.