El pilote Raymond, inventado en 1897, es uno de los primeros con tubo de entibación, aunque se sigue utilizando en algunos países, especialmente en los Estados Unidos. Sin embargo, en países como España no se usa actualmente por no ser competitivo frente a otras soluciones. Está formado por varios tramos de tubo de acero de pared delgada, corrugado en espiral, de unos 20 cm de diámetro en la punta. Se enroscan tubos contiguos con longitudes normalizadas, de unos 2,5 m, hasta alcanzar la profundidad requerida. Forma, por tanto, un pilote cónico protegido en el fondo por un cierre resistente, que permite su hincado en terrenos de cierta cohesión.
Este pilote se puede hincar hasta profundidades de 40 m. Es capaz de soportar grandes cargas, de 400 a 750 kN, dependiendo del diámetro de la punta, a pesar del escaso diámetro debido a la forma troncocónica y la superficie lateral corrugada.
La hinca se realiza con un mandril solidario con el tubo, sobre el cual actúa la maza. El mandril es un vástago metálico que se introduce en este tipo de pilotes de acero huecos durante la hinca para evitar la abolladura. Realizada la hinca, se extrae el mandril del pilote y el tubo se rellena de hormigón, con o sin armadura. En la Figura 1 se aprecia el proceso previo de hinca de este tipo de pilote.
Los pilotes de desplazamiento con azuche (pilotes CPI-2 en la nomenclatura de las antiguas Normas Tecnológicas de Edificación), consiste en un tubo de acero hincado en el terreno con un azuche de punta cónica o plana en su extremo inferior, que puede ser metálica o de hormigón prefabricado. Este pilote se realiza sin extracción de terreno, por lo que durante su ejecución no puede comprobarse la naturaleza del suelo que se va atravesando. El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, generando el pilote propiamente dicho. El azuche posee un diámetro exterior mayor en aproximadamente 5 cm que el pilote, con la parte superior cilíndrica ya preparada para introducir en el extremo inferior de la entubación. Se utilizan con diámetros pequeños (entre 30 y 65 cm) y cuando el terreno es resistente, pero poco estable. La armadura tiene una longitud mínima que será el mayor valor de los siguientes: 6 m o 9 veces el diámetro del pilote. La longitud del pilote viene limitada por la longitud de la resbaladera sobre la que desliza la tubería, estando en torno a los 22 m.
Su uso habitual es como pilotaje de poca profundidad, trabajando por punta, apoyado en roca o capas duras de terreno, después de atravesar capas blandas. También como pilotaje, trabajando por fuste y punta en terrenos granulares, medios o flojos, o en terrenos de capas alternadas, coherentes y granulares, de alguna consistencia. Se recupera la tubería, si es preciso mediante vibradores, dejando el azuche o tapa perdido.
Con golpes de maza o martillo se hinca desde la parte superior de la entubación y se encaja hasta la profundidad que se requiere para el pilotaje. Luego se extrae la entubación con la precaución de que quede un mínimo de hormigón igual a 2 veces el diámetro interior; de esta manera se impide la entrada de agua por la parte inferior de la entubación y el corte del pilote. Durante la extracción se pierde el azuche. La forma de extraer la entubación es con un golpe en la cabeza, logrando el efecto de vibrado del hormigón, circunstancia que ha dado nombre al pilote “Vibro”, que es el más conocido dentro de este tipo. Para la hinca se usa el martinete (martillo hidráulico o diésel), que consiste en un mazo mecánico que va dando golpes periódicos sobre la cabeza del pilote para introducirlo en el terreno. Aparte del pilote Vibro, otros pilotes comerciales que utilizan técnicas parecidas son el Simplex, Alpha o Western.
Este pilote se clava hasta la capa firme y la capacidad portante se puede comprobar por el número de golpes necesarios para alcanzar una penetración determinada. Es muy frecuente emplear la denominada fórmula de los holandeses, aplicándose un coeficiente de seguridad de 6.
Se pueden describir las siguientes fases de ejecución:
Puesta en obra y colocación de un azuche metálico o tapón en la base.
Hincado de tubería hueca y azuche mediante golpeo con maza o martillo hasta llegar al rechazo.
Colocación de la armadura hasta el fondo del pilote
Hormigonado en seco.
Extracción de la camisa, dejando el azuche o tapa perdido.
Demolición de una longitud no menor a 1 m (descabezado del pilote)
Os dejo a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.
Pilote de desplazamiento con azuche CPI-2. Norma Tecnológica de Edificación
La hinca por presión, también llamada hinca silenciosa, introduce el pilote o la tablestaca en el terreno mediante una fuerza estática vertical aplicada con gatos hidráulicos. En este caso se mide la capacidad portante del pilote directamente con el manómetro del gato, por lo que la hinca de cada pilote se comporta en realidad como un ensayo de carga correspondiente a un rechazo deseado. Es un procedimiento útil cuando no se permiten vibraciones o no hay espacio para los martillos. Su uso es habitual en el recalce de cimentaciones, donde la propia estructura sirve de reacción a los gatos. Sin embargo, es un procedimiento que presenta bajos rendimientos y tiene un campo de actuación reducido a suelos suficientemente blandos. Las secciones empleadas con este sistema deben desplazar el terreno fácilmente, como sería el caso de tablestacas o pilotes de hormigón pretensado y sección tubular sin tapa. La hinca por presión provoca un menor asentamiento del terreno, siendo eficiente en suelos arcillosos, pero menos en terrenos cohesivos densos. A veces se les provee a estos equipos de un equipo de chorro a presión (jetting) para mejorar la hinca. En la Figura 1 puede verse el procedimiento de hinca silencioso de tablestacas, donde se puede observar cómo la máquina utiliza la reacción procedente del rozamiento negativo del grupo de tablestacas ya hincadas para hincar la nueva tablestaca. En este caso, la prensa es del tipo “japonés”, pues la máquina se ha diseñado para “caminar” sobre las tablestacas ya instaladas, sin necesidad de una grúa, que serían prensas del tipo panel, o bien de una estructura de soporte móvil (Figura 2).
Aquí os dejo una explicación, no solo de la hinca por presión, sino también de otros métodos como la hinca por inyección de agua y prebarrenado.
Os dejo a continuación algunos vídeos para que veáis el funcionamiento del sistema.
En este otro vídeo podéis ver la hinca a presión de pilotes prefabricados.
La excavación de un muro pantalla suele realizarse con una cuchara bivalva acoplada a una retroexcavadora. La profundidad de la excavación es variable y los taludes se estabilizan con bentonita, que se va añadiendo según va avanzando la excavación, por lo que hay que tener relacionado el caudal de aportación de bentonita con la velocidad de avance de la excavadora.
La tubería desde la instalación de la bentonita hasta la excavación es de acoplamiento rápido y están en contacto mediante un código de señales acústicas. La profundidad de la excavación se controla por medio de una cadena media, una vez que la excavación está a cota. Hay que esperar 20 o 30 minutos para la sedimentación, pasado este tiempo se procede a la limpieza del fondo quedando lista la excavación para recibir la ferralla. Los productos de la excavación se retiran a vertedero con camiones.
Normas de seguridad:
Antes de posicionar la máquina se habrá vallado el entorno, quedando aislada la zona de trabajo, de forma que impida el paso de personas ajenas.
El itinerario de los camiones debe estar indicado de forma clara y concreta.
Se estudiará el emplazamiento de las máquinas, observando detenidamente el radio de acción en todas las posiciones, muy especialmente altura de pluma, contrapesos y movimientos de la cuchara. Esta operación la hará el encargado del tajo y el maquinista.
Los servicios habrán sido desviados y perfectamente señalizados los próximos a la excavación.
El maquinista revisará diariamente los cables, ganchos, perrillos, contrapesos, los principales elementos de la cuchara (bielas, cuñero, dientes, patín guía, etc.), poniendo en conocimiento de su jefe los defectos que haya encontrado o parando los trabajos ante el menor obstáculo imprevisto.
Se hará el mantenimiento a las máquinas que indique los respectivos manuales de entretenimiento.
La cuchara no se guiará con las manos para emboquillarla entre los muretes guías, esta ocupación (si hay que hacerla) se hará por medio de alargaderas que impida la aproximación del ayudante al borde de la excavación.
La conducción de la bentonita de tubos será de acoplamiento rápido y buena estanqueidad.
El operador de la instalación de bentonita estará protegido contra el polvo que desprende el abastecimiento de la tolva.
La bomba de extracción de lodos, estará sujeta a puntos fijos o móviles del exterior de forma que pueda ser fácilmente recuperada del fondo de la zanja.
La toma de corriente de la bomba de lodos y demás herramientas eléctricas estará protegida por disyuntor diferencial de alta sensibilidad y puesta a tierra de los cuadros.
La línea de alimentación desde el cuadro general, que estará normalmente en la instalación de bentonita, hasta los cuadro de obra será aérea y sustentada por poste de madera.
En la instalación de esta línea se prestará la máxima atención a los gálibos en los puntos de cruce y posicionamiento de las máquinas excavadoras, si no está enterrada.
Se estudiará con los vecinos las salidas y entradas a sus inmuebles y negocios durante la ejecución de la excavación.
El personal que trabaje en la excavación y en las proximidades usará además de la ropa de trabajo, botas de goma y guantes.
No se dejará, bajo ningún concepto, excavación o hueco alguno sin tapar con mallazo o proteger con barandillas rígidas colocadas a 0,90 m de altura.
Los conductores de los camiones utilizarán el casco cuando abandonen la cabina de su vehículo.
Las cajas de los camiones irán provistas de sus correspondientes trampillas para evitar pérdidas de carga durante el transporte.
El vertedero estará acondicionado y los conductores advertidos del peligro que supone levantar el volteo en terreno mal nivelado o que pueda ceder por exceso de humedad.
Está prohibido circular con el volteo levantado.
A continuación os dejo algunos vídeos ilustrativos de esta fase del procedimiento constructivo de un muro pantalla.
Los “barrettes”, atendiendo a la norma UNE-EN 1536:2011, son pilotes que en planta son rectangulares, en T o en L o cualquier otra configuración similar, siempre que se hormigonen en una sola operación. Se emplean para sustentar cargas verticales y/o laterales.
A este tipo de pilotes de hormigón con extracción del terreno se les ha denominado también como pilotes rectangulares, minipantallas, módulos portantes o pilas oblongas (este último término usado en México). Este pilote se excava por métodos continuos o discontinuos (hélice, cuchara, trépano, etc.), utilizando sistemas de contención para estabilizar las paredes de la excavación, normalmente con lodos bentoníticos o polímeros.
La construcción de este tipo de pilotes es muy parecida a la de un muro pantalla. Se realiza una excavación hasta la profundidad requerida y se rellena con un lodo tixotrópico para proporcionar soporte a las paredes. Posteriormente, se coloca la armadura y se hormigona con tubos Tremie.
Este tipo de pilote perforado ofrece mayor superficie específica respecto al pilote de sección circular, lo cual permite resistir mejor las cargas verticales debido al aumento de la resistencia en fuste. Desde el punto de vista estructural, se orientan de forma que ofrezca la sección la mayor inercia en la dirección requerida, favoreciendo su comportamiento ante solicitaciones sísmicas.
Sin embargo, en este post nos vamos a centrar en un caso especial, de gran interés. Se trata de las barrettes inyectadas o de fricción (shaft-grouted barrettes, friction barrettes). Se trata de una cimentación no tan profunda como un pilote normal, que permite reducir el consumo de acero y de hormigón y que acorta la duración de las obras. Se trata de introducir, junto con la armadura, unas tuberías embebidas por donde se inyectará una lechada de cemento y arena a alta presión una vez el pilote ha adquirido la resistencia necesaria. Una vez endurecida esta mezcla, la formación de salientes de las paredes de los pilotes aumenta de forma significativa la fricción, y, por tanto, la resistencia del fuste. Este tipo de cimentación profunda se ha utilizado en edificios altos, como las Torres Petronas de Malasia, o el International Commerce Centre de Hong Kong.
A continuación os dejo un vídeo sobre cómo se realiza la ejecución de las barrettes de fricción. Se trata de una obra en Vietnam, y desgraciadamente el vídeo no está ni en español ni en inglés. Pero creo que es interesante.
Un muro pantalla o pantalla de hormigón in situ es un tipo de cimentación profunda, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Funciona como un muro de contención que se construye antes de efectuar el vaciado de tierras y que transmite los esfuerzos al terreno. En algunos posts anteriores ya hemos descrito este elemento constructivo.
En este artículo nos vamos a centrar en los aspectos de seguridad. Para ello os dejamos un vídeo descriptivo de la ejecución de muros pantalla en seguridad realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la Seguridad Laboral en el sector de las Cimentaciones Especiales (www.aetess.com), así como un enlace a la guía técnica de seguridad AETESS de muros pantalla (link). Espero que os sea el material de utilidad.
Un cajón es una estructura que hundida a través del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.
Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan a analizar brevemente este procedimiento constructivo y a dejar unas cuantas referencias al lector curioso que quiera ampliar información al respecto.
En 1830 el británico Thomas Cochrane ideó y patentó un sistema para cimentar en seco, mientras que en Francia, de forma paralela, el ingeniero de minas francés Jacques Triger ideó en el año 1839 un sistema para poder excavar en el interior de la mina de Chalonnes -que dirigía- en la zona cubierta por el agua del cercano río Loira. Mediante una cámara llena de aire a presión conseguía evitar la entrada del agua y así poder trabajar cómodamente. Habían inventado el cajón de aire comprimido.
El aire comprimido fue empleado por primera vez en cajones de puentes por John Wright en 1851 para los pilares de puente Rochester, y algunos años más tarde por Isambard Brunel en el puente Saltash. El primero que lo utilizó en cimentaciones de puentes muy grandes fue James B. Eads, en el puente St. Louis sobre el río Mississippi, comenzado en 1864. El capitán Eads conocía muy bien el Mississippi, por eso sabía que el lecho era muy socavable. En una ocasión había buceado con escafandra durante una de las crecidas del rió y pudo observar el movimiento de las arenas del fondo. Por eso no dudó en bajar las cimentaciones a gran profundidad por debajo del lecho del río. Los dos pilares situados en el río se hundieron por medio de aire comprimido hasta profundidades de 26 y 28 m bajo el nivel del agua, lo que constituyó un éxito notable ya que los efectos fisiológicos al trabajar bajo elevadas presiones de aire eran más o menos desconocidos por aquel tiempo. Los métodos de hundimiento ideados por Eads han variado hasta ahora únicamente en algunos detalles. Daniel E. Moran introdujo en 1936 un nuevo tipo de cajón conocido con el nombre de “cajón de flotación”, siendo empleado para el puente sobre la bahía de San Francisco-Oakland.
Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)
En Estados Unidos el ejemplo más llamativo en el uso de cajones de aire comprimido es el puente de Brooklyn. Se trata de cajones de 52 por 31 m, en el lado de Nueva York, que se dividieron en seis habitaciones donde trabajaban entre 15 y 20 personas en cada una de ellas –hasta 180 personas en su interior- y lo bajaron cerca de 24 metros bajo las aguas del East River. Hubieron grandes problemas y accidentes con las descompresiones, donde la mitad de los trabajadores sufrieron graves secuelas, y donde el propio Washington Roebling, ingeniero jefe tras la muerte de su padre John A. Roebling, diseñador del puente, sufrió también las secuelas tras una visita de obra.
El procedimiento constructivo consiste en la hinca de un cajón con su borde inferior biselado o con forma de cuchilla que se va construyendo a medida que progresa la excavación del material que va quedando encerrado en su interior. Cuando se alcanza el lecho de roca, la cámara de trabajo se llena de hormigón y se convierte en la base permanente para la cimentación. Su uso se limita a terrenos muy permeables o flojos debido al posible sifonamiento, cuando no sea posible el uso de un método alternativo. Antes de iniciar el proceso constructivo se hunde como un cajón abierto, tan profundo como sea posible. Mediante la inyección de aire comprimido se evita el desmoronamiento de las paredes.
El cajón de aire comprimido suele tener un cilindro de acceso para los trabajadores, y otro cilindro independiente para los cangilones donde se coloca el material excavado. Hay unas compuertas herméticas que permiten mantener constante la presión de la campana durante la entrada y la salida de trabajadores y materiales. La presión debe equilibrarse en ambos lados de la compuerta para poder abrirla.
Mediante este método se pueden llegar a estratos de hasta 35 m de profundidad bajo el nivel del agua (pues los hombres on pueden trabajar a presiones de aire superiores a los 3,5 kg/cm2), no es necesario el agotamiento, es posible el acceso directo al fondo para vencer ciertos obstáculos durante el proceso de hinca y el fondo, una vez alcanzado, se puede observar y limpiar directamente, por lo que se garantiza unas condiciones buenas de cimentación. Sin embargo, entre los inconvenientes de este tipo de técnica destacan los siguientes: costes unitarios por material excavado altos y primas por peligrosidad a los trabajadores, pues se puede producir la muerte de los trabajadores por asfixia si hay una descompresión rápida de la cámara de trabajo. Ello obliga a duplicar las fuentes de energía para mantener la seguridad en la presión de aire.
Referencias:
Marsal, R.; Lloréns, M. (1980). Cimentaciones semiprofundas, en Jiménez-Salas, J.A. (Ed.) Geotecnia y Cimientos III: 212-251. Editorial Rueda, Madrid.
Presa, J.; Eraso, A. (1970). Las cimentaciones realizadas con cajones de aire comprimido. Una técnica en trance de desaparecer.Revista de Obras Públicas, 117(3064):855-862.
Tomlinson, M.J. (1982). Diseño y construcción de cimientos.Urmo, S.A. de Ediciones, Bilbao.
Willson, W.S.; Sully, F.W. (1949). Compressed-air caisson foundations. Inst. C.E. Works Comstruction Paper núm. 13.
Las cimentaciones con cajones abiertos, o cajones indios, se definen como aquellas realizadas a base de cajones abiertos por arriba y sin fondo, con su borde inferior biselado o con forma de cuchilla que se van hincando en el terreno por su propio peso o mediante lastre, a medida que se excava en su interior, mientras se recrecen sus paredes. Este proceso continúa hasta alcanzar la profundidad deseada. El cajón se fabrica total o parcialmente en su altura total a nivel del suelo. La sección de estos cajones es rectangular o circular. Este procedimiento es factible en terrenos blandos, debiendo tener precaución, en el caso de excavar bajo nivel freático, de que no se produzca sifonamiento. En los casos en que sea necesario recurrir a bombas de agotamiento, las alcachofas de las mangueras se sitúan en pequeños pozos practicados en el fondo de la excavación. En el caso de no poder realizarse el agotamiento del agua, entonces se inyectan productos en el terreno para disminuir su permeabilidad.
El rozamiento entre el elemento y el terreno circundante se puede reducir mediante una rendija anular rellena de bentonita, de un ancho entre 5 y 10 cm. Estas fuerzas de rozamiento crecen al incrementarse la profundidad, por lo que habrá que ir incrementando el peso de empuje del cajón. Una vez alcanzada la profundidad prevista, se tapona el fondo de la excavación con hormigón. Durante este proceso a da estar garantizada en todo momento la resistencia frente al empuje hidrostático ascendente.
En el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes del año 2000, en su artículo 674, se incluían las cimentaciones por cajones indios de hormigón armado, sin embargo, este artículo quedó suprimido posteriormente.
Os dejo un vídeo donde se puede ver el proceso de excavación de un cajón indio hecho con muros de hormigón armado para arqueta. Se hace el muro en superficie y baja por su peso a la vez que se excava.
El control de ejecución de una obra es un aspecto fundamental que garantiza la durabilidad y el funcionamiento según el proyecto previsto. Un aspecto especialmente importante es el control de ejecución de las cimentaciones. En este post os dejo información al respecto.
Según la NTE, se denomina CPI-7 al pilote perforado a rotación y hormigonado “in situ”, en los que debido a las características del terreno, no precisa el sostenimiento de las paredes. Es un pilote rápido de ejecutar y económico, idóneo cuando el terreno es estable durante la perforación. Los diámetros habituales oscilan entre 450 y 1500 mm, con profundidades de hasta 40 m. El tipo de terreno decide la forma de excavación. En el caso de terrenos blandos y medios, la excavación se realiza mediante barrenas de hélice cortas. En cambio, con terrenos más duros deberíamos incluir en la barrena de dientes puntas de widia. En terrenos muy competentes y roca la perforación pasa por una corona circular con puntas de widia. Una vez alcanza la profundidad objetivo se efectúa la limpieza del fondo de la excavación mediante el uso de un cazo (“bucket”).
Posteriormente, al limpiado del fondo se procede a introducir la armadura de acero con la ayuda de un equipo auxiliar (grúa). Para garantizar el recubrimiento mínimo necesario de la misma, se levanta 20 cm sobre el fondo de la excavación y se colocan separadores para su correcto centrado.
Después de colocar la armadura se comienza con el hormigonado. Se utiliza un tubo “Tremie” para verter el hormigón en la perforación, de forma que se eviten segregaciones y exudaciones. Este tubo se introduce por dentro de la armadura hasta alcanzar el fondo de la perforación. A continuación se comienza a bombear el hormigón que debe ser homogéneo y de consistencia fluida, con conos de Abrams de 15-16 cm, recomendando dosificaciones de hormigón de 350 kg de cemento por m3 de hormigón y la utilización de áridos no superiores a 20 mm.
Conforme avanza la fase de hormigonado se va subiendo simultáneamente el tubo Tremie, pero teniendo la precaución de mantenerlo siempre unos dos metros introducidos en el hormigón fresco. Cuando el hormigón alcanza la cota de la rasante del terreno se concluye con el hormigonado. Por último, se procede al descabezado de los pilotes.
Os dejo una animación que describe el procedimiento.
También podéis ver a continuación un vídeo Polimedia donde se explica la construcción de este tipo de pilotes.